JPS58174142A - Feedback controller of air fuel ratio in internal-combustion engine - Google Patents

Feedback controller of air fuel ratio in internal-combustion engine

Info

Publication number
JPS58174142A
JPS58174142A JP5869582A JP5869582A JPS58174142A JP S58174142 A JPS58174142 A JP S58174142A JP 5869582 A JP5869582 A JP 5869582A JP 5869582 A JP5869582 A JP 5869582A JP S58174142 A JPS58174142 A JP S58174142A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
air fuel
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5869582A
Other languages
Japanese (ja)
Inventor
Seishi Wataya
綿谷 晴司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5869582A priority Critical patent/JPS58174142A/en
Publication of JPS58174142A publication Critical patent/JPS58174142A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To optimize purifying efficiency of an exhaust gas purifier, by setting a target value to a prescribed frequency and amplitude generated with the theoretical air fuel ratio as the center when air fuel ratio is feedback controlled to the target value in accordance with an exhaust gas component. CONSTITUTION:A detecting value of an air fuel ratio detector 2A set to the upstream of an exhaust gas purifier 5 in an exhaust passage 6 of an internal- combustion engine 1 is input to a fuel device 3A, and the injection timing of a fuel control valve 4 is feedback controlled by the deviation between said detecting value and a target value. A fuel controller 3A is constituted by a microcomputer, when the target value of air fuel ratio is set in the vicinity of a theoretical air fuel ratio, the target value is programmably controlled to a ripple having prescribed amplitude L and prescribed period T.

Description

【発明の詳細な説明】 この発明は混合気の空燃比を排気ガスの浄化装置の最適
浄化条件になるように制御する内燃機関の空燃比帰還制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio feedback control device for an internal combustion engine that controls the air-fuel ratio of an air-fuel mixture to achieve optimal purification conditions for an exhaust gas purification device.

従来、内燃機関から排出される排気ガスを清浄に保つた
めに、排気ガスの成分全検出して燃料供給量上帰還制御
することにエフ、空燃比會はぼ理論空燃比になる1うに
制御して触媒を用いた排気ガスの浄化装置の浄化効率を
最適化する方法が用いられた。
Conventionally, in order to keep the exhaust gas emitted from an internal combustion engine clean, all components of the exhaust gas are detected and feedback control is performed based on the amount of fuel supplied, and the air-fuel ratio is controlled to almost reach the stoichiometric air-fuel ratio. A method was used to optimize the purification efficiency of an exhaust gas purification device using a catalyst.

以下に、従来例全図面と共に説明する。The conventional example will be explained below along with all the drawings.

第1図は、上述の工すな技術?用いた従来例で、燃料噴
射を用いたものである。
Figure 1 shows the technique described above. This is a conventional example using fuel injection.

第1図において、1は内燃機関、2は空燃比検出器、3
は燃料制御装置、4は燃料制御弁、5は排気ガスの浄化
装置である。6は排気管である。
In Fig. 1, 1 is an internal combustion engine, 2 is an air-fuel ratio detector, and 3 is an internal combustion engine.
4 is a fuel control device, 4 is a fuel control valve, and 5 is an exhaust gas purification device. 6 is an exhaust pipe.

叙上の構成に基き、従来装置の動作ヶ説明する。The operation of the conventional device will be explained based on the above configuration.

浄化装置5は周知の工うに第2図に示す如く理論空燃比
(約14.7 )近傍においてのみ、HC、CO。
As shown in FIG. 2, the purifying device 5 uses a well-known method to eliminate HC and CO only near the stoichiometric air-fuel ratio (approximately 14.7).

NOxの三つの有害成分に対する浄化効率が最適となる
、この工うな浄化装置5の特性に合せて最適なtl!、
燃比を得るため、空燃比検出器2の出力は第3図に示す
ような理論空燃比において欠如反転して低下する。その
結果、燃料制御装置13は%窒燃比、つまり内燃機関1
への燃料供給量が第4図に示すように前記空燃比検出器
2の出力パルスに応動して空燃比の平均値がほぼ理論空
燃比となる工うな周期と振幅を有するリッグル葡生じせ
しめるように燃料制御弁4’を駆動制御する、以上述べ
たような従来の空燃比帰還制御装置においては、空燃比
検出器2の出力が理論空燃比の近傍で欠如反転低下する
ために、理論空燃比近傍以外の空燃比に帰還制御するこ
とは不可能であり、オーブンループ制御とせざる會得な
がった。従って、任意の空燃比を目標値としてオープン
ループ制御方式で制御する場合には、燃料制御装置3゜
燃料制御弁4.その他内燃機関1への吸入窒気蓋。
Optimum tl according to the characteristics of this engineered purification device 5, which provides optimal purification efficiency for the three harmful components of NOx! ,
In order to obtain the fuel ratio, the output of the air-fuel ratio detector 2 decreases at the stoichiometric air-fuel ratio as shown in FIG. As a result, the fuel control device 13 determines the % nitrous fuel ratio, that is, the internal combustion engine 1
As shown in FIG. 4, the amount of fuel supplied to the air-fuel ratio is responsive to the output pulse of the air-fuel ratio detector 2 to produce a ripple pattern with such a period and amplitude that the average value of the air-fuel ratio is approximately the stoichiometric air-fuel ratio. In the conventional air-fuel ratio feedback control device as described above, which drives and controls the fuel control valve 4' to Feedback control to air-fuel ratios other than those in the vicinity was impossible, and oven loop control was the only option. Therefore, when controlling an arbitrary air-fuel ratio as a target value using an open-loop control method, the fuel control device 3° fuel control valve 4. In addition, the intake nitrogen cover to the internal combustion engine 1.

核機関1の温度など各種作動ノ臂うメータを検出するセ
ンサの精度1差の影響を受け、そのためVc窒燃比にバ
ラツキを生ずることが避けられなかった。
It is affected by the difference in accuracy of the sensor that detects various operating meters such as the temperature of the nuclear engine 1, and as a result, variations in the Vc nitrous fuel ratio are unavoidable.

従来、このような欠点を解消するために、第5図に示す
ような空燃比に対して出方が連続的に変化する仝燃比検
出器2A2用いて、任意に設足された空燃比に帰還制御
を行うことが提案されてぃ燃比近傍の時に空燃比が時間
に対して一定の値を保持すると、浄化装置5の浄化効率
が低下することが実験的に確認された。この原因は排気
ガス中に周期的に酸素成分が存在する方がHC、CO、
NOxに対する触媒浄化を促進するためと考えられてい
る。この工うな現象は、第6図に示すようにを燃比の振
幅があまりに小さくなると浄化率が低下することr意味
している。一方、空燃比の変動の振幅が大きすぎて第2
図の斜線部分を外れると、やはり浄化率は低下する。
Conventionally, in order to eliminate such drawbacks, a fuel-fuel ratio detector 2A2 whose output changes continuously with respect to the air-fuel ratio as shown in FIG. 5 is used to return to an arbitrarily set air-fuel ratio. It has been experimentally confirmed that the purification efficiency of the purification device 5 decreases if the air-fuel ratio is maintained at a constant value over time when the fuel ratio is near the fuel ratio for which control is proposed. The reason for this is that the periodic presence of oxygen components in the exhaust gas causes HC, CO,
It is believed that this is to promote catalytic purification of NOx. This strange phenomenon, as shown in FIG. 6, means that when the amplitude of the fuel ratio becomes too small, the purification rate decreases. On the other hand, the amplitude of the air-fuel ratio fluctuation is too large and the second
Outside the shaded area in the figure, the purification rate also decreases.

この発明は、叙上の点に着目して成されたもので、空燃
比に対して出力が連続的に変化する空燃比検出器を用い
、理論空燃比近傍で空燃比にリップルを持たせるこ’&
 K !り、排気ガスを清浄にする浄化装置の浄化効率
を最大限に高めることができる内燃機関の空燃比帰還制
御装置11111−提供することを目的とする1f)Z
’るる。
This invention was made by focusing on the above points, and uses an air-fuel ratio detector whose output changes continuously with respect to the air-fuel ratio, and makes it possible to create a ripple in the air-fuel ratio near the stoichiometric air-fuel ratio. '&
K! 1f) Z for the purpose of providing an air-fuel ratio feedback control device 11111 for an internal combustion engine that can maximize the purification efficiency of a purification device that purifies exhaust gas.
'Ruru.

以下VC%この発明の燃料噴射方式にょる一実施例【第
7図と共に説明する。なお、従来例の第1図と同一の構
成は同一符号で示し、その詳細な説明會省く。
VC% An embodiment of the fuel injection system of the present invention will be described below with reference to FIG. Note that the same components as in FIG. 1 of the conventional example are indicated by the same reference numerals, and detailed explanation thereof will be omitted.

第7図において、2人は空燃比検出器で、その出力特性
は第5図に示すように、空燃比に対して出力が連続的に
変化するもの會用いている。また、3Aは燃料制御装置
で、マイクロコンピュータで構成し、空燃比の設定値が
理論空燃比近傍の場合に、第8図に示すように所定の振
幅りと所定の周期T−i有するリップルとなる工うにプ
ログラム制御される。
In FIG. 7, the two detectors are air-fuel ratio detectors whose output characteristics vary continuously with respect to the air-fuel ratio, as shown in FIG. Further, 3A is a fuel control device which is composed of a microcomputer, and when the set value of the air-fuel ratio is near the stoichiometric air-fuel ratio, a ripple having a predetermined amplitude and a predetermined period T-i is generated as shown in FIG. The process is completely program controlled.

以上の構成に基づき、この発明の実施例の作用を説明す
る8 上述の空燃比の振幅Ll″j、、予め第6図に示す浄化
効率の特性から最も浄化効率が高まる値に設定し、同じ
く空燃比の周期Tは、内燃機関1の回転数や負荷状態な
どに応じて決まる該内燃機関lの応答性に応じた値に設
足してお1く。
Based on the above configuration, the operation of the embodiment of the present invention will be explained. The period T of the air-fuel ratio is set to a value corresponding to the responsiveness of the internal combustion engine 1, which is determined according to the rotational speed and load condition of the internal combustion engine 1.

まず排気管6の空燃比を検出する空燃比検出器2はその
空燃比に対して、第5図に示すように連続的に出力を変
化させる。このような出力に応動して燃料制御装置3は
第8図の工うに理論空燃比の近傍で、空燃比のりツプル
を生じせしめるように燃料制御弁4を制御する。その結
果、浄化装置5の浄化効率が常時最大値と々るように、
実際の空燃比の平均値をほぼ理論空燃比の値に設定し制
御することができる。なお、この実施例においては、上
述の空燃比帰還制御装置勿燃料噴射方式に適用した場合
全説明したが、この発明は内燃機関への燃料供給を電子
制御手段によって行うものであればどのような制御装置
にも適用できるもので。
First, the air-fuel ratio detector 2, which detects the air-fuel ratio of the exhaust pipe 6, continuously changes its output with respect to the air-fuel ratio, as shown in FIG. In response to such an output, the fuel control device 3 controls the fuel control valve 4 so as to cause an air-fuel ratio ripple in the vicinity of the stoichiometric air-fuel ratio as shown in FIG. As a result, so that the purification efficiency of the purification device 5 always reaches its maximum value,
The average value of the actual air-fuel ratio can be set and controlled to approximately the value of the stoichiometric air-fuel ratio. In this embodiment, the above-mentioned air-fuel ratio feedback control device has been fully described when applied to a fuel injection system, but the present invention can be applied to any type of fuel injection system as long as the fuel supply to an internal combustion engine is carried out by electronic control means. This can also be applied to control devices.

燃料噴射の間欠噴射方式、連続噴射方式のほか、気化器
による燃料制御装置などの空燃比帰還制御に対しても実
施適用できるものである。
In addition to the intermittent injection method and continuous injection method of fuel injection, the present invention can also be applied to air-fuel ratio feedback control such as a fuel control device using a carburetor.

以上説明したとおり、この発明に排気ガス浄化装置の効
率が最大となる工うVc空燃比を帰還制御することに工
す、内燃機関の機関効率を下げることなく、排気ガスの
清浄化維持に優れた、しかも安定し友効果會有する。
As explained above, the present invention is designed to perform feedback control of the Vc air-fuel ratio that maximizes the efficiency of the exhaust gas purification device, and is excellent in maintaining exhaust gas purity without reducing the engine efficiency of the internal combustion engine. Furthermore, they have a stable friendship effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の内燃機関の望燃比帰還制御装置のブロッ
ク構成図、第2図は浄化装置の特性図、第3図は第1図
に示す空燃比検出器の特性図、第4図は従来の制御方法
に説明するtめの動作波形図、第5図はこの発明の実施
例及び従来例の他の空燃比検出器の特性図、第6図は第
1図に示す浄化装置の特性図、第7図はこの発明の空燃
比帰還制御装置のブロック構成図、第8図はこの発明の
一実施例における制御方法を説明するための動作波形図
である。 1・・・内燃機関%2,2A・・・空燃比検出器、3゜
3人・・・燃料制御装置、4・・・燃料制御弁、5・・
・排気ガスの浄化装置、6・・・排気管。 なお、図中、同一符号は同一部分、又は相当部分會示す
。 代理人   葛  野  信  − 第1図 第2図 ?ガ一にA/F 第3図 qP比A/F 第4図 第5図 空がりヒAJF 第6図 第7区 第8図
Figure 1 is a block configuration diagram of a conventional desired fuel ratio feedback control device for an internal combustion engine, Figure 2 is a characteristic diagram of a purification device, Figure 3 is a characteristic diagram of the air-fuel ratio detector shown in Figure 1, and Figure 4 is t-th operation waveform diagram explained in the conventional control method, FIG. 5 is a characteristic diagram of the embodiment of the present invention and other air-fuel ratio detectors of the conventional example, and FIG. 6 is a characteristic diagram of the purification device shown in FIG. 7 is a block diagram of the air-fuel ratio feedback control device of the present invention, and FIG. 8 is an operational waveform diagram for explaining a control method in an embodiment of the present invention. 1... Internal combustion engine %2, 2A... Air-fuel ratio detector, 3° 3 people... Fuel control device, 4... Fuel control valve, 5...
・Exhaust gas purification device, 6...exhaust pipe. In the drawings, the same reference numerals indicate the same or corresponding parts. Agent Shin Kuzuno - Figure 1 Figure 2? A/F on the ground Figure 3 qP ratio A/F Figure 4 Figure 5 Air-heavy AJF Figure 6 Section 7 Figure 8

Claims (1)

【特許請求の範囲】 (り排気ガス成分に基づいて空燃比にほぼ比的し友出力
を発生する空燃比検出器と、との空燃比検出器の出力と
予め設定された空燃比が一致するように燃料供給量全燃
料制御5f11−介して帰還制御する燃料制御装置と、
排気ガスの浄化装置とから構成され定内燃機関の空燃比
帰還制御装置において。 前記燃料制御装置にマイクロコンピュータを設け、空燃
比の目標値は理論空燃比を中心に生じ九断電の°周波数
と振幅を有するリップ々となるように設足し、空燃比帰
還制御装置の最適浄化条件になる工うに制御することt
特徴とする内燃機関の空燃比帰還制御装置。
[Scope of Claims] (An air-fuel ratio detector that generates an output that is substantially proportional to the air-fuel ratio based on exhaust gas components; a fuel control device that performs feedback control via the fuel supply amount total fuel control 5f11-;
In an air-fuel ratio feedback control device for a constant internal combustion engine, which comprises an exhaust gas purification device. A microcomputer is installed in the fuel control device, and the target value of the air-fuel ratio is set to be a lip having a frequency and amplitude of 90 degrees around the stoichiometric air-fuel ratio, thereby achieving optimal purification of the air-fuel ratio feedback control device. To control the process to meet the conditions.
Features: Air-fuel ratio feedback control device for internal combustion engines.
JP5869582A 1982-04-06 1982-04-06 Feedback controller of air fuel ratio in internal-combustion engine Pending JPS58174142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5869582A JPS58174142A (en) 1982-04-06 1982-04-06 Feedback controller of air fuel ratio in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5869582A JPS58174142A (en) 1982-04-06 1982-04-06 Feedback controller of air fuel ratio in internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS58174142A true JPS58174142A (en) 1983-10-13

Family

ID=13091668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5869582A Pending JPS58174142A (en) 1982-04-06 1982-04-06 Feedback controller of air fuel ratio in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58174142A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294740A (en) * 1986-06-16 1987-12-22 Honda Motor Co Ltd Air-fuel ratio control method for multi-kind fuel internal combustion engine
JPS6453042A (en) * 1987-08-24 1989-03-01 Mitsubishi Motors Corp Air-fuel ratio controller for internal combustion engine
JPS6456936A (en) * 1987-08-27 1989-03-03 Mitsubishi Electric Corp Air-fuel ratio controller for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294740A (en) * 1986-06-16 1987-12-22 Honda Motor Co Ltd Air-fuel ratio control method for multi-kind fuel internal combustion engine
JPS6453042A (en) * 1987-08-24 1989-03-01 Mitsubishi Motors Corp Air-fuel ratio controller for internal combustion engine
JPS6456936A (en) * 1987-08-27 1989-03-03 Mitsubishi Electric Corp Air-fuel ratio controller for internal combustion engine

Similar Documents

Publication Publication Date Title
US4402291A (en) Emission control apparatus for internal combustion engines using an amplitude modulated signal
US7430854B2 (en) Air fuel ratio controller for internal combustion engine for stopping calculation of model parameters when engine is in lean operation
US5282360A (en) Post-catalyst feedback control
US4024706A (en) Method of improving the operational capacity of three-way catalysts
EP0799988A3 (en) Air-fuel ratio control system for internal combustion engines
EP0799985A3 (en) Air-fuel ratio control system for internal combustion engines
US4153022A (en) Electronic closed loop air-fuel ratio control system
JPS6118665B2 (en)
US4526001A (en) Method and means for controlling air-to-fuel ratio
JPS6256335B2 (en)
US4363209A (en) Air-fuel control method and apparatus for internal combustion engine
GB2344772A (en) Method to desulphurise a NOx trap
JPS6256334B2 (en)
JPS6213752A (en) Idle rotational speed control device in engine
US4385612A (en) Air-fuel ratio control system for internal combustion engines
US6202408B1 (en) Method and apparatus for a zero-point stabilization of an exaust gas sensor
JPS6256336B2 (en)
JPS58174142A (en) Feedback controller of air fuel ratio in internal-combustion engine
US4364357A (en) Air-fuel ratio control system
JPS6133981B2 (en)
KR0161699B1 (en) Air fuel ratio controller for internal combustion engine
JPH01113565A (en) Air-fuel ratio control device for spark-ignition engine
JPS5776234A (en) Control method for air fuel ratio of internal combustion engine
JPS57195828A (en) Air-fuel ratio controller of otto cycle engine
JPS6321018B2 (en)