JPS58173458A - Humidity sensor and its manufacture - Google Patents

Humidity sensor and its manufacture

Info

Publication number
JPS58173458A
JPS58173458A JP5637582A JP5637582A JPS58173458A JP S58173458 A JPS58173458 A JP S58173458A JP 5637582 A JP5637582 A JP 5637582A JP 5637582 A JP5637582 A JP 5637582A JP S58173458 A JPS58173458 A JP S58173458A
Authority
JP
Japan
Prior art keywords
humidity
solution
substrate
pores
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5637582A
Other languages
Japanese (ja)
Inventor
Kentaro Nagano
長野 謙太郎
Yoshihiro Kobuchi
菰「淵」 慶浩
Akiyoshi Ozawa
小澤 昭嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Cosmos Electric Co Ltd
Tokyo Kosumosu Denki KK
Original Assignee
Tokyo Cosmos Electric Co Ltd
Tokyo Kosumosu Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Cosmos Electric Co Ltd, Tokyo Kosumosu Denki KK filed Critical Tokyo Cosmos Electric Co Ltd
Priority to JP5637582A priority Critical patent/JPS58173458A/en
Publication of JPS58173458A publication Critical patent/JPS58173458A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a long-lived sensor capable of detecting a long range of humidity exactly, by allowing to carry at least one of meta-, ortho-, and pyro- phosphates into the pores of a porous base. CONSTITUTION:Electrodes are formed on both sides of a base 1 having fine connected pores made of alumina or quartz material, connected in parallel to form comb-type counter electrodes 3, 3, and each terminal of the electrodes 3, 3 are connected to silver terminals 5, 5, and further, to lead wires 6, 6. The electrodes may be formed on one side, but a detection range can be enlarged by forming them on both side. The electrodes 3, 3 are printed with ruthenium oxide paste on the base 1, burned, washed, then impregnated with a soln. mixture of an aq. soln. of at least one of meta-, ortho-, and pyro-phosphate, and silicate soln., and dried. A sufficient amt. of phosphate is carried into the base 1 by repeating this operation, thus obtaining a long-lived sensor extremely small in hysteresis of humidification and dehumidification and superior in humidity detection characteristics in a wide range.

Description

【発明の詳細な説明】 仁の発明は湿度に応じて変化する電気的性質を検出する
ことによシ湿度を検出する湿度センサ及びその製造方法
に関し、特に広い静囲の湿度変化を正確に検出できるよ
うにしようとするものである。
[Detailed Description of the Invention] Jin's invention relates to a humidity sensor that detects humidity by detecting electrical properties that change depending on humidity, and a method for manufacturing the same, and particularly to a humidity sensor that accurately detects humidity changes in a wide static environment. I am trying to make it possible.

〈発明の背景〉 湿度を検出する湿度センナは工業製品の品質管理や環境
管理の面で重要な役割を果しておシ、半導体、鉄鋼、繊
維、食品、製紙、電子部品などの製造工程や、ビルディ
ング、病院、研究所、温室、ハウス歌壇、居住環境など
の湿度の制御に広く使用されている。
<Background of the Invention> Humidity sensors that detect humidity play an important role in the quality control and environmental management of industrial products, and are used in the manufacturing processes of semiconductors, steel, textiles, food, paper manufacturing, electronic parts, etc., and in buildings. Widely used to control humidity in hospitals, research laboratories, greenhouses, greenhouses, living environments, etc.

湿度センサにはω度による物質の電気的また社物理的性
質の変化を利用するものがよく知られ、現在は金属、半
導体、絶縁体、親水性高分子材料のごとく、湿度変化に
よシミ気容量や電気抵抗が変化する材料を湿度検知素子
に用いたセンナの研究開発が盛んである。しかし現在開
発されている湿度センナは長時間の使用に対する信頼性
や検出湿度域の点で問題があるとともに高価格であるた
め用途に制限を受けているのが実状である。
Humidity sensors that utilize changes in the electrical and physical properties of substances due to ω degrees are well-known, and currently sensors such as metals, semiconductors, insulators, and hydrophilic polymer materials are used to detect stains due to humidity changes. Research and development of senna, which uses materials whose capacitance and electrical resistance change as humidity sensing elements, is active. However, currently developed humidity sensors have problems in terms of reliability for long-term use and detection humidity range, and are expensive, so their applications are limited.

すなわち、もつともよく知られている塩化リチウムを基
板に含浸させた湿度センサは、塩化リチウムが水に容易
に溶解する電解質であるため寿命が長くない。またこれ
を多孔性のガラスに含浸させたものは湿度変化に対する
応答性が良くないことが知られている。高分子系センサ
では直流電淀の印加はたとえば1μA程贋でも湿度検出
特性が変化を起すとされている。セラミック糸のセ/す
は原料の1!#製及び高温焼成を行なうため高価格であ
り、また湿度に対する電気抵抗値を任意に制御すること
は困難である。
That is, the well-known humidity sensor whose substrate is impregnated with lithium chloride does not have a long lifespan because lithium chloride is an electrolyte that easily dissolves in water. It is also known that porous glass impregnated with this material has poor responsiveness to changes in humidity. In a polymer sensor, it is said that even if the application of DC current is as low as 1 μA, the humidity detection characteristics will change. Ceramic thread is the first raw material! It is expensive because it is made of # and fired at high temperatures, and it is difficult to arbitrarily control the electrical resistance value with respect to humidity.

また特開昭54−56199号公報に示されている水溶
性珪酸塩と感湿性の金属酸化物とを混合し、基体上に塗
布乾燥した感湿センサにおいては、この公報の実施例に
示されているごとく相対湿度に対するセンサの電気抵抗
が高く、相対湿度100チにおいてさえ6MΩという廚
い偵を示し、20チ湿度においても8R11Qa度にな
るに過き゛ず、相対湿度と抵抗値の対数値の関係曲線の
傾斜がゆるやかである丸め湿度検出精度が良くないこと
と、湿度測定回路が高価になる欠点がある。
Furthermore, in the humidity sensor disclosed in JP-A-54-56199, in which a water-soluble silicate and a moisture-sensitive metal oxide are mixed, the mixture is coated on a substrate and dried, as shown in the examples of this publication. The electrical resistance of the sensor against relative humidity is high, and even at a relative humidity of 100 degrees it shows a resistance of 6MΩ, and even at a humidity of 20 degrees it only reaches 8R11Qa degrees, which shows the relationship between the relative humidity and the logarithm of the resistance value. Rounding, where the slope of the curve is gentle, has the drawbacks of poor humidity detection accuracy and expensive humidity measurement circuits.

更に従来においてメタリン酸塩、ビロリン酸塩をms剤
として、プラズマ溶射により基体に付けた湿度センサが
・あるが、所望の抵抗値のものを容易に得ることが困難
であシ、かつ製造装置が鳩価なものとなる。また正リン
酸塩やピロリン酸塩の溶液を多孔質金属酸化物の基体内
に含浸させた後、加熱処理して基体の空孔内にリン改化
物を担持させた湿度センサがある。このセンサは高温処
理をする必普があυ、かつ相対湿度30−でMΩ程度の
高抵抗になる欠点がある。
Furthermore, there have conventionally been humidity sensors in which metaphosphate or birophosphate is used as an MS agent and attached to a substrate by plasma spraying, but it is difficult to easily obtain a desired resistance value, and the manufacturing equipment is difficult. It will be worth the price. There is also a humidity sensor in which a porous metal oxide base is impregnated with a solution of orthophosphate or pyrophosphate and then heat-treated to support a phosphorous compound in the pores of the base. This sensor has the disadvantage that it must be subjected to high temperature treatment and has a high resistance of about MΩ at a relative humidity of 30 -.

〈発明の概要〉 この発明は従来の湿度センサがもつ以上の欠点を除去し
た湿度センサ及びその製造方法を提供することを目的と
する。
<Summary of the Invention> An object of the present invention is to provide a humidity sensor and a method for manufacturing the same that eliminates the drawbacks of conventional humidity sensors.

この発明によれば、多孔性物質の基体に対向電極を設け
、メタリン酸塩溶液、正リン酸塩溶液、ピロリン酸塩溶
液のいずれか一種、またはこれら  ・の塩溶液の二種
以上の混合液、或は前記一種の塩溶液又は二種以上の混
合液と珪酸塩溶液との混合液を吸蔵液として前記多孔性
物質の基体の空孔に吸蔵させ、その後その吸蔵液の液体
を蒸発させて、吸蔵液中に営まれている塩物質を基体の
空孔に担持させる。
According to this invention, a counter electrode is provided on a porous material substrate, and one of a metaphosphate solution, an orthophosphate solution, a pyrophosphate solution, or a mixture of two or more of these salt solutions is prepared. , or a mixture of the above-mentioned one kind of salt solution or a mixture of two or more kinds and a silicate solution is occluded as an occlusion liquid in the pores of the base of the porous material, and then the liquid of the occlusion liquid is evaporated. , the salt substance present in the storage liquid is supported in the pores of the substrate.

この発明においては、基体に吸蔵させるリン酸塩溶液を
選択することによシ、湿度と電気抵抗との関係を示す相
対湿度−電気抵抗値曲線を目的に応じた曲線に設定でき
るとともにffl[検出範囲が広く、かつ難溶性である
ため長寿命で、しかも安価に製造することができる。
In this invention, by selecting the phosphate solution to be occluded in the substrate, it is possible to set the relative humidity-electrical resistance value curve, which shows the relationship between humidity and electrical resistance, to a curve according to the purpose. It has a wide range and is poorly soluble, so it has a long life and can be manufactured at low cost.

以下この発明の湿度センサ及びその製造方法を図面を参
照しながら説明する。
The humidity sensor of the present invention and its manufacturing method will be explained below with reference to the drawings.

〈実施例〉 第1図はこの発明の一例の構成を示す本のである。基体
1はメタリン酸塩溶液または正リン酸塩溶液またはビロ
リン酸塩溶液あるいはこれらのいずれかの溶液もしくは
これら溶液の二種以上の混合液と珪酸塩溶液との混合&
(以下吸蔵液と称する)を吸蔵させるための多孔性物質
であシ、吸蔵液の含浸性にすぐれ、基体の一部に吸蔵液
を接すれtf基体全体に浸透するように通気性をもった
、好ましくは連続した微細空孔をもつとともに、吸蔵液
の液体外が蒸発した後に、基体の空孔に残存する感湿物
質が空孔緘に強く担持され脱落することがない多孔性物
質が用いられる。このような性能を有する多孔性物質基
体lとして多孔性の高分子材料基体、もしくは多孔性窯
業物質基体を用いることができるが、アルミナ質の焼結
体、またはガラス質または石英質焼結体のような微細孔
の多孔性連続気孔を有する窯業物質基体がもつとも隣ま
しい。その理由は窯業物質基体は高分子材料基体にくら
べて熱膨張係数が小さく、また基体を洗浄する時の溶剤
の侵食を受けないことのほかに、高分子材料は熱膨張係
数が大きいので加熱冷却によって基体の空孔内に担持さ
れた感湿物質に亀裂や脱落が生じ、湿度検知能が安定し
ないことである。基体1として例えば多孔性のアルミナ
質焼結体で、その大きさは13■Xll閣の長方形で厚
さFio、 6 mであシ、気)1−分布の大きさは約
20μ慣〜0.0171惰、平均2.2μ禦であり、気
孔率1j48−である。
<Embodiment> FIG. 1 is a book showing the configuration of an example of the present invention. Substrate 1 is a mixture of a metaphosphate solution, an orthophosphate solution, a birophosphate solution, or any of these solutions or a mixture of two or more of these solutions and a silicate solution.
It is a porous material for occluding TF (hereinafter referred to as occlusion liquid), has excellent impregnation properties with occlusion liquid, and has air permeability so that when the occlusion liquid is brought into contact with a part of the substrate, it permeates through the entire TF substrate. Preferably, a porous material is used that has continuous fine pores and prevents the moisture-sensitive substance remaining in the pores of the substrate from falling off because the moisture-sensitive substance remaining in the pores of the substrate is strongly supported by the pores after the liquid outside of the storage liquid has evaporated. . A porous polymer material substrate or a porous ceramic material substrate can be used as a porous material substrate l having such performance, but alumina sintered body, glassy or quartz sintered body can be used. It is also desirable to have a ceramic material substrate having such microporous continuous pores. The reason for this is that the ceramic substrate has a smaller coefficient of thermal expansion than the polymer material substrate, and is not susceptible to erosion by solvents when cleaning the substrate. This causes the moisture-sensitive material supported in the pores of the base to crack or fall off, making the humidity detection unstable. The substrate 1 is, for example, a porous alumina sintered body, which has a rectangular size of 13 mm, a thickness of 6 m, and a distribution size of about 20 μm to 0.5 m. 0171, average diameter is 2.2μ, and porosity is 1j48-.

基体lの−rI02には一対の互Kかみ合わされた櫛形
対向電極3.3が例えば酸化ルテニウ系の導電ペースト
を用いて印刷焼付けされている。電極3.3の端子部4
,4に祉半田付を容易にするため銀端末5,5が印刷焼
付けられてあシ、リード@6,6が半田付けされ外部1
−路(この図では省略)に接続される。
A pair of interlocking comb-shaped counter electrodes 3.3 are printed and baked on -rI02 of the base 1 using, for example, a ruthenium oxide-based conductive paste. Terminal part 4 of electrode 3.3
, 4 are printed with silver terminals 5, 5 to facilitate soldering, and leads @ 6, 6 are soldered to external 1.
- connection (omitted in this figure).

第1図に示すごとく基体1が平板である場合には第2図
に示すごとく、基体の両面に対向電極を設けることがで
きる。このように複数個の対向電極を設ける理由ti、
湿度センサの抵抗値をさげることにあり、両面に設けた
対向電極の端子部4,4の錯端末5,5に、基体lをは
さみつける構造にし九17−ド線6.6が付けられて、
両面の対向電極が並列に接続される。このようにして片
面だけの対向電極では電気抵抗が高すぎて湿度検出かで
きなかった湿度域の湿度検出を可能にすることができ、
湿度検出の範囲を拡大することができる。
When the base 1 is a flat plate as shown in FIG. 1, counter electrodes can be provided on both sides of the base as shown in FIG. The reason why a plurality of opposing electrodes are provided in this way,
The aim is to lower the resistance value of the humidity sensor, and a base 1 is sandwiched between the complex terminals 5, 5 of the terminal parts 4, 4 of the counter electrodes provided on both sides, and a 917-dore wire 6.6 is attached. ,
Opposing electrodes on both sides are connected in parallel. In this way, it is possible to detect humidity in a humidity range where it was impossible to detect humidity with a single-sided counter electrode because the electrical resistance was too high.
The range of humidity detection can be expanded.

第3図に片面だけの対向電極の場合と、両面の対向電極
を並列接続した電極の場合において、基体lにリン酸ニ
ッケル(N11(PO4)l)溶液を吸蔵液として使用
した湿度センサの相対湿度と抵抗値の関係曲線を示した
。対向1L極を並列接続したものの特性曲線Aも、一つ
の対向電極のものの特性曲線Bもともに加湿時と除湿時
とにおいて、ヒステリシスは示さないが、曲11Aの方
が同一相対湿度において低い電気抵抗値を示している。
Figure 3 shows the relative relationship between a humidity sensor using a nickel phosphate (N11(PO4)l) solution as an occlusion liquid on a substrate l, in the case of a counter electrode on only one side and in the case of an electrode with counter electrodes on both sides connected in parallel. The relationship curve between humidity and resistance value is shown. Neither the characteristic curve A of the parallel connection of opposing 1L poles nor the characteristic curve B of one counter electrode shows hysteresis during humidification and dehumidification, but the electrical resistance of track 11A is lower at the same relative humidity. It shows the value.

すなわち−面だけの対向電極ではこの場合相対湿度55
チ以下の検出は実際的には困難であるが、両面に対向1
1極を設ければ45%の湿度域まで検出範囲を拡大する
ことができる。
In other words, in this case, the relative humidity is 55 for the counter electrode with only the negative side.
Although it is practically difficult to detect less than
If one pole is provided, the detection range can be expanded to a humidity range of 45%.

第4図は対向電極と並列に固定抵抗素子7を配置した構
造である。この図では抵抗素子7を印刷焼成した場合で
あるが、基体IK後付けで別の固定抵抗素子7を配置す
ることも出来るし、また第5図に示すように基体1の外
で対向電極と並列に抵抗素子7を接続することもできる
。並列に接続する抵抗素子7は10MΩ以下がよく、特
に300にΩから50にΩのM囲が湿度センナの制御回
路を安価に製作するために4つとも有効である。lOM
Ω以上の抵抗素子7を接続しても湿度センサの全抵抗値
の引舞下けには効果が少ないので制御回路は安価に々ら
ない。
FIG. 4 shows a structure in which a fixed resistance element 7 is arranged in parallel with the counter electrode. Although this figure shows the case where the resistive element 7 is printed and fired, it is also possible to arrange another fixed resistive element 7 by retrofitting the base IK, or as shown in Figure 5, outside the base 1 in parallel with the counter electrode. It is also possible to connect the resistive element 7 to . The resistance elements 7 connected in parallel are preferably 10 MΩ or less, and in particular, all four resistance elements have an M range of 300Ω to 50Ω to manufacture the humidity sensor control circuit at low cost. lOM
Even if the resistance element 7 of Ω or more is connected, it has little effect on lowering the total resistance value of the humidity sensor, so the control circuit is not cheap.

第4図また祉第5図に示したように抵抗素子7を接続す
ることによシ、湿度センサの抵抗の最大暁を制御するこ
とができ、低連度域の湿度検出のための抵抗値を測定可
能な抵抗値として読みとることができる。第2図に示し
たように両面に対向電極を設けた基体1の片面における
対向電極に105にΩの抵抗素子7を第4図に示すごと
く並列に接続した場合の相対f′4#−電気抵抗曲機の
一例は第6図に示すようになった。この場合の吸蔵液に
はリン酸アルミニウム溶液を用い、抵抗素子7hルテニ
ウム酸化物系抵抗を印刷焼成して構成した。第6図の曲
線が示すとと<201の相対湿度において抵抗値は98
にΩと低く、加湿時の曲線と除湿時の曲線との間にヒス
テリシスがなく、抵抗値が低いので外部制御回路を安価
に製作することができる。並列抵抗素子7を複数の対向
電極に設けることができるのは勿論である。
By connecting the resistance element 7 as shown in Fig. 4, the maximum resistance of the humidity sensor can be controlled, and the resistance value for humidity detection in the low continuous range can be controlled. can be read as a measurable resistance value. The relative f'4#-electricity when a resistance element 7 of 105 to Ω is connected in parallel as shown in FIG. An example of a resistance bending machine is shown in FIG. In this case, an aluminum phosphate solution was used as the storage liquid, and a 7h ruthenium oxide-based resistance element was printed and fired. The curve in Figure 6 shows that at a relative humidity of <201, the resistance is 98
Ω, there is no hysteresis between the humidification curve and the dehumidification curve, and the low resistance allows external control circuits to be manufactured at low cost. Of course, the parallel resistance elements 7 can be provided on a plurality of opposing electrodes.

基体10片面または両面Kffi化錫薄膜で構成される
ネサ膜を被覆することも、低湿域において湿度検出抵抗
を低くするのに有効で、11、その場合基体1に吸順液
を含浸させるに先立ってネサ膜のWaを行なうのが効果
がある。第7図はネサ膜を片面にコートシ、吸順液にメ
タリン酸カルシウムを用いた湿度センサの相対湿度−電
気抵抗の関係曲線であり、相対湿度20%で200にΩ
の低い抵抗が示されている。なお第7図に用いたセンサ
け、メタリン酸カルシウムを吸東させる前の、ネサ膜を
付けた状態の電極間抵抗ti250にΩである。
It is also effective to coat the substrate 10 on one or both sides with a Nesa film composed of a thin Kffi tin film to lower the humidity detection resistance in a low humidity region. It is effective to perform Wa of the Nesa membrane. Figure 7 shows the relative humidity-electrical resistance curve of a humidity sensor coated with Nesa membrane on one side and using calcium metaphosphate as the absorbing liquid.
A low resistance is shown. In addition, in the sensor used in FIG. 7, the interelectrode resistance ti250 with the Nesa film attached before calcium metaphosphate is absorbed is Ω.

基体IFi、はじめにエチルアルコール溶剤で脱脂され
、ついで超音波振動を印加したイオン交換水によシ洗浄
された後で乾錬脱水される。乾燥脱水された基体1は超
音波を印加された吸W、液中に浸漬保持された後、堆シ
出されて乾燥される。基体1に含浸され九吸蔵液から液
体分が蒸発し、乾燥が終れば再び吸蔵液中に基体1を浸
すかまた社吸蔵液を基体表面に滴下して吸蔵液を含浸さ
せ蒸発乾燥を行なう。このように基体に対し吸蔵液の含
浸、蒸発を繰シ返し、必要とする抵抗値が得られたとき
吸蔵液の含浸蒸発を終る。基体IK対する吸蔵液の含浸
、乾燥を早くするため吸蔵液を滴下しながら同時に基体
1の加熱を行なうことができることは勿論であるととも
に、真空蒸発法によって吸Im!液中の水分除去を行な
うこと屯できる。
The substrate IFi is first degreased with an ethyl alcohol solvent, then washed with ion-exchanged water to which ultrasonic vibrations have been applied, and then dehydrated by pyrolysis. The dried and dehydrated substrate 1 is soaked in water to which ultrasonic waves are applied, held immersed in a liquid, and then taken out and dried. The liquid content from the storage liquid impregnated into the substrate 1 is evaporated, and when drying is completed, the substrate 1 is immersed in the storage liquid again, or the storage liquid is dropped onto the surface of the substrate to impregnate it with the storage liquid and evaporated and dried. In this way, the substrate is repeatedly impregnated and evaporated with the storage liquid, and when the required resistance value is obtained, the impregnation and evaporation of the storage liquid is completed. Of course, in order to speed up the impregnation and drying of the absorption liquid into the substrate IK, it is possible to heat the substrate 1 while dropping the absorption liquid at the same time, and also to absorb the absorption liquid using the vacuum evaporation method. It is possible to remove water from the liquid.

この発明に用いられる吸蔵液はメタリン酸塩溶液、正リ
ン酸塩溶液、ピロリン酸溶液などである。
The storage liquid used in this invention includes a metaphosphate solution, an orthophosphate solution, a pyrophosphate solution, and the like.

メタリン酸塩溶液はメタリンwbリウム、メタリン酸ナ
トリウム、メタリン酸カルシウム、メタリン酸モリブデ
ンの中から選ばれた一種類の塩の溶液、またはこれらか
ら選けれた二種類以上の塩の各溶液の混合液である。正
リン酸塩溶液は、リン酸ニックル、リン酸鉄、・す7”
FM錫、リン酸マンガン、リン酸鉛、リン酸コバルト、
リン酸亜鉛、リン酸り日ム、リン酸銀、リン酸アルミニ
ウム、リン酸マグネシウム、リン叡ボロン、リン酸カル
シウム、リン酸リチウム、リン酸カドiウムの中から選
ばれた一種類の塩の溶液または、これらから選ばれた二
種類以上の各基の溶液の混合液である。
The metaphosphate solution is a solution of one type of salt selected from metalin wbrium, sodium metaphosphate, calcium metaphosphate, and molybdenum metaphosphate, or a mixture of solutions of two or more types of salts selected from these. be. Orthophosphate solutions include nickle phosphate, iron phosphate, and 7"
FM tin, manganese phosphate, lead phosphate, cobalt phosphate,
A solution of one type of salt selected from zinc phosphate, dium phosphate, silver phosphate, aluminum phosphate, magnesium phosphate, boron phosphate, calcium phosphate, lithium phosphate, cadium phosphate, or , a mixture of solutions of two or more groups selected from these.

ピロリン酸塩溶液はビロリン酸亜鉛、ピロリン酸カルシ
ウム、ビロリン酸マグネシウム、ビロリン酸白金、ピロ
リン酸マンガン、ピロリン酸アルミニウムの中から選ば
れ九一種類の塩の溶液またはこれらから選ばれた二種類
以上の各基の溶液の混合液である。上記一種類の塩の溶
液、またれ二種類以上の塩の各溶液の混合液に境域塩溶
液を混合した溶液が内蔵液として用いられる。珪酸塩溶
液は珪酸カルシウム、珪酸カリウム、珪酸ナトリウム、
珪酸カルシウムマグネシウムの中から選ばれた一種類の
塩の溶液またはこれらの中から選ばれた二種類以上の塩
の溶液の混合液である。
The pyrophosphate solution is a solution of 91 kinds of salts selected from zinc birophosphate, calcium pyrophosphate, magnesium birophosphate, platinum birophosphate, manganese pyrophosphate, and aluminum pyrophosphate, or a solution of two or more salts selected from these. It is a mixture of base solutions. A solution obtained by mixing a solution of one kind of salt, or a mixture of solutions of two or more kinds of salts with a boundary salt solution is used as the built-in solution. Silicate solutions include calcium silicate, potassium silicate, sodium silicate,
It is a solution of one type of salt selected from calcium magnesium silicate, or a mixed solution of two or more types of salts selected from these.

メタリン酸塩溶液または正リン酸塩溶液またはビロリン
酸塩溶液の組成を上記のごとく限定した理由は第1表、
第2表、第3表(無機化学ハンド  、ブック、技報堂
出版株式会社昭54.3.25)に示されているごとく
、上記メタリン酸塩または止りン酸塩また祉ビ01Jン
酸塩は水に!解しにくい塩である。このようにメタリン
酸塩I塩、正すン酸塙、ピロリン酸塩は水に溶解しにく
い塩であるため、基体の空孔に担持された感湿性塩物賞
は吸湿しても極めて微量にしか電荷担体に解離しない、
よって通電による損耗が少なく、センナとしての機能を
長期にわたって保持させる。また水滴がついても空孔内
に担持された悪質塩物質Fi溶解流出する量も極めて少
ない。
The reason why the composition of the metaphosphate solution, orthophosphate solution, or birophosphate solution was limited as above is shown in Table 1.
As shown in Tables 2 and 3 (Inorganic Chemistry Hand, Book, Gihodo Publishing Co., Ltd., March 25, 1980), the above metaphosphates, phosphates, and bicarbonates are To! It is a salt that is difficult to dissolve. In this way, metaphosphate I salts, shosonosananawa, and pyrophosphates are salts that are difficult to dissolve in water, so even if the moisture-sensitive salts supported in the pores of the substrate absorb moisture, they absorb only a very small amount. does not dissociate into charge carriers,
Therefore, there is little wear and tear due to energization, and the function as a senna is maintained for a long period of time. Furthermore, even if water droplets form, the amount of the bad salt substance Fi supported in the pores that dissolves and flows out is extremely small.

第  1  表 1−ご−1冨=;==;=士t−5=−メタリン酸塩の
水に対する溶解度 fJIJ2tI 正すン酸虐の水に対する溶解度 〔注〕溶解度の大小は、難〉微〉不 数値は100fの水にとける溶質の量 第3表 ピロリン酸塩の水に対する溶解度 メタリン酸塩溶液を九は正リン酸塩溶液またはピロリン
酸溶液に珪酸塩の□溶液を混合するの蝶、基体に吸蔵さ
せ乾燥したとき、基体の9孔に塩物質(以下感湿物置と
称する)で゛あるリン瞭塩の析出微粒子を強く担持させ
粒子間の結合を強める作用があり、その結果粒子間距離
が接近して珪酸塩溶液を混合しない場合にくらべてaI
WILに対する抵雉値を低くする・ことができるととも
に、湿度−抵抗−111においてヒステリシスがなくな
シ湿度検知楕度が向上する。なお基体に吸蔵させるメタ
リン酸塩溶aまたは正リン酸塩溶Qまたはピロリン酸塩
溶液は水に対してはとんど溶けないことから、吸蔵液に
は飽和水溶液もしくは飽和懸濁水溶液を使用することが
迅速に基体に必要とする量の感湿物慣を担持させるOK
効果がある。
Table 1 - Solubility of metaphosphate in water fJIJ2tI Solubility of metaphosphate in water The numerical value is the amount of solute dissolved in 100 f Table 3 Solubility of pyrophosphate in water Metaphosphate solution 9 Mixing □ solution of silicate with orthophosphate solution or pyrophosphate solution Butterfly, substrate When occluded and dried, the 9 pores of the substrate strongly support precipitated fine particles of phosphorescent salt, which is a salt substance (hereinafter referred to as moisture-sensitive storage), which strengthens the bonds between the particles, and as a result, the distance between the particles decreases. aI compared to not mixing the silicate solution closely.
The resistance value for WIL can be lowered, and hysteresis is eliminated in humidity-resistance-111, and the humidity detection ellipse is improved. Note that the metaphosphate solution A, orthophosphate solution Q, or pyrophosphate solution to be occluded in the substrate is hardly soluble in water, so a saturated aqueous solution or a saturated aqueous suspension solution is used as the occlusion liquid. This allows the substrate to quickly carry the required amount of moisture-sensitive material.
effective.

実施例1゜ 多孔性物質の基体として気孔の平均サイズ1.8μ常、
気孔率4596、厚さ0.6■の通気性アルミナ質平板
を用い、その平板の片面に櫛形対向電極をルテニクム酸
化物ペース)Kて印刷焼成し、対向電極間の間隔は0.
2■とじた第1図に示した構造の4のとじ九。この基体
を9696エチルアルコール中で5分間超音波洗浄を行
ない、ついでイオン交換水中で5分間超音波洗浄を行な
った後、120℃1時間加熱して脱水乾燥した。吸蔵液
にはメタリン酸カリをイオン交換水に飽和浩解させたメ
タリン酸カリ溶液を用い、溶液に超音波を印加しながら
前記脱水乾燥した基体を浸漬し、空孔の内部にまで吸蔵
液か浸透含浸されるようKした。
Example 1 The average size of pores is 1.8μ as the substrate of porous material,
An air-permeable alumina flat plate with a porosity of 4596 and a thickness of 0.6 mm was used, and a comb-shaped counter electrode was printed and fired on one side of the plate using ruthenium oxide paste, and the spacing between the counter electrodes was 0.
2■ Binding 4 of the structure shown in Fig. 1. This substrate was subjected to ultrasonic cleaning in 9696 ethyl alcohol for 5 minutes, then in ion-exchanged water for 5 minutes, and then heated at 120° C. for 1 hour to dehydrate and dry. A potassium metaphosphate solution prepared by saturated dissolving potassium metaphosphate in ion-exchanged water is used as the storage liquid, and the dehydrated and dried substrate is immersed while applying ultrasonic waves to the solution, allowing the storage liquid to penetrate into the inside of the pores. K was applied so that it was impregnated.

超音波印加5分後に基体を吸蔵液から取り出し、加熱炉
中で95℃5分加熱して基体の空孔に含浸された水分を
蒸発させ、次に再び飽和メタリン酸カリ液中に浸漬し乾
燥を行なった。仁のように浸漬乾燥を20回繰り返して
基体内空孔にメタリン酸カリウムを十分担持させ九mu
センサの感S%性を第8図に示す。この相対911度−
電気抵抗値の関係は25℃でIK)hの交流で測定した
結果であシ、加湿除湿のヒステリシスは極めて小さく、
40チ以上の相対湿度においてfif検出特性社良好で
あり、6ケ月軽過後にもこの自11に変化社認められな
かった。
After 5 minutes of ultrasonic application, the substrate was taken out of the occlusion liquid and heated in a heating oven at 95°C for 5 minutes to evaporate the moisture impregnated into the pores of the substrate, and then immersed again in saturated potassium metaphosphate solution and dried. I did this. Repeat immersion and drying 20 times to fully support potassium metaphosphate in the pores of the substrate.
Figure 8 shows the S% sensitivity of the sensor. This relative 911 degrees -
The relationship between the electrical resistance values is the result of measurement at 25°C with an alternating current of IK)h, and the hysteresis of humidification and dehumidification is extremely small.
The fif detection characteristics were good at relative humidity of 40 degrees or more, and no changes were observed in this sample even after 6 months of light pollution.

実施例2゜ 実施例1と同一構成の基体を用い、吸蔵液にリン酸アル
ミニウム飽和懸濁溶液を使用し、実施例1と同じ要領で
基体に吸蔵液を含浸させて基体の空孔に正すン駿アルミ
ニウムを指示させた。この湿度センサの相対湿度−電気
抵抗値の関係を示す曲線を第9図に示す。加湿除湿のヒ
ステリシスは極めて小さく45−以上の相対myを正確
に検出することができる。6ケ月経過後にも曲線に変化
は認められなかった。
Example 2゜Using a substrate with the same structure as in Example 1, using a saturated suspension of aluminum phosphate as the storage liquid, the substrate was impregnated with the storage liquid in the same manner as in Example 1, and the pores of the substrate were filled. Shun Aluminum was instructed. FIG. 9 shows a curve showing the relationship between relative humidity and electrical resistance value of this humidity sensor. The hysteresis of humidification and dehumidification is extremely small, and a relative my of 45- or more can be detected accurately. No change was observed in the curve even after 6 months had passed.

実施例3゜ 実施例1と同一構成の基体を用い、吸蔵液にピロリン酸
亜鉛の飽和懸濁溶液を使用し、実施例1と同じ要領で置
体^に吸蔵液を含浸させて基体の空孔にピロリン酸亜鉛
を担持させた。この湿度センサの相対濃度−電気抵抗値
の関係を餉10図に示す。加湿、除湿のヒステリシスは
極めて小さく80m!1以上の相対湿度で急激な抵抗の
変化を示し、結露センナに適する特性をもっている。6
ケ月経過後も曲線に変化は認められなかった。
Example 3 Using a substrate with the same structure as in Example 1, using a saturated suspension of zinc pyrophosphate as the storage liquid, impregnating the mounting body with the storage liquid in the same manner as in Example 1 to fill the void in the substrate. Zinc pyrophosphate was supported in the pores. The relationship between relative concentration and electrical resistance value of this humidity sensor is shown in Figure 10. Humidification and dehumidification hysteresis is extremely small at 80m! It shows a rapid change in resistance at a relative humidity of 1 or more, and has characteristics suitable for a dew sensor. 6
No change was observed in the curve even after several months had passed.

実施例4゜ 基体の平板の両面に電極を設は九第2図に示し九構造の
基体に、メタリン酸カリ飽和懸濁溶液80に対し珪酸カ
リ溶液(珪酸力v2ee:水100)200割合の混合
吸蔵液を含浸させて、メタリン酸カリと珪酸カリとの混
合物を基体の空孔に担持させた。この湿度センナの相対
湿度−電気抵抗値の関係曲線を第11図に示す。相対f
ll[に対する電気抵抗値は大幅に低下し、相対漕8度
20−においても200にΩ以下であり、低澤度域にお
ける湿度検出範囲が拡大し、しかも加湿、瞭湿曲11!
にヒステリシスが認められない。また曲線Fi6ケ月後
にも変化は認められなかった。
Example 4: Electrodes were provided on both sides of the flat plate of the substrate.The substrate having the structure shown in FIG. The mixture of potassium metaphosphate and potassium silicate was supported in the pores of the substrate by impregnation with the mixed storage liquid. FIG. 11 shows a relationship curve between relative humidity and electrical resistance value of this humidity sensor. relative f
The electrical resistance value for ll[ has decreased significantly, and is less than 200 Ω even at a relative angle of 8 degrees 20 -, and the humidity detection range in the low temperature range has been expanded.
No hysteresis is observed. Further, no change was observed in the curve Fi after 6 months.

実施例5゜ 実施例1と同一構成の基体を用い、吸蔵液にリン険アル
ミニウム飽和懸濁溶液50とリン酸ボーン飽和溶液50
との混合溶液を用い基体内空孔にリン酸アルミニウムと
リン酸ボロンの混合感層物質を担持させた。この湿度セ
ンナの相対fllFIIL−電気抵抗値の関係曲線を第
12図に示す。第9図と比較するとわかるようにリン酸
アルミニウムだけの場合よシ同−相対湿fK対する抵抗
値が低く、低9M領域の構製範囲が拡大さ゛れている。
Example 5゜A substrate having the same structure as in Example 1 was used, and the storage liquid was 50% of a saturated suspension of phosphorous aluminum and 50% of a saturated solution of phosphoric acid bone.
A mixed sensitive layer material of aluminum phosphate and boron phosphate was supported in the pores of the substrate using a mixed solution of aluminum phosphate and boron phosphate. FIG. 12 shows the relative flIFIL-electrical resistance value relationship curve of this humidity sensor. As can be seen from a comparison with FIG. 9, the resistance value for the same relative humidity fK is lower than in the case of only aluminum phosphate, and the structural range of the low 9M region is expanded.

相対浸度−電気抵抗の関係曲線は1チ年後にも変化して
いなかった。
The relative immersion-electrical resistance curve did not change after 1 year.

実施例6゜ 実施例4と同一構成の基体を用い、リン酸アルミニウム
の飽和懸濁溶液と珪酸カリウム溶液(珪酸カリ2CC:
水100cc )とを8=2の割合に混合した溶液を吸
蔵液とし、基体の空孔にリン酸アルミニウムと珪酸カリ
ウムとの混合物を基体の空孔に担持させた。この湿度セ
ンナの相対湿度と電気抵抗値の関係曲線を第13図に示
す。第9図と比較するとわかるようにリン酸アルミニウ
ムだけの場合よシも低湿域における電気抵抗が低いので
検出範囲が拡大する。6チ月間経過しても湿度−抵抗白
組に変化は認められなかったつ 実施例7゜ 実施例40基体に実施例6のリン酸アルミニウムと珪酸
カリの混合溶液を基体の表面に滴下含浸させ、゛加熱乾
燥後再び混合液を滴下乾燥する。この場合、基体1個に
つき1回の滴下量を0.05eeとし、これを40回繰
ル返して基体の空孔にリン酸アルミニウムと珪酸カリウ
ムの混合感湿物質を  ・担持させた。この湿度センナ
の相対湿度と電気抵抗値の関係曲線を第14図に示す。
Example 6 Using a substrate with the same structure as in Example 4, a saturated suspension of aluminum phosphate and a potassium silicate solution (Potassium silicate 2CC:
A solution prepared by mixing 100 cc of water at a ratio of 8=2 was used as the storage liquid, and a mixture of aluminum phosphate and potassium silicate was supported in the pores of the substrate. FIG. 13 shows a relationship curve between relative humidity and electrical resistance value of this humidity sensor. As can be seen from a comparison with FIG. 9, the detection range is expanded in the case of only aluminum phosphate because the electrical resistance is low in low humidity regions. No change was observed in the humidity-resistance ratio even after 6 months.゛After heating and drying, drop the mixture again and dry. In this case, the amount of dripping per substrate was 0.05ee, and this was repeated 40 times to support the mixed moisture-sensitive material of aluminum phosphate and potassium silicate in the pores of the substrate. FIG. 14 shows a relationship curve between relative humidity and electrical resistance value of this humidity sensor.

このように吸蔵液を滴下する量をふやせば湿度に対する
電気抵抗は一層低い値を示し20チの相対湿度でも2に
Ω程度に下り、検出湿度域は0チにまで拡大することが
できる。
By increasing the amount of storage liquid dripped in this way, the electrical resistance against humidity becomes even lower, and even at a relative humidity of 20 inches, it falls to about 2.OMEGA., and the detection humidity range can be expanded to 0 degrees.

〈効 果〉 以上述べたようにこの発明によれば、抵抗値が低く、測
定回路が簡単になり、かつ従来よシも低湿域での測定が
可能であシ、史に寿命が長く、かつ感湿物質の選択中吸
蔵液を含浸(ロ)数、あるい鉱@賦液の滴下数によシ目
的の抵抗値のものを容易に得ることができ、また高温炉
やプラズマ溶射装置のような高価なものを必要としない
<Effects> As described above, according to the present invention, the resistance value is low, the measurement circuit is simplified, measurement can be performed in low humidity areas compared to conventional methods, and the life span is longer than ever before. During the selection of moisture-sensitive materials, the desired resistance value can be easily obtained depending on the number of impregnated occlusion liquids or the number of drops of mineral @ vehicle. You don't need anything expensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による湿度センサの一例を示す斜視図
、第2図はこの発明の湿度センサの他の例を示し、同図
Aは正面図、同図Btu側面断面図、83図は湿度セン
サの相対湿度−電気抵抗値を示し、曲I/MAは対向電
極を両面に設は端子部で並列つなぎした湿度センナ、曲
線Bは対向電極を片面だけに設けた亀のに対する特性図
、第4図及び第5図はそれぞれこの発明の湿度センサの
更に他の例を示す正面図、第6図乃至第14図はそれぞ
れこの発明の湿度センサの各種例の相対温度−電気抵抗
値の関係曲線を示す図である第 1:多孔性アルミナ質焼紺基体、2:基体の面、3:櫛
形対向電極、4:電極端子部、5:銀端末、6:リード
耐、7:抵抗素子。 特許出願人  東京コスモス電機株式会社代理人 草野
 卓 オ 2 図 八B 尤3図 第4図    第5図 第6図 1目対湿度(刈 オ 7 図 相対湿度(−) オ8図 相対湿度(0ん) オ 9 図 相対湿度(%) 牙10図 を目 ヌ142度(°ん) す11図 オ目 ス1 号!/i(’/、) 才12図 大目 ヌ:r SR廣(”/、) −+ 13 ’図 第14 図 1目 対 1 虜(ン、) 手続補正書(自発) 特許庁長官 殿 1、事件の表示  特願昭57−563752、発明の
名称 湿度センサ及びその製造方法3、補正をする者 事件との関係  特許出願人 東京コスモス電機株式会社 4、代 理 人  東京都新宿区新宿4−2−21  
相撲ビル6615弁理士草野  卓 5、補正の対象  特許請求の範囲の―及び発明の詳細
な説明の−6、補正の内容 (1)特許請求の範囲を別紙の如く訂正する。 (2)明細書中tIAJ頁3行「メタリン酸塩、ビロリ
ン酸塩」を「正リン酸塩」と訂正する。 (31同書同頁7行[tた正リン酸塩やピロリン酸塩の
」を「を九正リン酸やピーリン酸の」と訂正する。 (4)同書第5頁lO行「かつ離溶性」を「かつ水に対
し難溶性」と訂正する。 (5)  同書第11頁11行「ビロリン酸溶液」を「
ビーリン酸塩溶液」と訂正する。 (6)  同書第12頁11行「内蔵液」を「吸蔵液」
と訂正する。 (7)  同書第17頁19行「指示させた。」を「担
持させた。」と訂正する。 (8)  同書第20頁4行「基体の空孔K」を削除す
予・ 以   上 特許請求の範囲 (1)多孔性物質の基体の空孔内に、メタリン酸塩、正
リン酸塩及びピロリン酸塩の少くとも一つの塩物質が担
持され、その多孔性物質基体に対向電極が形成されてい
る湿度センサ。 (2)  多孔性物質の基体に対向電極を形成し、その
多孔性物質基体の空孔に、メタリン酸塩溶液、正リン酸
塩溶液、ピロ替ン駿塩溶液、又はこれら溶液と珪酸塩溶
液との混合液の少なくとも1つを吸蔵液として吸蔵させ
、その後その吸蔵液中の液体を蒸発させて吸蔵液中に含
まれている塩物質を前記多孔性物質基体の空孔内に担持
させる湿度センナの製造方法。 (3)前記多孔性物質は通気性のある連続気孔をもって
いるものである特許請求の範囲第1項又は第2項記載の
湿度センナ又はその製造方法。
FIG. 1 is a perspective view showing an example of the humidity sensor according to the present invention, FIG. 2 is a perspective view showing another example of the humidity sensor according to the present invention, FIG. The relative humidity-electrical resistance value of the sensor is shown. Curve I/MA is a humidity sensor with counter electrodes on both sides and connected in parallel at the terminals. Curve B is a characteristic diagram for a turtle with counter electrodes on only one side. 4 and 5 are respectively front views showing still other examples of the humidity sensor of the present invention, and FIGS. 6 to 14 are relative temperature-electrical resistance value relationship curves of various examples of the humidity sensor of the present invention, respectively. 1: porous alumina dark blue base, 2: surface of base, 3: comb-shaped counter electrode, 4: electrode terminal, 5: silver terminal, 6: lead resistance, 7: resistance element. Patent Applicant Tokyo Cosmos Electric Co., Ltd. Agent Takuo Kusano 2 Figure 8 B Figure 3 Figure 4 Figure 5 Figure 6 Figure 1 vs. Humidity (Kario 7 Figure Relative Humidity (-) Figure O 8 Relative Humidity (0) ) O 9 Figure Relative Humidity (%) Fang 10 Figure Nu 142 degrees (°n) Su 11 Figure O Eye Su 1 No.!/i('/,) Sai 12 Figure Ome Nu:r SR Hiro(” /, ) -+ 13 'Figure 14 Figure 1 vs. 1 Procedural amendment (spontaneous) Commissioner of the Japan Patent Office 1, Indication of case Patent application No. 57-563752, Title of invention Humidity sensor and its manufacture Method 3: Relationship with the person making the amendment Patent applicant: Tokyo Cosmos Electric Co., Ltd. 4: Agent: 4-2-21 Shinjuku, Shinjuku-ku, Tokyo
Sumo Building 6615 Patent Attorney Taku Kusano 5, Subject of Amendment Claims - and Detailed Description of the Invention - 6 Contents of Amendment (1) The scope of claims will be corrected as shown in the attached sheet. (2) In the specification, page tIAJ, line 3, "metaphosphate, birophosphate" is corrected to "orthophosphate." (31 Ibid., p. 7, line 7 [t of orthophosphates and pyrophosphates] is corrected to "of kusei phosphoric acid and pyrophosphate." (5) In the same book, page 11, line 11, “birophosphoric acid solution” should be corrected as “and sparingly soluble in water.”
Beer phosphate solution” is corrected. (6) “Built-in liquid” in line 11 of page 12 of the same book is “occlusion liquid”
I am corrected. (7) On page 17 of the same book, line 19, ``I was instructed.'' is corrected to ``I was made to carry it.'' (8) On page 20 of the same book, line 4 "Vacancies K in the substrate" should be deleted. Claims (1) Metaphosphate, orthophosphate and A humidity sensor having at least one salt material of pyrophosphate supported thereon and a counter electrode formed on the porous material substrate. (2) A counter electrode is formed on a porous material substrate, and a metaphosphate solution, an orthophosphate solution, a pyrophosphate solution, or these solutions and a silicate solution are applied to the pores of the porous material substrate. Humidity that allows at least one of the mixed liquids to be occluded as an occluded liquid, and then the liquid in the occluded liquid is evaporated to support the salt substance contained in the occluded liquid in the pores of the porous material base. How to make senna. (3) The humidity sensor or the manufacturing method thereof according to claim 1 or 2, wherein the porous material has continuous air-permeable pores.

Claims (1)

【特許請求の範囲】 (1)  多孔性物質の基体の空孔内に、メタリン献塩
、正リン酸塩及びビロリン酸塩の少くとも一つの塩物質
が担持され、その多孔性物質基体に対向電極が形成され
ている湿度センサ。 ■) 多孔性物質の基体に対向電極を形成し、その多孔
性物質基体の空孔に、メタリン飯塩溶液、正リン酸塩溶
液、ビロリン酸塩溶液、又itこれは溶液と珪酸塩溶液
との混合液の少なくとも1つを吸賊液として吸蔵させ、
その後その吸蔵液中の液体を蒸発させてFj&lR液中
に含まれている塩物質を前記多孔性物質基体の空孔内に
担持させる湿度センナの製造方法。 (3)前記多孔性−質は通気性のある連続気孔をもって
いるものである特許請求の範囲第1項又祉第2積記載の
湿度センサ又はその製造方法。
[Scope of Claims] (1) At least one salt substance of methaline salt, orthophosphate, and birophosphate is supported in the pores of the porous material substrate, and is opposed to the porous material substrate. Humidity sensor with electrodes formed. ■) A counter electrode is formed on a porous material substrate, and a methaline salt solution, an orthophosphate solution, a birophosphate solution, or a solution and a silicate solution are applied to the pores of the porous material substrate. absorbing at least one of the mixed liquids as an absorbent liquid,
A method for producing a humidity sensor, in which the liquid in the storage liquid is then evaporated to support the salt substance contained in the Fj&lR liquid in the pores of the porous material base. (3) The humidity sensor or the manufacturing method thereof according to claim 1 or claim 2, wherein the porous material has continuous air-permeable pores.
JP5637582A 1982-04-05 1982-04-05 Humidity sensor and its manufacture Pending JPS58173458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5637582A JPS58173458A (en) 1982-04-05 1982-04-05 Humidity sensor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5637582A JPS58173458A (en) 1982-04-05 1982-04-05 Humidity sensor and its manufacture

Publications (1)

Publication Number Publication Date
JPS58173458A true JPS58173458A (en) 1983-10-12

Family

ID=13025510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5637582A Pending JPS58173458A (en) 1982-04-05 1982-04-05 Humidity sensor and its manufacture

Country Status (1)

Country Link
JP (1) JPS58173458A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010083902A1 (en) * 2009-01-20 2010-07-29 Robert Bosch Gmbh Fluid sensor
JP2014064964A (en) * 2012-09-24 2014-04-17 Toshiba Home Technology Corp Mist generating apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456199A (en) * 1977-10-11 1979-05-04 Fujitsu Ltd Humidity sensitive element manufacturing process
JPS54137389A (en) * 1978-04-18 1979-10-25 Asahi Glass Co Ltd Humidityysensitive element
JPS54137388A (en) * 1978-04-18 1979-10-25 Asahi Glass Co Ltd Original humdityysensitive element
JPS5667744A (en) * 1979-11-06 1981-06-08 Sumitomo Metal Mining Co Ltd Manufacture of oxygen sensor
JPS56101701A (en) * 1980-01-17 1981-08-14 Mitsubishi Electric Corp Moisture sensitive element
JPS5713345A (en) * 1980-06-28 1982-01-23 Nippon Soken Inc Production of gas sensing element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456199A (en) * 1977-10-11 1979-05-04 Fujitsu Ltd Humidity sensitive element manufacturing process
JPS54137389A (en) * 1978-04-18 1979-10-25 Asahi Glass Co Ltd Humidityysensitive element
JPS54137388A (en) * 1978-04-18 1979-10-25 Asahi Glass Co Ltd Original humdityysensitive element
JPS5667744A (en) * 1979-11-06 1981-06-08 Sumitomo Metal Mining Co Ltd Manufacture of oxygen sensor
JPS56101701A (en) * 1980-01-17 1981-08-14 Mitsubishi Electric Corp Moisture sensitive element
JPS5713345A (en) * 1980-06-28 1982-01-23 Nippon Soken Inc Production of gas sensing element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010083902A1 (en) * 2009-01-20 2010-07-29 Robert Bosch Gmbh Fluid sensor
JP2014064964A (en) * 2012-09-24 2014-04-17 Toshiba Home Technology Corp Mist generating apparatus

Similar Documents

Publication Publication Date Title
EP1318395B1 (en) Humidity sensor
US4768012A (en) Sensors
CN1105911C (en) Humidity sensitive element and mfg. method therefor
US4635027A (en) Resistance-variation type moisture sensor
JP2789522B2 (en) Method for forming a chlorite-type tungsten oxide layer on a substrate and a humidity sensor element containing the chlorite-type tungsten oxide layer
US3715702A (en) Relative humidity sensor
US4011538A (en) Fluid sensor
US4481813A (en) Dew sensor
JPS58173458A (en) Humidity sensor and its manufacture
JPS5844338A (en) Humidity sensor
US4424508A (en) Moisture sensitive element
US3703697A (en) Relative humidity sensor
US3916367A (en) Relative humidity sensor
RU2096777C1 (en) Humidity transducer
US4509035A (en) Humidity-sensitive element and process for producing the same
JP3481855B2 (en) Humidity sensitive element and method of manufacturing the same
JPH027162B2 (en)
JPS6122898B2 (en)
JPS6131352A (en) Post treatment for humidity sensitive element
JP2677991B2 (en) Moisture sensitive element
JPS60211346A (en) Dew condensation sensor
JPH01105153A (en) Humidity sensor
JPH0153483B2 (en)
JPS5941802A (en) Moisture sensitive element
JP3074901B2 (en) Humidity sensor