JPS58174533A - Continuous refinement of impure copper - Google Patents

Continuous refinement of impure copper

Info

Publication number
JPS58174533A
JPS58174533A JP4160383A JP4160383A JPS58174533A JP S58174533 A JPS58174533 A JP S58174533A JP 4160383 A JP4160383 A JP 4160383A JP 4160383 A JP4160383 A JP 4160383A JP S58174533 A JPS58174533 A JP S58174533A
Authority
JP
Japan
Prior art keywords
gas
bath
reaction
copper
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4160383A
Other languages
Japanese (ja)
Other versions
JPS6123249B2 (en
Inventor
ウオルフガング・ウ−ト
ホルスト・ウアイゲル
ゲルハルト・メルヒエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kloeckner Humboldt Deutz AG
Original Assignee
Kloeckner Humboldt Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kloeckner Humboldt Deutz AG filed Critical Kloeckner Humboldt Deutz AG
Publication of JPS58174533A publication Critical patent/JPS58174533A/en
Publication of JPS6123249B2 publication Critical patent/JPS6123249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/005Smelting or converting in a succession of furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/006Pyrometallurgy working up of molten copper, e.g. refining

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、不純な銅を溶融相で連続的に精錬する方法
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improvement in a process for continuously refining impure copper in the molten phase.

従来の方法にあって社、融液状の銅を処S室内で多数の
反応室を加熱ガスに対して向流状態で導き、その際不純
物を除去した、またこの方法にあっては□溶融物の流動
方向で見て一最後の反応室に燃料および酸素ガス含有−
次ガスとが化学量論以下の割合で供給され、これらの酸
欠下での燃焼によって還元加熱ガスが生じる。更にこの
方法においては、上記最シの反応室の手前に存在する反
応室内で酸素含有二次ガスを附加的に供給することによ
って未だ燃焼せずに加熱ガス内に帯行されて来る燃料の
後燃焼が行われる。
In the conventional method, molten copper was introduced into a processing chamber through a number of reaction chambers in countercurrent to the heated gas to remove impurities; The last reaction chamber, viewed in the direction of flow, contains fuel and oxygen gas.
The following gases are supplied at a ratio below the stoichiometric ratio, and reduced heating gas is produced by combustion in the absence of oxygen. Furthermore, in this method, by additionally supplying an oxygen-containing secondary gas in the reaction chamber that is located before the last reaction chamber, the fuel that has not yet been combusted and is entrained in the heated gas is removed. Combustion takes place.

この方法によって達せられる技術的なかつ経済的な進歩
は、方法を完全自動的な行程制御による経済性を付与し
て更に完全なものにすることを求めている。この銅精錬
方法を更に改善するには従来、反応機構におけるガス相
/金嘱溶融物の熱交換および物質交換の正確な、少なく
とも量的な規制に困難があった。
The technical and economic advances achieved by this method require it to be made even more complete with the economy of fully automatic process control. To further improve this copper refining process, it has hitherto been difficult to precisely, at least quantitatively, regulate the heat and mass exchange of the gas phase/metal melt in the reaction mechanism.

反応機構を量的な点で規制することを可能にするためK
は、制御可能な、再生可能な、しかしいかなる場合でも
強制的に生じる反応ガスと融液状の相−銅/スラッジー
関の強制的に生じる対流状態と物質交換状態を造り、維
持する必要がある。
K to make it possible to quantitatively control the reaction mechanism.
It is necessary to create and maintain controllable, reproducible, but in any case forced convective and mass exchange conditions between the reactant gases and the molten phase-copper/sludge.

そこで、本発明の課題は、上記の従来の鋼精錬方法を量
の点においても、質の点においても制御可能な反応経過
をもって行われるよう改東することである。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to improve the above-mentioned conventional steel refining process so that it can be carried out with a controllable reaction course both in terms of quantity and quality.

ガスとして金属浴の融液相とこの金属浴へのm−ことを
提案する。
It is proposed that the melt phase of the metal bath as a gas and m- to this metal bath.

この場合、特別に有効な方法としては、二次ガスを燃料
を含む加熱ガスと燃焼させる以前に、加速ノズルによっ
て集束されたエネルギーに富む少くとも1つのガス放射
流の形で本質的に褌の金属浴の表面上にほけ垂直方向で
吹き込んでこの表面とガスから金−浴への一定の物質移
行が行われるよう接触させることである。
In this case, a particularly advantageous method is to provide, before the secondary gas is combusted with the heated gas containing the fuel, essentially a loincloth in the form of at least one energy-rich radial stream of gas focused by an accelerating nozzle. The gas is blown vertically onto the surface of the metal bath and brought into contact with this surface so that a constant mass transfer from the gas to the gold bath takes place.

この方法は極めて大きな意味をもつ、なぜならガス放射
流が浮遊するスラッジ層を押のけながら金属浴と強制的
にかつ流密度を規制できるように接触され、この場合ガ
ス放射流によって岐点において起る液状の金−の対流野
KIiめて迅速な、した・かって制御することのできる
物質交換が行われるからである。
This method is of great significance because a gas radial stream is forced into contact with the metal bath, displacing the suspended sludge layer, and in a manner that allows the flow density to be regulated. This is because in the convective field of liquid gold KIi, a rapid and even controllable exchange of substances takes place.

この過程をもつと有利にするためこの発明では、二次ガ
スを、ガス放射流の岐点内に存在する吹込み圧力を中心
にして本質的に円環状に回転する溶融物の層流がガス放
射流と共に系の対流状態によって区、1画される、一定
の物質移行を伴った反応単位を生じる程度に太き表放射
力で吹込むことを提案する。
In order to advantageously have this process, the present invention provides that the secondary gas is caused by a laminar flow of the melt rotating essentially in an annular manner about the blowing pressure existing in the branch point of the gas radial flow. We propose to inject with a large surface radiation force to the extent that reaction units with constant mass transfer are generated, which are divided by the convection state of the system along with the radiant flow.

この方法によって、有利な、特別迅速なしたかって一定
のエネルギーによって可能となる方法規制の大きさによ
って手近に定めることのできる反応経過を得ることがで
きる。
By this method it is possible to obtain an advantageous, particularly rapid reaction course which can therefore be readily defined by the magnitude of the process regulation made possible by the constant energy.

液状の鋼の反応ガスとの反応が本質的に浴のガス堰市り
に起因する吹込み位置の範囲内で行われ、しかもこの吹
込み位置における面の大きさを測定することができ、し
たがって調節し、かつ一定にすることができるので、物
質移行の状態を量的に制御することができる。この発明
の公知の方法に対する他の利点はこの点にある、即ち銅
精錬工程のプログラム化可能な制御の可能性にある。こ
の場合、例えば浴運動が激しすぎる際に生じる障害流を
阻止するには、浴が「飛散」を起さないように配慮しな
ければならない。なぜなら一方においてこの「飛散」に
よって調節された反応の平衡、したがって規制状能が阻
害され、他方少なくとも局所的に酸化鋼形成下に過酸化
現象を起すからである。これら2つの現象は望ましくな
い。こ この発明による最後の方法は、放射力と浴表面からのノ
ズル口の間隔とを使用する反応ガスの種類に応じて、金
属浴が実際に飛散しないように調節することである。
The reaction of the liquid steel with the reaction gas takes place essentially within the range of the blowing position resulting from the gas damming of the bath, and the surface size at this blowing position can be measured, and therefore Since it can be regulated and kept constant, the state of mass transfer can be quantitatively controlled. Another advantage of the invention over known methods lies in this, namely the possibility of programmable control of the copper smelting process. In this case, care must be taken to prevent the bath from "splattering" in order to prevent disturbances, which occur, for example, when bath movements are too vigorous. This is because, on the one hand, this "splatter" disturbs the equilibrium of the regulated reaction and thus the regulating performance, and, on the other hand, at least locally leads to overoxidation phenomena with the formation of oxidized steel. These two phenomena are undesirable. A final method according to the invention here is to adjust the radiation force and the distance of the nozzle orifice from the bath surface, depending on the type of reactant gas used, so that the metal bath does not actually splash.

以下に添付図面に図示した嚢施例につき本発明を詳説す
る。
The invention will now be explained in more detail with reference to an embodiment of the bladder illustrated in the accompanying drawings.

fa1図は短形の溶融炉lを示す。この溶融炉は隔壁2
,3.4によって3つの桶状の反応室器。
The fa1 diagram shows a rectangular melting furnace l. This melting furnace has partition wall 2
, 3.4 three tub-shaped reaction chambers.

6.7に分割されている。隔壁2内には融液状の銅相の
流過溝9が存在する。反応室6に浴状準lOが認められ
る。この浴水率の下方には液状の銅浴11.浴水率上方
にはスラッジ層!意が存在する。炉壁内の開口13けス
ラッジl!を酸化を行う精錬−反応室6から堆出すOK
役立つ。符号14の仁愛で融液状で炉l内に供給され、
符号15の位置で精錬後炉lを去る銅の流動方向で反応
室6の流出端部で仕切板8がスラッジを抑留する働らき
をする。液状の銅は浴水準lO以下、に設けられた流過
口16を通り、仕切板8を通る。反応室5の炉壁内の開
閉可能な開口17は、固体、例えば銅濃縮物および/又
は燃料の貯蔵および供給に役立つ、排ガスは煙突19を
通って炉lを去る。加熱のため端壁18の閉鎖側におい
てバーナ36が設けられている。
It is divided into 6.7 parts. Inside the partition wall 2 there are grooves 9 through which a molten copper phase flows. Bath-like quasi-IO is observed in the reaction chamber 6. Below this bath water rate is a liquid copper bath 11. There is a sludge layer above the bath water rate! There is a will. 13 sludge openings in the furnace wall! Refining to oxidize - OK to deposit from reaction chamber 6
Helpful. With benevolence number 14, it is supplied into the furnace l in the form of molten liquid,
At the outlet end of the reaction chamber 6 in the flow direction of the copper leaving the furnace 1 after refining at a position 15, a partition plate 8 serves to retain the sludge. Liquid copper passes through a flow port 16 provided below the bath level lO, and passes through a partition plate 8. A closable opening 17 in the furnace wall of the reaction chamber 5 serves for the storage and supply of solids, such as copper concentrate and/or fuel; the exhaust gases leave the furnace I through a chimney 19. A burner 36 is provided on the closed side of the end wall 18 for heating.

作業の際炉lに液状の粗鋼が符号14の位置でおよび/
又は銅濃縮物と燃料とが符号17の位置で供給される。
During operation, liquid crude steel is placed in the furnace l at position 14 and/or
Alternatively, copper concentrate and fuel are supplied at 17.

帯域5′において物質の加熱が次の精錬に適当な処理温
度に上昇される。帯域6においてノズル棒20を介して
酸素含有反応ガスが集束されたエネルギーに富むガス放
射流21の形で融液状の銅11の浴表面1.0上に吹き
込まれる。吹込みエネルギーおよび放出エネルギーの制
御にはノズル棒20の頚部23に設けられた絞り弁22
が役立つ。銅浴11の表面10において吹込み圧力24
が明瞭に認められる。この吹込み圧力24は凹状の鉢の
形をしている。この吹込み圧力の周辺部において、転向
されたガス放射流21の動圧が4ランジ層12を銅の溶
融浴11から側方へと押しやる。この現象は第2図にお
いて、実験により観察されたところをもととして拡大し
て示されている。
In zone 5' the heating of the material is increased to a processing temperature suitable for subsequent refining. In zone 6 via nozzle rod 20 the oxygen-containing reaction gas is blown in the form of a focused energy-rich gas radial stream 21 onto bath surface 1.0 of molten copper 11 . A throttle valve 22 provided in the neck 23 of the nozzle rod 20 is used to control the blowing energy and the discharge energy.
is helpful. Blowing pressure 24 at surface 10 of copper bath 11
is clearly recognized. This blowing pressure 24 has the shape of a concave bowl. In the vicinity of this blowing pressure, the dynamic pressure of the diverted gas radial stream 21 forces the four-lunge layer 12 laterally away from the molten copper bath 11. This phenomenon is shown enlarged in FIG. 2, based on what was observed experimentally.

ノズル棒20の開口25が認められる。この開口25か
らガス放射流21が放流され、大きなエネルギーで溶融
浴11の上方のスラッジ層12に突き当る。転向範@2
6内におけるガス放射流21の動圧によってスラッジ層
21が押戻される。溶融浴11の裸の表面上K[12$
」が形成され、この目28の下方において一一曽A −
Bで示したー鉢状に凹んだ吹込み圧力24が金属の溶融
浴ll内に生じる。転向されたガスは符号29の位置で
周辺の室内に逆流する。
The opening 25 in the nozzle bar 20 is visible. A gas radiation stream 21 is discharged from this opening 25 and hits the sludge layer 12 above the molten bath 11 with great energy. Conversion range @2
The dynamic pressure of the gas radial flow 21 in the sludge layer 21 is pushed back. On the bare surface of the molten bath 11 K[12$
” is formed, and below this eye 28
A concave blowing pressure 24, designated B, is created in the metal molten bath II. The diverted gas flows back into the surrounding chamber at 29.

ガス放射流21との接触およびその帯行力によって励起
されて、並びに熔融物11内における吹込み圧力24の
周辺部における上昇力の影響下に強い浴乱流が環帯状の
流動帯の形で一流動一方向でトルク27で示した状態で
一生じる。
Excited by the contact with the gas radial stream 21 and its zonal force, and under the influence of the rising force in the periphery of the blowing pressure 24 in the melt 11, a strong bath turbulence occurs in the form of an annular flow zone. A state of torque 27 occurs in one flow direction.

7M1図において、・反応室7において鋼浴に反応ガス
を吹込むためのもう1つのノズル棒3゜が認められる。
In figure 7M1, another nozzle rod 3° for blowing the reaction gas into the steel bath in the reaction chamber 7 can be seen.

このノズル棒30i;jその頭部に2つの接続口32と
33とを備え、これらの接続口のうち32i担体ガス供
給用に、他方の33は燃料例えばディーゼル油、天然ガ
ス、プロパン、石灰粉等を供給するためのものである。
This nozzle rod 30i;j is provided at its head with two connections 32 and 33, of which 32i is for the carrier gas supply, and the other 33 is for the supply of fuel such as diesel oil, natural gas, propane, lime powder. It is intended to supply the following.

絞り弁3.4.35は圧力調整、したがってエネルギー
およびガス放射流の流れ密度を調節するために役立つ。
The throttle valve 3.4.35 serves to regulate the pressure and thus the flow density of the energy and gas radiant streams.

次にこの発明による方法の実施態様を述べれば以下の通
りである。
Next, the embodiments of the method according to the present invention will be described as follows.

1、 二次ガスを、燃料を含む加熱ガスと燃焼させる以
前に、加速ノズル(20)によって集束されたエネルギ
ーに富む少なくとも1つのガス放射流(21)の形で本
質的に碑の金属浴(!l)の表面(lO)上にほぼ垂直
方向で吹込んで、ガスから金属浴(11)への一定の物
質移行が行われるように上記の表面(10)と接触させ
ることを特徴とする、不純な銅を連続的に精錬する方法
1. Before the secondary gas is combusted with the heated gas containing the fuel, the secondary gas is combusted in essentially a monumental metal bath ( !l), characterized in that it is blown approximately perpendicularly onto the surface (lO) and brought into contact with said surface (10) in such a way that a constant mass transfer from the gas to the metal bath (11) takes place, A method of continuously refining impure copper.

2、 二次ガスを、ガス放射流(21)の岐点(26)
に存在する吹込み圧力(24)を中心にして本質的に円
環状に回転する溶融物の層流(27)がガス放射流(2
1)と共に系の対流状11によって区画される、一定の
物質移行を伴つぇ反応単位を生じる程度に大きな放射力
で吹込むことを特徴とする、前記! 1 mK記載の方
法。
2. Transfer the secondary gas to the turning point (26) of the gas radial flow (21)
A laminar flow (27) of the melt rotating essentially annularly about the blowing pressure (24) existing at the gas radial flow (24)
1) characterized by blowing with such a large radiation force as to produce a reaction unit with constant mass transfer, delimited by the convective shape 11 of the system! 1 Method described in mK.

3、 放流力と浴表面(tO)からのノズル口の間隔と
を、使用する反応ガスのamに応じて、金属浴が実際に
飛散しないように調節する仁とを特徴とする、前記第1
項に記載の方法。
3. The first method is characterized by adjusting the discharge force and the distance of the nozzle opening from the bath surface (tO) according to the am of the reaction gas used so that the metal bath does not actually scatter.
The method described in section.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明で使用される炉装着の縦断面図、 第2図はノズル棒の下方に存在する鋼fII融浴上へガ
ス放射流を放出するノズル棒の開口をスラッジ層と共に
示した図。 図中符号は 11・・・・・金属浴
Fig. 1 is a longitudinal cross-sectional view of the furnace installation used in this invention, and Fig. 2 shows the opening of the nozzle rod, together with the sludge layer, which emits a radial stream of gas onto the steel fII molten bath present below the nozzle rod. figure. The code in the figure is 11...Metal bath

Claims (1)

【特許請求の範囲】 1、融液状の銅を、処理室内で多数の反応室を加熱ガス
に対して向流状態で導き、その際不純物を除去し、□溶
融物の流動方向で見てm−最後の反応室に燃料および酸
素ガス含有−次ガスとが化学量論以下の割合で供給され
、これらの酸欠下での燃焼によって還元加熱ガスが牟じ
、最後の反応ガス室の手前に存在する反応室内で酸素含
有二次ガスを附加的に供給することによって未だ燃焼せ
ずに加熱ガス内に帯行されて来る燃料の後燃焼が行われ
るの融液相とこの金属浴(11)への一定の物質移行が
行われるように接触され、引続き、ここで初めて加熱ガ
スと共に燃焼されるように二       行うことを
特徴と する上記方法。
[Claims] 1. Copper in the form of a melt is guided through a number of reaction chambers in a processing chamber in a countercurrent state to the heated gas, during which impurities are removed, -Fuel and oxygen gas-containing gas are supplied to the last reaction chamber at a ratio below the stoichiometric ratio, and by combustion in the absence of oxygen, the reduction heating gas is reduced, and the gas is heated before the last reaction gas chamber. By additionally supplying an oxygen-containing secondary gas in the existing reaction chamber, an after-combustion of the fuel which has not yet been combusted and is entrained in the heated gas takes place in the melt phase of the metal bath (11). 2. A process as described above, characterized in that the second method is carried out in such a way that a constant mass transfer takes place, and then, for the first time, is combusted together with a heated gas.
JP4160383A 1975-05-22 1983-03-15 Continuous refinement of impure copper Granted JPS58174533A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19752522662 DE2522662A1 (en) 1975-05-22 1975-05-22 PROCESS FOR CONTINUOUS REFINING OF CONTAMINATED COPPER IN THE SMELTING PHASE
DE2522662.4 1975-05-22

Publications (2)

Publication Number Publication Date
JPS58174533A true JPS58174533A (en) 1983-10-13
JPS6123249B2 JPS6123249B2 (en) 1986-06-05

Family

ID=5947151

Family Applications (2)

Application Number Title Priority Date Filing Date
JP5800876A Pending JPS51141714A (en) 1975-05-22 1976-05-21 Method of continuous refining impure copper
JP4160383A Granted JPS58174533A (en) 1975-05-22 1983-03-15 Continuous refinement of impure copper

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP5800876A Pending JPS51141714A (en) 1975-05-22 1976-05-21 Method of continuous refining impure copper

Country Status (11)

Country Link
JP (2) JPS51141714A (en)
AU (1) AU507053B2 (en)
BE (1) BE841926R (en)
CA (1) CA1078627A (en)
DE (1) DE2522662A1 (en)
FI (1) FI66912C (en)
GB (1) GB1525786A (en)
HU (1) HU173746B (en)
PL (1) PL108871B1 (en)
YU (1) YU120276A (en)
ZM (1) ZM5876A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2123128B (en) * 1982-06-23 1986-03-05 British Steel Corp Improvements in or relating to metal processing
AU2488399A (en) * 1998-02-12 1999-08-30 Kennecott Utah Copper Corporation Process and apparatus for the continuous refining of blister copper
US6210463B1 (en) 1998-02-12 2001-04-03 Kennecott Utah Copper Corporation Process and apparatus for the continuous refining of blister copper

Also Published As

Publication number Publication date
FI66912B (en) 1984-08-31
HU173746B (en) 1979-08-28
GB1525786A (en) 1978-09-20
CA1078627A (en) 1980-06-03
ZM5876A1 (en) 1977-02-21
JPS51141714A (en) 1976-12-06
FI66912C (en) 1984-12-10
YU120276A (en) 1982-06-30
FI761419A (en) 1976-11-23
AU1424676A (en) 1977-12-01
BE841926R (en) 1976-09-16
AU507053B2 (en) 1980-01-31
PL108871B1 (en) 1980-05-31
DE2522662A1 (en) 1976-12-09
JPS6123249B2 (en) 1986-06-05

Similar Documents

Publication Publication Date Title
USRE33464E (en) Method and apparatus for flame generation and utilization of the combustion products for heating, melting and refining
RU2258743C2 (en) Method of direct melting for production of molten cast iron and/or ferroalloys
NO163493B (en) PROCEDURE FOR THE MANUFACTURING OF METALS AND / OR GENERATION OF Slag.
KR940009340A (en) How to protect the thermal lining in the gas space of metallurgical reactor
US4850577A (en) Melting and holding furnace
SU1634141A3 (en) Process and shaft furnace for direct gas reduction of granulated iron ore
US4127408A (en) Method for the continuous refinement of contaminated copper in the molten phase
JPS58174533A (en) Continuous refinement of impure copper
NO142359B (en) PROCEDURE FOR IMPROVING ANTISTATIC PROPERTIES OF TEXTILES
SK147397A3 (en) Process for melting of metal materials in a shaft furnace
CN109477685B (en) Melting furnace
RU2001102781A (en) Direct smelting process
JP3909088B2 (en) Metal reduction and melting methods
US4001013A (en) Method of operating copper ore smelting reverberatory furnace
US4761178A (en) Process for heating molten steel contained in a ladle
US5026030A (en) Melting and holding furnace
US5066326A (en) Gas-fired steelmelting process
US4236916A (en) Method for the continuous recovery of tin from iron rich concentrates
NO780606L (en) PROCEDURE FOR TREATING MELTED METAL
US3115421A (en) Hot dip coating
US3990878A (en) Glass melting apparatus
GB2095282A (en) A method and device for producing a gas containing essentially H2 and CO
US2526473A (en) giu-iland
PL169847B1 (en) Method of adjusting proportions of individual constituents of air-fuel mixture for a set of burners used in furnaces in particular copper smelting ones
US4110108A (en) Method of producing cast iron