JPS5817536B2 - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPS5817536B2
JPS5817536B2 JP54077504A JP7750479A JPS5817536B2 JP S5817536 B2 JPS5817536 B2 JP S5817536B2 JP 54077504 A JP54077504 A JP 54077504A JP 7750479 A JP7750479 A JP 7750479A JP S5817536 B2 JPS5817536 B2 JP S5817536B2
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
compound
parts
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54077504A
Other languages
Japanese (ja)
Other versions
JPS562319A (en
Inventor
信一 真田
修二 早瀬
脩一 鈴木
守叶 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54077504A priority Critical patent/JPS5817536B2/en
Priority to US06/158,456 priority patent/US4324873A/en
Priority to CH472280A priority patent/CH652731A5/en
Priority to FR8013797A priority patent/FR2459256B1/en
Priority to GB8020201A priority patent/GB2055841B/en
Priority to DE19803023137 priority patent/DE3023137C2/en
Publication of JPS562319A publication Critical patent/JPS562319A/en
Publication of JPS5817536B2 publication Critical patent/JPS5817536B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4085Curing agents not provided for by the groups C08G59/42 - C08G59/66 silicon containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明はエポキシ樹脂系組成物に係り、特に常温では良
好な貯蔵安定性を示し、100”C程度以上の温度下で
は速かに硬化反応を進めすぐれた諸特性を備えた硬化物
となるエポキシ樹脂系組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an epoxy resin composition, which exhibits excellent storage stability, particularly at room temperature, and rapidly progresses the curing reaction at temperatures above about 100"C. The present invention relates to an epoxy resin composition that becomes a cured product.

エポキシ樹脂の硬化に当っては、例えば(A)ポリアミ
ン、酸無水物もしくはフェノールなどの硬化剤、または
(B)BF3 錯体や第3級アミン化合物で代表される
硬化触媒をエポキシ樹脂に添加配合することが通常行な
われている。
When curing an epoxy resin, for example, (A) a curing agent such as a polyamine, acid anhydride or phenol, or (B) a curing catalyst such as a BF3 complex or a tertiary amine compound is added to the epoxy resin. This is what is normally done.

しかして(A)の場合において、ポリアミンを用いたと
きはエポキシ樹脂との反応性が強いため組成物を長期間
貯蔵し得ないと云う不都合が、また酸無水物など用いた
ときは硬化に高温で長時間の加熱を要すると云う欠点が
ある。
However, in case (A), when a polyamine is used, there is the disadvantage that the composition cannot be stored for a long period of time due to its strong reactivity with the epoxy resin, and when an acid anhydride is used, it requires high temperatures for curing. The disadvantage is that it requires long heating times.

一方(B)の場合において、BF3 錯体を用いたとき
は比較的低温での硬化が可能な反面、硬化樹脂の高温下
での電気的、機械的特性が劣ると云う欠点がある。
On the other hand, in case (B), when a BF3 complex is used, curing is possible at a relatively low temperature, but there is a drawback that the electrical and mechanical properties of the cured resin at high temperatures are poor.

また第3級アミンを用いたときは、硬化反応に高温を要
するうえ、皮膚のカブレなど作業上の問題もある。
Further, when a tertiary amine is used, a high temperature is required for the curing reaction, and there are also operational problems such as skin irritation.

またエポキシ樹脂の硬化に当り、潜在性硬化触媒として
金属キレート化合物を添加配合することも試みられてい
る。
Furthermore, when curing epoxy resins, attempts have been made to add and blend metal chelate compounds as latent curing catalysts.

しかしこの場合には硬化反応に200℃以上の高温を要
するばかりでなく、前記金属キレート化合物の添加配合
量が5%程度と比較的多量で且つ溶解分散性の悪さに伴
ない良好な諸特性を備えた硬化樹脂層を形成し難いと云
う不都合さがある。
However, in this case, not only a high temperature of 200°C or more is required for the curing reaction, but also the amount of the metal chelate compound added is relatively large at about 5%, and good properties are not achieved due to poor dissolution and dispersibility. There is a disadvantage that it is difficult to form a cured resin layer.

さらにエポキシ樹脂−シラノール基を有するオルガノシ
リコーン化合物系に有機はう素化合物や有機チタン化合
物を添加配合した組成物も知られている。
Furthermore, compositions in which an organic boron compound or an organic titanium compound is added to an epoxy resin-organosilicone compound system having a silanol group are also known.

しかしこれらの場合には硬化後の電気特性が悪かったり
、貯蔵安定性が劣ったりして実用上満足しうるものとは
云えない。
However, in these cases, the electrical properties after curing are poor and the storage stability is poor, so that they cannot be said to be practically satisfactory.

本発明者らはこのような点に対処して検討を進めた結果
、Siに結合した水酸基を分子中に有するオルガノシラ
ンもしくはオルガノポリシロキサン類と有機基を有する
成る種の金属化合物とを潜在硬化触媒としてエポキシ樹
脂に添加配合せしめた場合、常温ですぐれた貯蔵安定性
を示す一方、100℃程度以上に加熱されると容易に硬
化反応して電気的特性および機械的特性の良好な硬化樹
脂層が得られることを見出した。
The inventors of the present invention proceeded with studies to address these points, and as a result, we discovered that latent curing of organosilanes or organopolysiloxanes having a hydroxyl group bonded to Si in the molecule and a metal compound having an organic group. When added to an epoxy resin as a catalyst, it exhibits excellent storage stability at room temperature, but when heated to about 100°C or higher, it easily undergoes a curing reaction, resulting in a cured resin layer with good electrical and mechanical properties. was found to be obtained.

本発明は上記知見に基づき、取扱い易くて、電気機器の
絶縁処理などに適するエポキシ樹脂系組成物を提供しよ
うとするものである。
Based on the above findings, the present invention aims to provide an epoxy resin composition that is easy to handle and suitable for insulation treatment of electrical equipment.

以下本発明の詳細な説明すると、本発明は(a) エ
ポキシ樹脂に対して0.01〜5重量%の分子中に少な
(とも1個、Siに結合した水酸基を有するオルガンシ
ランもしくはオルガノポリシロキサン化合物の少なくと
もいずれか1種と、(b) エポキシ樹脂に対して0
.001〜5重量%のV、AIあるいはFeを中心原子
とし、β−ジケトン化合物もしくはO−ケトフェノール
化合物を配位子とするキレート化合物とを潜在性硬化触
媒としエポキシ樹脂に添加せしめたことを特徴とするエ
ポキシ樹脂系組成物である。
To explain the present invention in detail below, the present invention provides (a) an organsilane or organopolysiloxane having a small amount (both 1 and 1 hydroxyl group bonded to Si) in the molecule of 0.01 to 5% by weight based on the epoxy resin; At least one of the compounds and (b) 0 for the epoxy resin.
.. 001 to 5% by weight of V, AI, or Fe as a central atom, and a chelate compound having a β-diketone compound or an O-ketophenol compound as a ligand is added to the epoxy resin as a latent curing catalyst. This is an epoxy resin composition.

本発明においてエポキシ樹脂の潜在性硬化触媒の一組成
分をなすSiに結合した水酸基を有するオルガノシラン
もしくはポリシロキサン化合物としては次のようなもの
が挙げられる。
In the present invention, the organosilane or polysiloxane compound having a hydroxyl group bonded to Si, which is a component of the latent curing catalyst for the epoxy resin, includes the following.

即ち一般式(但し式中R,R’はアルキル基、フェニル
基、アラルキル基、ビニル基、アリル基で同種であって
もよく、またq、rはO〜3の正の整数でq十rは3以
内である)で示されるオルガノシランもしくは一般式 %式% ルカリ基、もしくは加水分解性の基であり、S、t、X
、yはO〜2の正の整数でs+tおよびX十yはそれぞ
れ2以内、u、wは0〜2の正の整数、a、bはOまた
は1以上の正の整数をそれぞれ示す)、で示されるオル
ガノシロキサン化合物である。
That is, the general formula (wherein R and R' may be the same type of alkyl group, phenyl group, aralkyl group, vinyl group, or allyl group, and q and r are positive integers from O to 3, and q is within 3) or an organosilane represented by the general formula % formula % alkali group or a hydrolyzable group, S, t,
, y is a positive integer of O to 2, s + t and X + y are each within 2, u and w are positive integers of 0 to 2, a and b are O or a positive integer of 1 or more, respectively), This is an organosiloxane compound represented by

しかして上記オルガノシラン、オルガノポリシロキサン
化合物は1種もしくは2種以上の混合系で用いてもよく
、またその添加配合量はエポキシ樹脂に対し0.01〜
5重量%の範囲が好ましい。
However, the above organosilane and organopolysiloxane compounds may be used alone or in a mixed system of two or more, and the amount added is 0.01 to 0.01 to
A range of 5% by weight is preferred.

本発明において用いるエポキシ樹脂の潜在性硬化触媒の
他の一組成分をなす金属キレ・−ト化合物は、バナジウ
ム、鉄、あるいはアルミニウムを中心原子とし、β−ジ
ケトン型化合物あるいはO−ケトフェノール型化合物を
配位子とするキレート化合物である。
The metal chelate compound constituting another component of the latent curing catalyst for the epoxy resin used in the present invention has a central atom of vanadium, iron, or aluminum, and is a β-diketone type compound or an O-ketophenol type compound. It is a chelate compound that has as a ligand.

本発明において用いるβ−ジケトン型化合物は、次の化
学式(1)、(2)および(3)を有する化合物である
The β-diketone type compound used in the present invention is a compound having the following chemical formulas (1), (2) and (3).

(式中Rはアルキル基、もしくは・・ロゲン置換アルキ
ル基を表わす。
(In the formula, R represents an alkyl group or a rogen-substituted alkyl group.

)具体的には、化合物(1)としてはアセチルアセトン
、トリフルオロアセチルアセトン、ペンタフルオロアセ
チルアセトン等が挙げられ、また化合物(2)としては
、エチルアセトアセテート等が挙げられ、さらに化合物
(3)としては、ジエチルマロネート等が挙げられる。
) Specifically, examples of the compound (1) include acetylacetone, trifluoroacetylacetone, pentafluoroacetylacetone, etc., examples of the compound (2) include ethylacetoacetate, and examples of the compound (3) include: Examples include diethyl malonate.

また、本発明において用いる0−ケトフェノール型化合
物は、次の化学式(4)で表わされる化合物である。
Further, the 0-ketophenol type compound used in the present invention is a compound represented by the following chemical formula (4).

(式中Rは水素原子、アルキル基、ハロゲン置換アルキ
ル基もしくはアルコキシ基を表わす。
(In the formula, R represents a hydrogen atom, an alkyl group, a halogen-substituted alkyl group, or an alkoxy group.

)具体的には、サリチルアルデヒド、エチル−〇−ヒド
ロキシフェニルケトン等が挙げられる。
) Specific examples include salicylaldehyde, ethyl-〇-hydroxyphenyl ketone, and the like.

これらの化合物は、骨格中のケトンが上記金属元素とキ
レート結合を形成して触媒能を発現するものであり、上
記化合物におけるキレート結合形成部分以外の部分の変
更は、触媒活性の程度に多少の影響を及ぼすものの触媒
能を失なわしめるほどではない。
These compounds exhibit catalytic activity by the ketone in the skeleton forming a chelate bond with the above metal element, and changes in the parts other than the chelate bond forming part of the above compounds may have a slight effect on the degree of catalytic activity. Although it does have an effect, it is not enough to cause loss of catalytic ability.

一般的に言えば上記化合物群においては、式(4)のO
−ケトンフェノール型化合物が最も触媒活性が高く、次
いで、式(2)のβ−ケトエステル型化合物、式(4)
のβ−ジエステル型化合物、式(1)のβ−ジケトン型
化合物の順に活性が低下してゆく傾向があるが、いずれ
も本発明において実用可能である。
Generally speaking, in the above compound group, O of formula (4)
- Ketone phenol type compounds have the highest catalytic activity, followed by β-keto ester type compounds of formula (2) and formula (4).
Although the activity tends to decrease in the order of the β-diester type compound of formula (1) and the β-diketone type compound of formula (1), both are usable in the present invention.

本発明において使用するキレート化合物としては例えば
トリス(アセチルアセトナト)アルミニウム、トリス(
トリフルオロアセチルアセトナト)アルミニウム、トリ
ス(ペンタフルオロアセチルアセトン アセケト)アルミニウム、トリス(サリチルアルデヒド
ト)アルミニウムおよびトリス(ジエf/L/マロナト
)アルミニウム、さらにこれらの化合物のアルミニウム
を鉄あるいはバナジウムに代えたキレート化合物等が挙
げられる。
Examples of the chelate compounds used in the present invention include tris(acetylacetonato)aluminum, tris(
tris(pentafluoroacetylacetonate)aluminum, tris(salicylaldehydeto)aluminum and tris(dief/L/malonato)aluminum, and in addition, aluminum in these compounds is replaced with iron or vanadium Examples include chelate compounds.

更に、本発明においては、金属原子の結合手が全て配位
子と結合している必要はなく、■ないし2個のアルコキ
シ基、フェノキシ基、アシロキシ基と結合していてもよ
い。
Furthermore, in the present invention, all the bonds of the metal atom do not need to be bonded to ligands, and may be bonded to (1) to two alkoxy groups, phenoxy groups, or acyloxy groups.

かかる基を置換するとキレート化合物は更に高活性とな
る。
When such a group is substituted, the chelate compound becomes even more active.

これらのキレート化合物は、1種もしくは2種以上の混
合系で用いてもよく、その添加配合量はエポキシ樹脂に
対し重量比で0.001〜1%程度でよい。
These chelate compounds may be used alone or in a mixed system of two or more, and the amount added may be about 0.001 to 1% by weight based on the epoxy resin.

本発明において主成分となるエポキシ樹脂は通常知られ
ているものであり、特に限定されない。
The epoxy resin that is the main component in the present invention is commonly known and is not particularly limited.

例えばビスフェノールA型エポギシ樹脂、ビスフェノー
ルF型エポキシ樹脂、フェノールノボラック型エポキシ
樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアネ
ートやピダントインエポキシの如き合接素環エポキシ樹
脂、水添ビスフェノールA型エポキシ樹脂、プロピレン
グリコール・ジグリシジルエーテルやペンタエリスリト
ール−ポリグリシジルエーテルなどの脂肪族系エポキシ
樹脂、芳香族、脂肪族もしくは脂環式のカルボン酸とエ
ピクロルヒドリンとの反応によって得られるエポキシ樹
脂、スピロ環含有エポキシ樹脂、オルソ・アリル・フェ
ノール、ノボラック化合物とエピクロルヒドリンとの反
応生成物であるグリシジルエーテル型エポキシ樹脂、ビ
スフェノールAのそれぞれの水酸基のオルソ位にアリル
基を有するジアリルビスフェノール化合物とエピクロル
ヒドリンとの反応生成物であるグリシジルエーテル型エ
ポキシ樹脂などのいずれを用いても差支えない。
For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin, alicyclic epoxy resin, conjugate ring epoxy resin such as triglycidyl isocyanate and pidantoin epoxy, hydrogenated bisphenol A type epoxy resin, Aliphatic epoxy resins such as propylene glycol diglycidyl ether and pentaerythritol polyglycidyl ether, epoxy resins obtained by the reaction of aromatic, aliphatic or alicyclic carboxylic acids with epichlorohydrin, spiro ring-containing epoxy resins, Ortho allyl phenol, glycidyl ether type epoxy resin which is a reaction product of a novolak compound and epichlorohydrin, glycidyl which is a reaction product of a diallylbisphenol compound having an allyl group at the ortho position of each hydroxyl group of bisphenol A and epichlorohydrin Any ether type epoxy resin or the like may be used.

本発明に係るエポキシ樹脂系組成物は貯蔵安定性が良好
でありながら例えば100℃程度の温度では速かに硬化
反応するため作業−ト取扱い易いと云う利点がある。
The epoxy resin composition according to the present invention has the advantage that it has good storage stability and is easy to handle because it undergoes a rapid curing reaction at a temperature of about 100 DEG C., for example.

またエポキシ樹脂の種類および組成比の選択などにより
所謂る無溶剤型と(−て注型、含浸、成形用などに適す
るばかりでなく、ジオキサン、テトラヒドロフランなど
の低沸点溶媒にも容易に溶解する。
Furthermore, by selecting the type and composition ratio of the epoxy resin, it is not only suitable for so-called solvent-free applications such as casting, impregnation, and molding, but also easily dissolves in low-boiling point solvents such as dioxane and tetrahydrofuran.

従ってガラスクロスや紙などへの含浸塗着も容易となる
ため積層板形成用にも使用しうる。
Therefore, it can be easily applied to glass cloth, paper, etc., so it can also be used for forming laminates.

しかも硬化樹脂はすぐれた耐熱性、機械的特性、電気的
絶縁体特性を維持発揮する。
Moreover, the cured resin maintains and exhibits excellent heat resistance, mechanical properties, and electrical insulating properties.

尚本発明に係るエポキシ樹脂系組成物は上記エポキシ樹
脂−オルガノシランもしくはオルガノポリシロキサン−
有機金属キレート化合物系のみであってもよいし、また
無機質光てん剤など適宜配合しても同様の効果がある。
The epoxy resin composition according to the present invention includes the above-mentioned epoxy resin - organosilane or organopolysiloxane.
The organic metal chelate compound may be used alone, or an inorganic photochromic agent or the like may be appropriately added to obtain the same effect.

実施例 1 エポキシ樹脂エピコー)828(シェル化学社製、商品
名)100重量部にシラノール基(三5i−OH基)を
持ったポリメチルフェニルシロキサン化合物5H60’
18(東しシリコーン社製、商品名)2重量部、アルミ
ニウムアセチルアセトネート1重量部を加熱溶解させ、
室温で貯蔵したところ3力月経過後でもほとんど粘度上
昇が認められなかった。
Example 1 Polymethylphenylsiloxane compound 5H60' having a silanol group (35i-OH group) in 100 parts by weight of epoxy resin Epicor 828 (manufactured by Shell Chemical Co., Ltd., trade name)
18 (manufactured by Toshi Silicone Co., Ltd., trade name) and 1 part by weight of aluminum acetylacetonate were heated and dissolved.
When stored at room temperature, almost no increase in viscosity was observed even after 3 months.

この組成物を100℃で加熱したところ60分で、15
0℃では10分でそれぞれゲル化した。
When this composition was heated at 100°C, 15
At 0°C, gelation occurred in 10 minutes.

この組成物を120℃で2時間さらに150℃で5時間
加熱したところ淡橙色透明で強靭な硬化物となった。
When this composition was heated at 120° C. for 2 hours and further at 150° C. for 5 hours, it became a light orange transparent and tough cured product.

この硬化物の諸特性を別表1に示す。The properties of this cured product are shown in Attached Table 1.

(なお熱変形温度はASTM684(a)、体積固有抵
抗、誘電正接はJIS K−6911、曲げ強さはJ
ISK−7203に準拠して測定した。
(Heat distortion temperature is ASTM684 (a), volume resistivity, dielectric loss tangent is JIS K-6911, bending strength is J
Measured according to ISK-7203.

以下同様)実施例 2 エポキシ樹脂チッソノツクス221(チッソ社製、商品
名)100重量部に5H60180,1重量部、アルミ
ニウムアセチルアセトネート0.1重量部を加熱溶解さ
せ室温で貯蔵したところ3力月経過後もほとんど粘度上
昇がみられなかった。
(Similarly below) Example 2 100 parts by weight of epoxy resin Chissonox 221 (manufactured by Chisso Corporation, trade name), 1 part by weight of 5H60180, and 0.1 part by weight of aluminum acetylacetonate were dissolved by heating and stored at room temperature. 3 months elapsed. After that, almost no increase in viscosity was observed.

この組成物を100℃で加熱したところ10分で、12
0℃では4分でそれぞれゲル化した。
When this composition was heated at 100°C, 12
At 0°C, gelation occurred in 4 minutes.

この組成物を100℃で2時間さらに150℃で5時間
)ミ加熱したところ強靭な硬化物が得られた。
When this composition was heated at 100°C for 2 hours and further at 150°C for 5 hours, a tough cured product was obtained.

この硬化物の諸特性を表1に示す。Table 1 shows various properties of this cured product.

実施例 3 エポキシ樹脂エピクロン830(犬日本インキ化学社製
、商品名)100重量部にS、H60181重量部、ア
ルミニウムアセチルアセ+−ネ−)0.4重量部を加熱
溶解させ、室温で貯蔵したところ3力月経過後もほとん
ど粘度上昇が認められなかった。
Example 3 100 parts by weight of epoxy resin Epiclon 830 (manufactured by Inu Nippon Ink Chemical Co., Ltd., trade name) was heated to dissolve 1 part by weight of S, H60181, and 0.4 part by weight of aluminum acetylacetate, and stored at room temperature. However, almost no increase in viscosity was observed even after 3 months had passed.

この組成物を100℃で加熱したところ30分で、15
0℃では12分でそれぞれゲル化した。
When this composition was heated at 100°C, 15
At 0°C, gelation occurred in 12 minutes.

この組成物を120℃で2時間さらに150℃で5時間
加熱したところ強靭な硬化物が得られた。
When this composition was heated at 120°C for 2 hours and further at 150°C for 5 hours, a tough cured product was obtained.

この硬化物の諸特性を表1に示す。Table 1 shows various properties of this cured product.

比較例 1 エピコー)828 100重量部に三沸化硼素モノエチ
ルアミン錯体3重量部を加熱溶解させた後100℃で2
時間さらに150℃で5時間加熱すると硬化物が得られ
る。
Comparative Example 1 After heating and dissolving 3 parts by weight of boron trifluoride monoethylamine complex in 100 parts by weight of Epicor) 828, 2 parts by weight at 100°C.
A cured product is obtained by further heating at 150° C. for 5 hours.

この硬化物の諸特性を表1に示す。Table 1 shows various properties of this cured product.

比較例 2 エピコート828 100重量部にイミダゾール化合物
2PH2−CN(四国化成社製、商品名)10重量部を
溶解させ100℃で2時間さらに150℃で4時間加熱
すると硬化物が得られる。
Comparative Example 2 A cured product is obtained by dissolving 10 parts by weight of an imidazole compound 2PH2-CN (manufactured by Shikoku Kasei Co., Ltd., trade name) in 100 parts by weight of Epikote 828 and heating the solution at 100°C for 2 hours and further at 150°C for 4 hours.

この硬化物の諸特性を表1に示す。Table 1 shows various properties of this cured product.

実施例 4 エピコート828 100重量部に5H60182重量
部、鉄アセチルアセトネート1重量部を加熱溶解させ、
室温で貯蔵したところ3力月経過後でもほとんど粘度上
昇が認められなかった。
Example 4 100 parts by weight of Epicoat 828, 182 parts by weight of 5H60 and 1 part by weight of iron acetylacetonate were heated and dissolved,
When stored at room temperature, almost no increase in viscosity was observed even after 3 months.

この組成物を100℃で加熱したところ70分で、15
0°Cでは12分でそれぞれゲル化した。
When this composition was heated at 100°C, 15
At 0°C, gelation occurred in 12 minutes.

この組成物を120℃で2時間さらに150℃で5時:
間加熱したところ淡黄色透明で強靭な硬化物が得られた
This composition was heated at 120°C for 2 hours and then at 150°C for 5 hours:
When heated for a while, a pale yellow, transparent and tough cured product was obtained.

実施例 6.7 下記表に示す組成を有する樹脂組成物を調製した。Example 6.7 A resin composition having the composition shown in the table below was prepared.

これらの組成物を160℃10時間加熱したところ樹脂
硬化物が得られた。
When these compositions were heated at 160° C. for 10 hours, a cured resin product was obtained.

この硬化物の特性を同表に併せて示す。The properties of this cured product are also shown in the same table.

実施例 8 エピコート828 100重量部に、ジフェニルジヒド
ロキシシラン3重量部および下記表に示すキレート化合
物2重量部からなる硬化触媒を配合して、樹脂組成物を
調整した。
Example 8 A curing catalyst consisting of 3 parts by weight of diphenyldihydroxysilane and 2 parts by weight of the chelate compound shown in the table below was blended with 100 parts by weight of Epicoat 828 to prepare a resin composition.

これらの組成物は、いずれも室温暗室における2ケ月貯
蔵後もほとんど粘度上昇は認められなかった。
All of these compositions showed almost no increase in viscosity even after being stored for two months in a dark room at room temperature.

また、これら樹脂組成物のゲル化時間を測定したところ
結果は同表に示した通りであった。
Furthermore, when the gelation time of these resin compositions was measured, the results were as shown in the same table.

実施例 9 エポキシ樹脂ショーダイン540(商品名、昭和電工)
400重量部、エピコート1001(商品名、シェル社
)800重量部、エピコート152(商品名、シェル社
)1500重量部、ポリシロキサン化合物5H−601
8(商品名、東しシリコーン社)100重量部を、80
〜100℃の温度下でメチルエチルケトンに溶解し55
重量%の溶液を調製した。
Example 9 Epoxy resin Shodine 540 (product name, Showa Denko)
400 parts by weight, Epicote 1001 (trade name, Shell) 800 parts by weight, Epicote 152 (trade name, Shell) 1500 parts by weight, polysiloxane compound 5H-601
8 (trade name, Toshi Silicone Co., Ltd.) 100 parts by weight, 80 parts by weight
55 dissolved in methyl ethyl ketone at a temperature of ~100°C.
A wt% solution was prepared.

上記液にアルミニウノ・トリエチルアセトアセテート2
.6重量部と水酸基をもったポリシロキサン化合物TS
R−160(商品名、東芝シリコーン社)2.6重量部
を添加配合した。
Add aluminum Uno triethyl acetoacetate 2 to the above solution.
.. Polysiloxane compound TS with 6 parts by weight and hydroxyl group
2.6 parts by weight of R-160 (trade name, Toshiba Silicone Co., Ltd.) was added and blended.

この樹脂溶液をエポキシシラン処理した平織ガラス布に
含浸、塗着させ風乾処理した後ioo℃×10〜30分
間の乾燥を順次節して樹脂付着量45%程度のプリプレ
グを得た。
This resin solution was impregnated and applied to a plain woven glass cloth treated with epoxy silane, air-dried, and then dried at IOO° C. for 10 to 30 minutes to obtain a prepreg with a resin adhesion of about 45%.

かくして得たプリプレグがら200X200mm片を切
り出し、この切り出片8枚重ね合せた上180℃、30
分加熱、加圧成形後、180℃×5時間アクターキュア
を施して積層板を作製した。
A piece of 200 x 200 mm was cut out from the prepreg thus obtained, 8 of the cut pieces were stacked on top of each other, and heated at 180°C for 30 minutes.
After heating and pressure molding for 1 minute, actuator curing was performed at 180° C. for 5 hours to produce a laminate.

この積層板から試験片を切り出し200℃X100O時
間加熱後における重量減少を測定したところ11%であ
り、また200〜1000時間加熱後における電気的絶
縁性は表2に示す如くであった。
A test piece was cut out from this laminate and the weight loss after heating at 200 DEG C. for 100 hours was measured to be 11%, and the electrical insulation properties after heating for 200 to 1000 hours were as shown in Table 2.

実施例 10 エポキシ樹脂チッソノックス221(商品名チッソ社)
100重量部、エポキシ樹脂ECN1299(商品名、
チバガイギー社)200重量部、ポリシロキサン5H−
6018(商品名、東しシリコーン社)3重量部を50
〜60〜60℃でメチルエチルケトンに均一に溶解して
樹脂分50重量%の溶解に調製した。
Example 10 Epoxy resin Chissonox 221 (trade name Chisso Co., Ltd.)
100 parts by weight, epoxy resin ECN1299 (trade name,
Ciba Geigy) 200 parts by weight, polysiloxane 5H-
6018 (trade name, Toshi Silicone Co., Ltd.) 3 parts by weight to 50
It was uniformly dissolved in methyl ethyl ketone at ~60 to 60°C to prepare a resin content of 50% by weight.

上記樹脂溶液120重量部に攪拌を施しながらアルミニ
ウムトリエチルアセトアセテ−)0.3重量部及び平均
粒径5.5μの天然グラファイト40重量部を徐々に添
加し成形用組成物を得、この組成物から減圧沢過去で溶
媒を除いた後、金型温度180℃、圧力180kg/c
肩で7分間加熱加圧成形を施して成形板を得た。
While stirring, 0.3 parts by weight of aluminum triethyl acetoacetate and 40 parts by weight of natural graphite having an average particle size of 5.5 μm were gradually added to 120 parts by weight of the above resin solution to obtain a molding composition. After removing the solvent under reduced pressure, the mold temperature was 180℃ and the pressure was 180kg/c.
A molded plate was obtained by performing heat and pressure molding on the shoulder for 7 minutes.

この成形板を200℃でアフターキュアし、摩擦摩耗験
機(E F M −n−B型、東洋ボールドウィン社)
で摩擦係数を測定したところ1.00 kgの荷重下で
μ−0,23、発熱温度165℃、PV値は4100で
あった。
This molded plate was after-cured at 200°C and subjected to a friction and wear testing machine (Model E F M -n-B, Toyo Baldwin Co., Ltd.).
When the friction coefficient was measured under a load of 1.00 kg, it was μ-0.23, the exothermic temperature was 165° C., and the PV value was 4100.

実施例 11 脂環式エポキシ樹脂チンソノツクス221(商品名、チ
ッソ株式会社)50重量部、昭和電工株式会社)50重
量部、ポリシロキサン化合物5H−6018(商品名、
東し・シリコーン社)o、o5重量部、アルミニウムト
リアセチルアセトネート0.3重量部および粒度200
メツシユのシリカ粉末180重量部を攪拌混合して注型
用樹脂組成物を調製した。
Example 11 Alicyclic epoxy resin Chinsonox 221 (trade name, Chisso Corporation) 50 parts by weight, Showa Denko K.K.) 50 parts by weight, polysiloxane compound 5H-6018 (trade name,
Toshi Silicone Co., Ltd.) o, o5 parts by weight, aluminum triacetylacetonate 0.3 parts by weight and particle size 200
A casting resin composition was prepared by stirring and mixing 180 parts by weight of mesh silica powder.

一方芳香族ポリアミド不織布ノーメックス(商品名、デ
ュポン社)テープを1/2重ね巻きで2回巻回した平角
銅線を円板状に巻回して成るコイル素子を各段間に芳香
族ポリアミド不織布を挿み5段に重ね外周を、粗目のガ
ラステープで1/2重ね巻を2回行ないコイルを構成し
た。
On the other hand, a coil element is made by winding a flat rectangular copper wire into a disk shape with aromatic polyamide non-woven fabric Nomex (trade name, DuPont) tape wound twice with 1/2 overlap, and an aromatic polyamide non-woven fabric is placed between each stage. A coil was constructed by stacking the inserts in five stages and wrapping the outer periphery with coarse glass tape twice in a 1/2 overlap.

上記コイルを注型金型に収容し真空含浸タンクに入れ1
77177LHgに減圧した後、前記注型用樹脂組成物
(80〜110°Cに加熱源)を注型金型に流し込みゲ
ージ圧5 kg/crAにて5時間加圧してコイルを注
型した。
Place the above coil in a casting mold and put it in a vacuum impregnation tank 1
After reducing the pressure to 77,177 LHg, the resin composition for casting (heat source at 80 to 110°C) was poured into a casting mold and pressurized at a gauge pressure of 5 kg/crA for 5 hours to cast a coil.

この注型後コイルをタンクから取り出し15Q℃×5時
間、170℃×10時間順次加熱成埋を施して樹脂を硬
化させ注型コイルを得た。
After this casting, the coil was taken out from the tank and heated and embedded sequentially at 15Q°C for 5 hours and at 170°C for 10 hours to harden the resin and obtain a cast coil.

かくして得た注型コイルについて155℃〜−40°C
の範囲で通電加熱と冷却でのヒートサイクル試験を行な
ったところ注型樹脂層にクラック発生も認められず良好
な結果を示した。
155°C to -40°C for the cast coil thus obtained.
When a heat cycle test was conducted using electrical heating and cooling within a range of 0.05 to 10.00, no cracks were observed in the cast resin layer, and good results were obtained.

また80°Cから10℃の間で行なったヒートショック
試験でも良好な性能を示し、乾式変圧器に組立てた場合
も信頼性の高い機能を有していた。
It also showed good performance in heat shock tests conducted between 80°C and 10°C, and had highly reliable functionality when assembled into a dry transformer.

実施例 12 ビスフェノールA型のエポキシ樹脂エピコート1001
(商品名、シェル化学社)40重量部、ノボラック型エ
ポキシ樹脂エピコー)152(商品名、シェル化学社)
60重量部およびポリシロキサン化合物5H−6018
(商品名、東l/・シリコーン社)2.0重量部を60
〜70℃の温度下でメチルエチルケトンに溶解し、55
重量%の溶液とした。
Example 12 Bisphenol A type epoxy resin Epicoat 1001
(Product name, Shell Chemical Co., Ltd.) 40 parts by weight, Novolac type epoxy resin Epicor) 152 (Product name, Shell Chemical Co., Ltd.)
60 parts by weight and polysiloxane compound 5H-6018
(Product name, Tol/・Silicone Co., Ltd.) 2.0 parts by weight 60
Dissolved in methyl ethyl ketone at a temperature of ~70 °C,
% solution by weight.

この溶液にアルミニウムトリエチルアセトアセテート2
.6重量部、水酸基をもつポリシロキサン化合物TSR
−160(商品名、東芝シリコーン社)2,6重量部を
加え、均一に溶解混合した。
Add aluminum triethyl acetoacetate 2 to this solution.
.. 6 parts by weight, polysiloxane compound TSR with hydroxyl group
2.6 parts by weight of -160 (trade name, Toshiba Silicone Co., Ltd.) were added and uniformly dissolved and mixed.

この樹脂溶液を35μmの粗目ガラスクロスを裏打ちし
た約0.1 mm厚さの硬質焼成タイプの集成マイカシ
ートに含浸、塗着させ、60〜70°Cで5〜20分間
乾燥して接着剤計45%程度のブリプレグヤイカシート
を得た。
This resin solution was impregnated and applied to a hard fired type laminated mica sheet with a thickness of about 0.1 mm lined with 35 μm coarse glass cloth, and dried at 60 to 70°C for 5 to 20 minutes to form an adhesive. A Bripreg Yaika sheet of about 45% was obtained.

このプリプレグマイカシートを更に30朋幅にスリッタ
ーで切断し、テープを得た。
This prepreg mica sheet was further cut into 30 mm width pieces using a slitter to obtain a tape.

このマイカテープは室温で3ケ月以上の貯蔵寿命を有し
ていた。
This mica tape had a shelf life of over 3 months at room temperature.

次に上記プリプレグマイカテープを線輪に1/2巻きで
5回巻回し、プレス又はモールド機で、25kg/ct
ftの圧力を加えながら、150°Cで1〜2時間成形
する。
Next, the prepreg mica tape was wound 5 times with 1/2 winding around a wire ring, and then it was wrapped with a press or molding machine at 25kg/ct.
Mold at 150° C. for 1-2 hours while applying ft of pressure.

その後、160’cのオープン中で約10時間加熱硬化
させて、電気絶縁線輪を得る。
Thereafter, it is heated and cured for about 10 hours in a 160'c open chamber to obtain an electrically insulating coil.

このようにして得た電気絶縁線輪は、短時間上昇法で3
0に■/7n蝉上の高い絶縁破壊強度と、15kg/m
4以上という、従来のシリコーンマイカ絶縁に比べ、高
い曲げ強さを示した。
The electrically insulated wire ring obtained in this way was
High dielectric breakdown strength over 0/7n and 15kg/m
It exhibited a higher bending strength of 4 or higher than conventional silicone mica insulation.

また、比較的低温で短時間の硬化にも係らず、180℃
のIK’J/ynmにおけるtanδ(誘電正接)も1
0%以内で、高温での電気的損失が少なかった。
In addition, despite curing at a relatively low temperature and in a short time,
tan δ (dielectric loss tangent) at IK'J/ynm is also 1
Within 0%, electrical loss at high temperatures was small.

更にこの電気絶縁線輪を200℃で1000時間加熱後
、絶縁破壊電圧と曲げ強さを試験したが、初期とほとん
ど変らすIKV/mmにおけるtanδの著しい増加も
なかった。
Furthermore, after heating this electrically insulated coil at 200° C. for 1000 hours, the dielectric breakdown voltage and bending strength were tested, and there was no significant increase in tan δ in IKV/mm, which was almost unchanged from the initial value.

そして、絶縁破壊後、絶縁層を分解し、目視にて観察し
たが、絶縁層の層はがれ、樹脂の炭化などは見られず、
極めて耐熱的、機械的特性に優れた電気絶縁線輪である
ことが判った。
After the dielectric breakdown, the insulating layer was disassembled and visually observed, but no peeling of the insulating layer or carbonization of the resin was observed.
It turned out to be an electrically insulated coil with extremely high heat resistance and excellent mechanical properties.

上記実施例から明らかなように本発明に係る樹脂組成物
は含浸、注形用に適するほか低沸点で極性の強くない有
機溶媒でも可溶なため積層板類、成形材料類、プリプレ
グ、バインドテープ、楔類、軸受材料など電気機器の絶
縁用素材として適するものと云える。
As is clear from the above examples, the resin composition of the present invention is suitable for impregnation and casting, and is also soluble in organic solvents with a low boiling point and not strong polarity, so it can be used for laminates, molding materials, prepregs, and bind tapes. It can be said that it is suitable as an insulating material for electrical equipment such as wedges, bearing materials, etc.

Claims (1)

【特許請求の範囲】 1(a)エポキシ樹脂に対して0.01〜5重量%の1
分子中に少くとも1個、Siに結合した水酸基を有する
オルガノシランもしくはオルガノシロキサン化合物の少
くとも1種と (b) エポキシ樹脂に対して0.001〜5重量%
のV、AIあるいはFeを中心原子とし、β−ジケトン
化合物もシー<はO−ケトフェノール化合物を配位子と
するキレート化合物とを潜在性硬化触媒としてエポキシ
樹脂に添加せしめたことを特徴とするエポキシ樹脂系組
成物。
[Claims] 1(a) 0.01 to 5% by weight of 1 based on the epoxy resin
At least one organosilane or organosiloxane compound having at least one hydroxyl group bonded to Si in the molecule; and (b) 0.001 to 5% by weight based on the epoxy resin.
It is characterized in that a chelate compound having V, AI or Fe as a central atom, and a β-diketone compound and a chelate compound having an O-ketophenol compound as a ligand is added to the epoxy resin as a latent curing catalyst. Epoxy resin composition.
JP54077504A 1979-06-21 1979-06-21 Epoxy resin composition Expired JPS5817536B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP54077504A JPS5817536B2 (en) 1979-06-21 1979-06-21 Epoxy resin composition
US06/158,456 US4324873A (en) 1979-06-21 1980-06-11 Organosilicon-organometal compositions as epoxy curing catalysts
CH472280A CH652731A5 (en) 1979-06-21 1980-06-19 Epoxy resin-based compositions
FR8013797A FR2459256B1 (en) 1979-06-21 1980-06-20 EPOXIDE RESIN COMPOSITIONS
GB8020201A GB2055841B (en) 1979-06-21 1980-06-20 Epoxy resin-based composition
DE19803023137 DE3023137C2 (en) 1979-06-21 1980-06-20 Resin compound based on epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54077504A JPS5817536B2 (en) 1979-06-21 1979-06-21 Epoxy resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16218882A Division JPS5874716A (en) 1982-09-20 1982-09-20 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS562319A JPS562319A (en) 1981-01-12
JPS5817536B2 true JPS5817536B2 (en) 1983-04-07

Family

ID=13635789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54077504A Expired JPS5817536B2 (en) 1979-06-21 1979-06-21 Epoxy resin composition

Country Status (2)

Country Link
US (1) US4324873A (en)
JP (1) JPS5817536B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588701B2 (en) * 1980-04-03 1983-02-17 株式会社東芝 Epoxy resin composition
JPS5718754A (en) * 1980-07-08 1982-01-30 Shin Etsu Chem Co Ltd Epoxy-silicone resin composition
US4332923A (en) * 1980-10-23 1982-06-01 Dow Corning Corporation Composition for coating heat sensitive substrates
JPS57125212A (en) * 1981-01-27 1982-08-04 Toshiba Corp Photo-polymerizable composition
JPS5857428A (en) 1981-09-30 1983-04-05 Toshiba Corp Photopolymerizable composition
JPS58113226A (en) * 1981-12-26 1983-07-06 Toho Rayon Co Ltd Strand prepreg and manufacture of the same
JPS5949227A (en) * 1982-09-14 1984-03-21 Toshiba Corp Photopolymerizable composition
GB8606634D0 (en) * 1986-03-18 1986-04-23 Dow Corning Ltd Catalyst compositions
JPS62241916A (en) * 1986-04-14 1987-10-22 Toshiba Chem Corp Epoxy resin composition
JPH02252723A (en) * 1989-03-28 1990-10-11 Kansai Paint Co Ltd Curable composition
US5017540A (en) * 1989-09-15 1991-05-21 Sandoval Junior E Silicon hydride surface intermediates for chemical separations apparatus
US5439746A (en) * 1991-09-09 1995-08-08 Kabushiki Kaisha Toshiba Epoxy resin-basin composite material
US5541346A (en) * 1992-10-21 1996-07-30 E. I. Du Pont De Nemours And Company Polymerization of, and depolymerization to, cyclic ethers using selected metal compound catalysts
US5478920A (en) * 1993-07-16 1995-12-26 E. I. Du Pont De Nemours And Company Cyclic ether polymerization using silicon compound accelerators
JP3565797B2 (en) * 2001-06-06 2004-09-15 ソニーケミカル株式会社 Latent curing agent, method for producing latent curing agent, and adhesive
JP3875859B2 (en) * 2001-06-27 2007-01-31 ソニーケミカル&インフォメーションデバイス株式会社 Curing agent particles, method for producing curing agent particles, and adhesive
JP4148685B2 (en) * 2002-02-18 2008-09-10 ソニーケミカル&インフォメーションデバイス株式会社 Latent curing agent, method for producing latent curing agent, and adhesive
JP2004109943A (en) * 2002-09-20 2004-04-08 Ricoh Co Ltd Image forming device
CN101143998B (en) * 2002-12-05 2011-03-09 索尼化学株式会社 Potentiality hardening agent, preparation method and binder thereof
US7557230B2 (en) * 2005-06-06 2009-07-07 Sony Corporation Latent curing agent
CN101595152B (en) * 2007-01-24 2012-06-27 索尼化学&信息部件株式会社 latent curing agent
JP5298431B2 (en) * 2007-01-24 2013-09-25 デクセリアルズ株式会社 Latent curing agent
FR3038608A1 (en) * 2015-07-06 2017-01-13 Bluestar Silicones France PROCESS FOR THE PREPARATION OF ORGANOPOLYSILOXANES WITH (METH) ACRYLATE FUNCTIONS

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578615A (en) * 1968-04-08 1971-05-11 Shell Oil Co Epoxy resin coatings having improved cathodic disbonding resistance
US3657159A (en) * 1968-10-14 1972-04-18 Hercules Inc Epoxide polymerization catalysts comprising complex organoaluminate compounds of silicon tin or phosphorus
US3725341A (en) * 1971-06-23 1973-04-03 Dow Chemical Co Process for the preparation of high molecular weight polyepoxides from polyepoxides and polyhydroxyl-containing compounds
JPS5213536B2 (en) * 1973-03-08 1977-04-15
US3971747A (en) * 1975-04-11 1976-07-27 Dow Corning Corporation Curable compositions
US4082719A (en) * 1976-02-23 1978-04-04 Dow Corning Corporation Silicone epoxy curable compositions
JPS53147798A (en) * 1977-05-30 1978-12-22 Shin Etsu Chem Co Ltd Curable composition
US4202811A (en) * 1978-06-21 1980-05-13 Dow Corning Corporation Siloxane-epoxy molding compound with improved crack resistance

Also Published As

Publication number Publication date
US4324873A (en) 1982-04-13
JPS562319A (en) 1981-01-12

Similar Documents

Publication Publication Date Title
JPS5817536B2 (en) Epoxy resin composition
JPS5817537B2 (en) Epoxy resin composition
EP1850460B1 (en) Winding insulation applied with a single vacuum pressure impregnation
US4128598A (en) Thermosetting resin compositions having excellent high temperature characteristics
JPS6178824A (en) Chemically curable resin comprising compound having 1-oxa-3-aza-tetralin group and alicyclic epoxide resin, manufacture, curable process and use of said resin
EP0031904B1 (en) Heat-resistant thermosetting resin composition
JPH09157498A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP3651729B2 (en) Impregnating resin composition
CN111777746B (en) Halogen-free flame retardant epoxy resin composition, molding compound product, preparation method and application thereof
JP7024777B2 (en) Manufacturing method of epoxy polymer, epoxy resin, epoxy resin composition, resin sheet, B stage sheet, cured product, C stage sheet, metal foil with resin, metal substrate and epoxy resin
US2962410A (en) Ethoxyline resins
JP3666287B2 (en) Thermosetting resin composition and insulated coil using the same
JPS5874716A (en) Epoxy resin composition
JPS6129972B2 (en)
GB2055841A (en) Epoxy resin-based composition
JPS5917218A (en) Electrically insulated coil
JPS6041082B2 (en) Eboxy resin composition
JPS61218624A (en) Epoxy resin composition
JP7346985B2 (en) Method for manufacturing rare earth bonded magnet compound and method for manufacturing rare earth bonded magnet
JP4244626B2 (en) Epoxy resin composition and electrically insulating material
JPH0710966A (en) Epoxy resin composition and method for producing cured epoxy resin
JPH02302426A (en) Epoxy resin composition
JPS621723A (en) Epoxy resin composition
JPS62114452A (en) Preparation of electrical insulating coil
JPH06306142A (en) Epoxy resin composition and composite material produced therefrom