JPS58173713A - Polarizing element - Google Patents

Polarizing element

Info

Publication number
JPS58173713A
JPS58173713A JP5655982A JP5655982A JPS58173713A JP S58173713 A JPS58173713 A JP S58173713A JP 5655982 A JP5655982 A JP 5655982A JP 5655982 A JP5655982 A JP 5655982A JP S58173713 A JPS58173713 A JP S58173713A
Authority
JP
Japan
Prior art keywords
liquid crystal
electric field
molecules
axis
polarizing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5655982A
Other languages
Japanese (ja)
Inventor
Fumio Nakano
文雄 中野
Keiji Nagae
慶治 長江
Masato Isogai
正人 磯貝
Kishiro Iwasaki
岩崎 紀四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5655982A priority Critical patent/JPS58173713A/en
Publication of JPS58173713A publication Critical patent/JPS58173713A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction

Abstract

PURPOSE:To obtain a polarizing element which permits electrical exchange of the axis of plarization by impressing an electric field to a liquid crystal layer which sandwiches a smectic liquid crystal exhibiting ferroelectricity and a dichromatic dye between transparent electrodes thereby changing the orientation direction of the liquid crystal molecules. CONSTITUTION:A liquid crystal layer 6 mixed with a smectic liquid crystal expressed by the formula and a dichromatic dye is sandwiched between the transparent electrodes 4, 4' which are formed respectively on transparent substrates 5, 5'. Thin films of polyimide are provided on the electrodes 4, 4' and are rubbed in parallel so that the long axis of the liquid crystal molecules is paralleled with the substrate plane. The liquid crystal molecules have the spontaneous polarization in the direction perpendicular to the long axis of the molecules; therefore, when an electric field acts thereon, the long axis directs perpendicularly to the electric field direction. Thus, the axis of polarization of a liquid crystal element (polarizing element) 3 can be changed so as to intersect orthogonally like directions A, A' by changing the direction of the voltage to be impressed on said element 3. The element which allows the transmission of light at a higher rate than conventional polarizing elements using an electrooptic crystal and consumes electricity less is easily obtained.

Description

【発明の詳細な説明】 本発明は偏光素子に係り、籍に電気的に偏光軸方向を変
換し得る偏光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polarizing element, and more particularly to a polarizing element whose polarization axis direction can be electrically changed.

近時、偏光し九光を制御し、光の強弱、色相の変換等の
光変調を行う試みが種々なされており、画像処理、光通
信、光コンピュータ等の新分野への応用が期待されてい
る。各種の光変調素子が提案されているが、未だ実現さ
れていないのが、単一の素子で直線偏光の偏光軸を複数
個有する、いわゆる1光@町R偏光素子である。
Recently, various attempts have been made to control polarized light and perform light modulation such as changing the intensity and hue of the light, and it is expected that it will be applied to new fields such as image processing, optical communications, and optical computers. There is. Various types of light modulation elements have been proposed, but what has not yet been realized is a so-called 1-light @Machi R polarization element, which is a single element and has a plurality of polarization axes for linearly polarized light.

従来、偏光軸を可変させるには、第1図に示すように、
2個の1光子l、1′および偏光子間に挿入された電気
的に結晶軸が変化する。いわゆる電気光学結晶2、また
はネマティック液晶から構成された複合素子が用いられ
ている。この複合素子は、第1の偏光子lの偏光軸方向
で決定される振動方向の直接偏光が電気光学結晶2に入
射し、電気光学結晶に電界を印加するか否か、または電
界の強度に応じて、直接偏光が変調を受けて楕円偏光と
なシ、第2の偏光子l′によって楕円偏光から所望の振
動方向を持った直線偏光を得るものである。しかし、か
かる複合素子では、途中段階での光量の損失が大きく、
また、一度惰円偏光にした後、直線偏光を取出す九め、
変調度が低下する、という問題点がある。
Conventionally, in order to vary the polarization axis, as shown in Figure 1,
The crystal axis is changed by two one-photons l, 1' and the electricity inserted between the polarizer. A composite element composed of a so-called electro-optic crystal 2 or a nematic liquid crystal is used. This composite element determines whether direct polarized light with a vibration direction determined by the polarization axis direction of the first polarizer l enters the electro-optic crystal 2, and whether or not an electric field is applied to the electro-optic crystal or the intensity of the electric field is determined. Accordingly, the directly polarized light is modulated to become elliptically polarized light, and linearly polarized light having a desired vibration direction is obtained from the elliptically polarized light by the second polarizer l'. However, in such a composite element, there is a large loss in the amount of light at an intermediate stage.
In addition, after making circularly polarized light, the ninth step is to extract linearly polarized light.
There is a problem that the degree of modulation decreases.

本発明は、上記問題点を解消すべく成されたもので、光
量の損失が少なく、変調度が低下しない偏光素子を提供
することを目的とする。
The present invention was made in order to solve the above-mentioned problems, and an object of the present invention is to provide a polarizing element that causes less loss of light quantity and does not reduce the degree of modulation.

上記目的を達成するために本発明の構成は、透明電極を
備えた透明基板を2枚用い、透明電極が対向するように
この透明基板を配置し、この透明電極間に強誘電性を示
すスメクテイツク液晶および二色性色素から成る液晶層
を挾持し、前記透明電極に電界を印加する手段を設けた
ものである。
In order to achieve the above object, the present invention uses two transparent substrates each having transparent electrodes, arranges the transparent substrates so that the transparent electrodes face each other, and creates a smectic structure exhibiting ferroelectricity between the transparent electrodes. A liquid crystal layer consisting of a liquid crystal and a dichroic dye is sandwiched between the liquid crystal layer and a means for applying an electric field to the transparent electrode.

この強誘電性を示すスメクテイツク液晶は、励起されて
いない状態において分子長軸が基板面に略平行でかつ略
一定方向に配列され、電界は分子長軸に対して垂直方向
に印加される。
In this smectic liquid crystal exhibiting ferroelectricity, in an unexcited state, the long axes of molecules are substantially parallel to the substrate surface and aligned in a substantially constant direction, and an electric field is applied in a direction perpendicular to the long axes of the molecules.

次に、本発明を図面を用いて説明する。本発明の偏光素
子は、第2図に示すように、透明電極4゜4′を貼着し
た透明基板5.5′を、透明電極4゜4′が対向するよ
うに配置し、透明電極4.4′関に強−電性を示すスメ
クテイツク液晶および二色性色素から成る液晶層6を挾
持し、電極4゜4′に直流電源7を接続し九4のである
Next, the present invention will be explained using the drawings. In the polarizing element of the present invention, as shown in FIG. A liquid crystal layer 6 consisting of a smectic liquid crystal exhibiting ferroelectricity and a dichroic dye is sandwiched between electrodes 4 and 4', and a DC power source 7 is connected to electrodes 4 and 4'.

本発明の偏光素子3は、直流電界に対して強誘電的に応
答し、電界01m性を反転させることによって、第3図
(1)、φ)に示す、2つの液晶分子配列状態をとる。
The polarizing element 3 of the present invention responds ferroelectrically to a DC electric field and takes two liquid crystal molecule alignment states shown in FIG. 3(1), φ) by inverting the electric field 01m property.

この場合分子長軸Bは、いずれも電界の方向に対して垂
直になる。従って、液晶層に含まれる二色性色素も、ゲ
ストホスト効果により、2つの配列方向をとり、その吸
収軸が変化する。
In this case, the molecular long axes B are perpendicular to the direction of the electric field. Therefore, the dichroic dye contained in the liquid crystal layer also has two alignment directions and its absorption axis changes due to the guest-host effect.

この吸収軸の方向を符号A、A’で示す。The directions of this absorption axis are indicated by symbols A and A'.

第3図(1)の軟線の偏光素子に、自然光を入射させる
と、吸収軸と直交した振動方向を持つ直線偏光が得られ
、第3図Φ)の状態の偏光素子に、自然光を入射させる
と、同じ原理により、上述とは振動方向の異なる直線偏
光が得られる。従って、第3図(1)またはΦ)の状態
を維持する電界を加えることにより、連続して振動方向
の等しい偏光が得られ、上記の状態を交互に切換えるこ
とKよシ、振一方向の異なる偏光が交互に得られる。
When natural light is made incident on the soft line polarizing element shown in Figure 3 (1), linearly polarized light with a vibration direction perpendicular to the absorption axis is obtained, and when natural light is made incident on the polarizing element in the state shown in Figure 3 Φ). Based on the same principle, linearly polarized light with a different vibration direction from that described above can be obtained. Therefore, by applying an electric field that maintains the state shown in FIG. Different polarizations are obtained alternately.

本発明に使用される強−電性を示すスメクティツク液晶
には、カイラルスメクティツクC相およびカイラルスメ
クテイツクH相がある。このスメクテイツク液晶は、ス
メクテイツク液晶に共通した層の構造を有しているが、
層毎に液晶分子長軸の方向が変化しておシ、あ九かも層
Kll直な方向に螺旋軸を有する螺旋を描く様な分子配
列を示しているとされてお如、このIIIItI/!構
造が強−電性を示すと考えられている0強誘電性を示す
材料は、直流電界に対して強−電体としての応答を示し
、電界の向きに応じて自発分極の向きを反転させて再配
列することは、強−電性結晶の例によって知られている
通シである。スメクテイツク液晶の場合は、上述し友螺
旋軸がとけて、液晶分子長軸が電界に対して喬直に、か
つ、励起される前の螺旋軸に対して材料固有の角#に相
当する内傾いて再配列する。なお、角−は電界の向暑に
よって方向が逆転する0本発明に使用され゛るスメクテ
イツク液晶は、主として下記に示すようなシッフ塩基型
液晶で小る。
The smectic liquid crystal exhibiting ferroelectricity used in the present invention includes a chiral smectic C phase and a chiral smectic H phase. This smectate liquid crystal has a layer structure common to smectate liquid crystals, but
It is said that the direction of the long axes of liquid crystal molecules changes from layer to layer, and the molecules exhibit a spiral-like molecular arrangement with the helical axis in the direction perpendicular to each layer. A material exhibiting zero ferroelectricity, whose structure is thought to exhibit ferroelectricity, responds to a direct current electric field as a ferroelectric substance, and reverses the direction of spontaneous polarization depending on the direction of the electric field. This is a common practice known from the example of ferroelectric crystals. In the case of a smectic liquid crystal, the helical axes mentioned above melt, and the long axes of the liquid crystal molecules are perpendicular to the electric field and inwardly tilted with respect to the helical axis before being excited, which corresponds to the angle # inherent to the material. and rearrange it. Note that the direction of the angle is reversed by the heating of the electric field.The smectic liquid crystal used in the present invention is mainly a Schiff base type liquid crystal as shown below.

p−h*xyloxyb@agyl ideas−pL
amino−2−methylbutyl−cinna
@ale(HOBAMBC) p−octyloxyb@tuylidene−p’−
amino−2−methylbutyl−cinna
rylate(COBAMBC) p−decyloxybanzyl 1dene−p’
 −azino−2−methylbutyl−cin
namate(DOBAMBC) p−dodecyloxybenzyl 1dene−
p’ −amino十melkyloutyl−cin
namate(DDOBAMBC) H p−tetradecyloxytenxyl 1de
aト4−amlno−2−gethylbutyl−c
ionamate(TDOBAMBC) 本発明のスメクテイツク液晶には、分子長軸を一定方向
く揃える、いわゆるシングルドメイン化が加えられる。
p-h*xyloxyb@agyl ideas-pL
amino-2-methylbutyl-cinna
@ale(HOBAMBC) p-octyloxyb@tuylidene-p'-
amino-2-methylbutyl-cinna
rylate (COBAMBC) p-decyloxybanzyl 1dene-p'
-azino-2-methylbutyl-cin
namate (DOBAMBC) p-dodecyloxybenzyl 1dene-
p' -amino ten melkyloutyl-cin
namate (DDOBAMBC) H p-tetradecyloxytenxyl 1de
ato4-amlno-2-gethylbutyl-c
ionamate (TDOBAMBC) The smectate liquid crystal of the present invention is subjected to so-called single domain formation in which the long axes of molecules are aligned in a certain direction.

このようにするととくよシ、強誘電的再配列が大きな光
学変化を生み出し、変一度の大きな素子が得られる。上
記のように分子長軸をある面積にわ九って一定方向に揃
えるシングルドメイン化は、液晶が擬する基板表面に配
向処理を施すことによって達成される0本発明者等の実
験によれば、従来のネマティック液晶、コレステリック
液晶の配向制御に用いられるいくりかの方法は、本発明
の基板面に平行に配列させるシングルドメイン化に適用
し得ることが確認されて−る。
In this way, the ferroelectric rearrangement produces a large optical change, and an element with a large transformation degree can be obtained. As described above, single domain formation in which the long axes of molecules are aligned in a certain direction over a certain area is achieved by applying an alignment treatment to the surface of the substrate on which the liquid crystal simulates.According to experiments conducted by the present inventors, It has been confirmed that several methods used to control the alignment of conventional nematic liquid crystals and cholesteric liquid crystals can be applied to the single domain alignment parallel to the substrate surface of the present invention.

本発明においては、基板表面をやわらかくラビング処理
し、ラビング方向が千行くなるように2枚の基板を組合
せ、液晶を新入することによって、分子を基板に平行に
配列させた。この場合、予め基板表面にポリイミド系の
薄膜を設けておくことによって、配向の均一度を高める
ことができた。
In the present invention, the surfaces of the substrates were subjected to a soft rubbing treatment, the two substrates were combined so that the rubbing direction was 1,000 rows, and the molecules were arranged parallel to the substrates by newly adding liquid crystal. In this case, by providing a polyimide thin film on the substrate surface in advance, the uniformity of orientation could be improved.

上記に例示した液晶材料は、いずれも液晶分子長軸Kl
l直な方向に自発分極をもっているため、電界が作用し
たときの液晶分子長軸の向きは電界方向に対して垂直に
なる。従って、螺旋軸を基板に平行に配列させ、液晶を
横切るような電界を与えるととくよシ起こる液晶分子の
変位は、単に分子軸の方向を同一平面内で変化させるだ
けで良いため、低電圧で動作し、かつ高速で応答し得る
The liquid crystal materials exemplified above all have the long axis Kl of the liquid crystal molecules.
Since it has spontaneous polarization in the perpendicular direction, the direction of the long axis of the liquid crystal molecules when an electric field is applied is perpendicular to the direction of the electric field. Therefore, the displacement of liquid crystal molecules that often occurs when the helical axes are aligned parallel to the substrate and an electric field is applied across the liquid crystal can be avoided by simply changing the direction of the molecular axes within the same plane, so low voltage is sufficient. It works and can respond quickly.

本発明に用いられる二色性色素としては、従来ネマティ
ック液晶、コレステリック液晶でゲストホスト効果と総
称される電気光学効果に用いられてき九素材が用いられ
、例えば、アント2キノン−導体、アゾ誘導体、ジアゾ
−導体、メロシアニ′/、!ll導体、テトラジン−導
体等かり、1種または211以上、?i&合して用いら
れる。
As the dichroic dye used in the present invention, nine materials that have been conventionally used in nematic liquid crystals and cholesteric liquid crystals for electro-optic effects collectively called guest-host effects are used, such as anth-2-quinone conductors, azo derivatives, Diazo conductor, merosiani'/,! Il conductor, tetrazine conductor, etc., 1 type or 211 or more? Used in combination with i&.

本発明の偏光素子は、第4図に示すように、吸収軸方向
を直交させて2111配置すれば、振動方向が直交した
2つの直線偏光の透過を制御することのできる光スイッ
チングが可能となる。即ち(a)の状態では、吸収軸に
直交した直線偏光のみが透過し、吸収軸に平行な直線偏
光は透過しない、一方、(b)の状態では吸収軸が90
”回転している九め、透過する直線偏光の11類が逆転
する。この画状−は、比較的高速に切換えることができ
るので、二種の偏光による光情報の並列同時伝送が可能
となる。特に、本発明の素子では、従来のように楕円偏
光にし友後、直線偏光を取出す方法ではなく、直−偏光
の透過量のみの制御を行なっているので、コヒ゛−レン
スな光はそのまま伝送される、という特徴がある。
As shown in FIG. 4, if the polarizing element of the present invention is arranged 2111 with the absorption axes perpendicular to each other, it becomes possible to perform optical switching that can control the transmission of two linearly polarized lights whose vibration directions are perpendicular to each other. . That is, in state (a), only linearly polarized light perpendicular to the absorption axis is transmitted, and linearly polarized light parallel to the absorption axis is not transmitted, while in state (b), the absorption axis is 90°
``The rotating 9th type and the 11th type of linearly polarized light that passes through it are reversed.This pattern can be switched relatively quickly, making it possible to transmit optical information in parallel and simultaneously using two types of polarized light. In particular, the device of the present invention controls only the amount of transmitted linearly polarized light, rather than the conventional method of converting it into elliptically polarized light and then extracting linearly polarized light, so coherent light can be transmitted as is. There is a characteristic that it is done.

また、本発明の偏光素子は、光論堀回路の基本回路素子
として用いることができる。第3図および第4図(1)
、φ)のように吸収軸が直交する素子に入射した直線偏
光に対しく透過強度lのときを論理@l”に、透過強度
Oの状態を論理″″0”に対応させる訳で、このような
偏光素子の組合せによハ複雑な論理回路を構成すること
ができる。
Further, the polarizing element of the present invention can be used as a basic circuit element of an optical moat circuit. Figures 3 and 4 (1)
, φ) for linearly polarized light incident on an element whose absorption axes are perpendicular to each other, when the transmission intensity is l corresponds to the logic @l'', and the state of the transmission intensity O corresponds to the logic ``0''. A complex logic circuit can be constructed by combining such polarizing elements.

上記のような切換えは、5v以下の低電圧で行なわれる
ので、非常に簡単な駆動回路によ〕動作する変調素子と
いうことができる。
Since the above switching is performed at a low voltage of 5V or less, it can be said that the modulation element is operated by a very simple drive circuit.

以上のように本発明によれば、単一構成で直線偏光の偏
光軸を複数個有する偏光素子を提供で自る、という効果
が得られる。
As described above, according to the present invention, it is possible to provide a polarizing element having a plurality of polarization axes for linearly polarized light with a single configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の可変偏光素子を示す説明図、42図は
、本発明の偏光素子の断面図X113図(1》。 (ニ)、第4図(Jl)、(b)は、本発明の偏光素子
の動作機構を説明するための説明図である。
Fig. 1 is an explanatory diagram showing a conventional variable polarizing element, and Fig. 42 is a cross-sectional view of the polarizing element of the present invention. FIG. 3 is an explanatory diagram for explaining the operating mechanism of the polarizing element of the invention.

Claims (1)

【特許請求の範囲】[Claims] 1、透明電極を備えかつ咳透明電極が対向するように配
置された2枚の透明基板と、励起されていない状態にお
いて分子長軸が前記基板に略平行でかつ略一定方向に配
列している強−電柱を示すスメクテイツク液晶および二
色性色素から成り、前記透明電極間に挾持された液晶層
と、前記電極に接続されかつ前記分子長軸に対して自直
な方向に電界を印加する手段とを含む偏光素子。
1. Two transparent substrates equipped with transparent electrodes and arranged so that the transparent electrodes face each other, and in an unexcited state, the long axes of molecules are substantially parallel to the substrates and arranged in a substantially constant direction. A liquid crystal layer consisting of a smectic liquid crystal exhibiting a strong electric pole and a dichroic dye and sandwiched between the transparent electrodes, and means connected to the electrodes and applying an electric field in a direction perpendicular to the long axis of the molecules. A polarizing element including.
JP5655982A 1982-04-07 1982-04-07 Polarizing element Pending JPS58173713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5655982A JPS58173713A (en) 1982-04-07 1982-04-07 Polarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5655982A JPS58173713A (en) 1982-04-07 1982-04-07 Polarizing element

Publications (1)

Publication Number Publication Date
JPS58173713A true JPS58173713A (en) 1983-10-12

Family

ID=13030469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5655982A Pending JPS58173713A (en) 1982-04-07 1982-04-07 Polarizing element

Country Status (1)

Country Link
JP (1) JPS58173713A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626225A (en) * 1985-07-02 1987-01-13 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JPH01179019A (en) * 1987-12-29 1989-07-17 Toppan Printing Co Ltd Color display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626225A (en) * 1985-07-02 1987-01-13 Semiconductor Energy Lab Co Ltd Liquid crystal display device
WO1987000301A1 (en) * 1985-07-02 1987-01-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US4799776A (en) * 1985-07-02 1989-01-24 Semiconductor Energy Laboratory Co., Ltd. Ferroelectric liquid crystal display device having a single polarizer
JPH01179019A (en) * 1987-12-29 1989-07-17 Toppan Printing Co Ltd Color display device

Similar Documents

Publication Publication Date Title
EP0091661B1 (en) Liquid crystal optical modulation element
US5555114A (en) Liquid crystal display with reflective color filters
JP3884480B2 (en) Switchable achromatic polarization rotator
KR100263210B1 (en) Polarisation Independent Optical Phase Modulator
US3551026A (en) Control of optical properties of materials with liquid crystals
JP2851906B2 (en) Optical modulation element and display device
JPS58173719A (en) Liquid crystal display
JP2001525560A (en) Ferroelectric liquid crystal device with twisted structure
JPS61272719A (en) Ferroelectric liquid crystal cell and its production
TW384460B (en) Liquid crystal display device and method for driving the same
JP3525139B2 (en) Liquid crystal display device
Margerum et al. Electro-optical applications of liquid crystals
JPS597367B2 (en) Field effect liquid crystal display device
Lin et al. Reflective direct-view displays using a dye-doped dual-frequency liquid crystal gel
JPS58173713A (en) Polarizing element
US6646710B2 (en) Light modulator
JPS61241724A (en) Liquid crystal display element
JPS6325629A (en) Liquid crystal display element
JPS58176623A (en) Electrooptic device
JPS59131911A (en) Liquid crystal electrooptic device
JP4268391B2 (en) Manufacturing method of liquid crystal light modulation film
JP3534371B2 (en) Liquid crystal display device
US20080106662A1 (en) Bistable Liquid Crystal Device
JPS60217336A (en) Liquid crystal display device
KR100198365B1 (en) Method for the alignment of liquid crystal medium