JPS5817324B2 - Heat shielding structure of metal structure in contact with high temperature gas atmosphere in gas turbine - Google Patents

Heat shielding structure of metal structure in contact with high temperature gas atmosphere in gas turbine

Info

Publication number
JPS5817324B2
JPS5817324B2 JP53133190A JP13319078A JPS5817324B2 JP S5817324 B2 JPS5817324 B2 JP S5817324B2 JP 53133190 A JP53133190 A JP 53133190A JP 13319078 A JP13319078 A JP 13319078A JP S5817324 B2 JPS5817324 B2 JP S5817324B2
Authority
JP
Japan
Prior art keywords
metal structure
turbine
heat
heat shield
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53133190A
Other languages
Japanese (ja)
Other versions
JPS5560604A (en
Inventor
阿部俊夫
石川浩
池本一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP53133190A priority Critical patent/JPS5817324B2/en
Publication of JPS5560604A publication Critical patent/JPS5560604A/en
Publication of JPS5817324B2 publication Critical patent/JPS5817324B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はガスタービンにおけるタービン動翼。[Detailed description of the invention] The present invention relates to a turbine rotor blade in a gas turbine.

静翼、更には燃焼筒など高温ガス雰囲気に接する金属構
造物の熱遮蔽構造に関するものである。
The present invention relates to a heat shielding structure for metal structures such as stator vanes and combustion tubes that are in contact with a high-temperature gas atmosphere.

ガスタービンにおいてはタービン入口のガス温度を高く
するに伴い、高効率運転が可能となることは周知であり
、近時における省エネルギ化の機運の高まりは、特にガ
ス温度の一層の高温化を要求している。
It is well known that high-efficiency operation of gas turbines becomes possible by increasing the gas temperature at the turbine inlet, and the recent growing trend toward energy conservation has particularly required further increases in gas temperature. are doing.

ところでガス温度の高温化の大きなきめ手の一つは、金
属構造物例えばタービン翼がガスの温度に耐えて機械的
強度を保持しうるようにすることにあり、このためには
従来とられている空冷方式、例えば第1図のように翼a
内に冷却用細孔すを設けてこの中に空気を流通させる方
法を液冷方式に変更するなどして、冷却効果を増大させ
る必要がある。
By the way, one of the major reasons for the rise in gas temperature is to ensure that metal structures, such as turbine blades, can withstand the gas temperature and maintain mechanical strength. For example, as shown in Figure 1, the air cooling system is
It is necessary to increase the cooling effect by providing cooling holes inside and changing the method of circulating air through the holes to a liquid cooling method.

しかしこの方法により冷却効果を増大させると、冷却媒
体の通過経路周辺における温度と、外周面における温度
の差が犬となってタービン翼内部に大きな温度差を生じ
、これにもとづく大きな熱応力により機械的強度が低下
する。
However, when the cooling effect is increased using this method, the difference between the temperature around the passage of the cooling medium and the temperature on the outer peripheral surface becomes a dog, creating a large temperature difference inside the turbine blade. target strength decreases.

従って冷却能力の増大には自らなる限界を生ずると云う
新たな問題が提起される。
Therefore, a new problem arises in that increasing cooling capacity has its own limits.

これを根本的に改善するためには高耐熱性のタービン翼
素材の開発が必要であるが、現状においては素材面にお
げろ技術的進展は見られない状況にある。
In order to fundamentally improve this problem, it is necessary to develop highly heat-resistant turbine blade materials, but at present no significant technological progress has been made in terms of materials.

またこれらの点についてはタービン翼に高温ガスを供給
する燃焼筒についても同様であり、この点からガス温度
の上昇要求は一つの壁に突当っているのが現状である。
Furthermore, these points also apply to the combustion tubes that supply high-temperature gas to the turbine blades, and from this point of view, the current situation is that the demand for increasing the gas temperature has hit a wall.

そこでこのような隘路を打開するため、例えば第2図に
示すようにタービン翼を構成する金属構造物aの表面を
、金属構造物より高い耐熱性をもち、しかも低い熱伝導
率の材料で作られた熱遮蔽体Cにより被覆し、前記のよ
うな冷却方式の限界を超える範囲のガス温度における対
応を、タービン翼への熱流を抑制することによって行う
方法が提案された。
Therefore, in order to overcome this bottleneck, for example, as shown in Figure 2, the surface of the metal structure a that makes up the turbine blade is made of a material that has higher heat resistance than the metal structure but also has a lower thermal conductivity. A method has been proposed in which the turbine blades are coated with a heat shield C, and the heat flow to the turbine blades is suppressed to cope with gas temperatures in a range exceeding the limits of the cooling method described above.

この方法によればタービン翼に加わる前記のような熱応
力を抑えて、タービン入口のガス温度の上昇を図ること
が可能である。
According to this method, it is possible to suppress the above-mentioned thermal stress applied to the turbine blades and increase the gas temperature at the turbine inlet.

しかし上記したような熱遮蔽体即ち高耐熱性と低熱伝導
率性の両機能を備えた、例えばアルミナ、焼結ジルコニ
ウムのような熱遮蔽体はもろ(、タービン動翼のように
高速回転する構造物として機械的強度に不安がある。
However, the above-mentioned heat shields, such as alumina and sintered zirconium, which have both high heat resistance and low thermal conductivity, as well as structures that rotate at high speeds such as turbine rotor blades, There are concerns about the mechanical strength of the product.

本発明はタービン翼への熱流の抑制即ち熱遮蔽効果の向
上を図って、タービン翼に加わる熱応力を極力低く抑え
ながら、タービン入口のガス温度の上昇を図りうるよう
にして、ガスタービンの高効率化の推進を図りうるよう
にすると同時に、熱遮蔽体の機械的強度上における不安
を低減できる熱遮蔽構造を提供しようとするものである
The present invention suppresses the heat flow to the turbine blades, that is, improves the heat shielding effect, and increases the gas temperature at the turbine inlet while minimizing the thermal stress applied to the turbine blades. The present invention aims to provide a heat shielding structure that can promote efficiency while at the same time reducing concerns regarding the mechanical strength of the heat shield.

次に図面を用いその詳細を説明する。Next, the details will be explained using the drawings.

実験によれば第3図に示すように金属構造物aの表面を
、金属構造物より高い耐熱性と低熱伝導性を有する焼結
ジルコニウム製熱遮蔽体Cにより僅かな空隙dをもつよ
うに被覆したタービン翼を模擬したブロックeを作り、
その金属構造物aを熱遮蔽体Cの非設置面から冷却fし
ながら(タービン動翼内に設けた冷却細孔内を通る冷却
流体による冷却を模擬して)、遮蔽体Cの面を加熱gし
て温度分布を測定したところ、空隙dにおける熱流の抑
制効果が、遮蔽体Cの抑制効果を太き(上回ることが明
らかにされた。
According to experiments, as shown in Fig. 3, the surface of the metal structure a is covered with a sintered zirconium heat shield C, which has higher heat resistance and lower thermal conductivity than the metal structure, with a small gap d. Create a block e that simulates a turbine blade,
While cooling the metal structure a from the non-installed surface of the heat shield C (simulating cooling by cooling fluid passing through the cooling pores provided in the turbine rotor blade), the surface of the shield C is heated. g and measured the temperature distribution, it was revealed that the heat flow suppression effect in the gap d greatly (exceeds) the suppression effect of the shield C.

例えば熱遮蔽体の厚さを3.2mm空隙部の厚さ約0.
2mrnとしたとき、空隙部における熱流の抑制効果は
遮蔽体Cにおけるそれの約2倍となることが明らかにさ
れた。
For example, the thickness of the heat shield is 3.2 mm, and the thickness of the cavity is approximately 0.2 mm.
It was revealed that the heat flow suppression effect in the gap is approximately twice that in the shield C when the heat flow is 2 mrn.

本発明はこれらから表面に空隙を残すように金属構造物
をこれより高い耐熱性をもつ低熱伝導率の熱遮蔽体によ
り被覆することにより、更にタービン入口のガス温度を
高温化でき、また熱遮蔽体としてアルミナ、焼結ジルコ
ニウムなどに比して熱伝導率において劣るが、機械的強
度にすぐれた、例えば焼結窒化硅素(シリコンナイトラ
イド)、焼結炭化硅素(シリコンカーバイト)などを用
いて、機械的強度の高いタービン翼を提供できることを
着想したものである。
The present invention can further raise the gas temperature at the turbine inlet by covering the metal structure with a heat shield with higher heat resistance and low thermal conductivity so as to leave voids on the surface, and also provide a heat shield. Although it is inferior in thermal conductivity to alumina or sintered zirconium, it has excellent mechanical strength, such as sintered silicon nitride or sintered silicon carbide. The idea was to provide a turbine blade with high mechanical strength.

第4図は翼内部の遠心加速度の作用方向に冷却孔を設け
たタービン動翼に適用した本発明の一実施例部分斜視図
、第5図はその要部の断面図である。
FIG. 4 is a partial perspective view of an embodiment of the present invention applied to a turbine rotor blade in which cooling holes are provided in the direction of action of centrifugal acceleration inside the blade, and FIG. 5 is a sectional view of the main part thereof.

第4図において1は翼形の金属構造物で、これは図示し
ないロータ一部上に固定される。
In FIG. 4, reference numeral 1 denotes an airfoil-shaped metal structure, which is fixed onto a part of the rotor (not shown).

2は遠心加速度の作用方向に複数本設けられた冷却孔で
、その一端はロータ一部分を介して図示しない圧縮機に
接続され、冷却孔2を介してその開口からタービン作動
気体雰囲気中に空気を噴出するようにして金属構造物1
の冷却を行う。
Reference numeral 2 denotes a plurality of cooling holes provided in the direction of action of centrifugal acceleration, one end of which is connected to a compressor (not shown) through a portion of the rotor, and air is introduced into the turbine working gas atmosphere through the opening of the cooling hole 2. Metal structure 1 in a spouting manner
cooling.

3は動翼の金属構造物の表面を覆うように設けた熱遮蔽
体で、例えば1000℃以上の高温に耐えうる焼結窒化
硅素、焼結炭化硅素などの成型物が使用される。
A heat shield 3 is provided to cover the surface of the metal structure of the rotor blade, and is made of, for example, a molded material such as sintered silicon nitride or sintered silicon carbide that can withstand high temperatures of 1000° C. or higher.

4は熱遮蔽体と金属構造物間に設けた空隙で、熱遮蔽体
3は例えば第5図に示す方法により、空隙部4を作るよ
うに金属構造物1の表面に取付けられる。
Reference numeral 4 denotes a gap provided between the heat shield and the metal structure, and the heat shield 3 is attached to the surface of the metal structure 1 so as to create the gap 4, for example, by the method shown in FIG.

第5図aの例は金属構造物の表面を第4図を参照して判
るように適当筒数に分割し、かつ空隙部4を隔てて覆い
うるような表面積と形状に選定された熱遮蔽体片31を
用い、これをその内面の中心部に設けた基部がくびれた
被保持英傑32を、金属構造物1の表面に空隙部4を作
るような深さをもつ、入口部が(びれた保持溝11に次
々と嵌入して組立てたものである。
In the example shown in FIG. 5a, the surface of the metal structure is divided into an appropriate number of cylinders as shown in FIG. A body piece 31 is used to hold a held hero 32 with a constricted base provided at the center of the inner surface of the body piece 31. It is assembled by fitting the holding grooves 11 into the holding grooves 11 one after another.

また第5図すの例は第5図aに示した熱遮蔽体片31の
内面両側端部に、2つの熱遮蔽体片31が突き合わされ
たとき、基部がくびれだ被保持英傑を形成する半抜保持
英傑33を設け、これを金属構造物1側に設げた保持溝
11に嵌入して組立てるようにしたものである。
Further, in the example shown in FIG. 5, when two heat shield pieces 31 are butted against both ends of the inner surface of the heat shield piece 31 shown in FIG. A half-drawn retainer 33 is provided, and this is assembled by fitting into a retaining groove 11 provided on the metal structure 1 side.

また第5図Cの例は熱遮蔽体31の保持部分にも空隙部
4が形成されるように、金属構造物1側の保持溝110
面に波形、角形など(図では波形)の凹凸面5を設けた
例であり、第5図dは金属構造物10表面に凹凸により
空隙4を作って金属構造物と熱遮蔽体の取付強度を向上
したものである。
Further, in the example shown in FIG. 5C, the holding groove 110 on the metal structure 1 side is
This is an example in which an uneven surface 5 such as a waveform or a square shape (waveform in the figure) is provided on the surface, and FIG. It is an improved version of

またこの外例えば保持溝を熱遮蔽体側に設け、被保持英
傑を金属構造物側に設けるなどの各種の変形が可能であ
る。
In addition to this, various modifications are possible, such as providing the holding groove on the heat shield side and providing the held member on the metal structure side.

このようにすれば熱遮蔽体による熱抵抗層と、空隙部に
よる熱遮蔽体より大きい熱抵抗層が、金属構造物の表面
に形成される。
In this way, a heat resistance layer formed by the heat shield and a heat resistance layer larger than the heat shield formed by the void are formed on the surface of the metal structure.

従って空隙を設けることなく、熱遮蔽体により金属構造
物面を被覆したものに比して、金属構造物への熱量の流
入の抑制作用は更に大となるので、タービン動翼内に設
けた冷却細孔によるタービン動翼を形成する金属構造物
の温度の低下と併せて金属構造物の良好な保護が行われ
る。
Therefore, compared to the case where the surface of the metal structure is covered with a heat shield without providing any air gaps, the effect of suppressing the inflow of heat into the metal structure is even greater, so cooling installed inside the turbine rotor blades In conjunction with the reduction in temperature of the metal structures forming the turbine rotor blades due to the pores, good protection of the metal structures takes place.

また金属構造物の外周面における温度と冷却孔周辺にお
ける温度差も少な(することができるので、熱応力によ
る機械的強度の低下も改善される。
Furthermore, since the temperature difference between the outer circumferential surface of the metal structure and the temperature around the cooling hole is small, the decrease in mechanical strength due to thermal stress is also improved.

従って従来と同様な素材を用いて動翼の金属構造物を形
成しても、タービン入口のガス温度の上昇を許すことが
でき、これによって高効率化を図ることができる。
Therefore, even if the metal structure of the rotor blade is formed using the same material as in the past, it is possible to allow the gas temperature at the turbine inlet to rise, thereby achieving higher efficiency.

また空隙による熱流の抑制効果を考慮して熱遮蔽体の熱
伝導率を高(することができ、これによって耐熱性にす
ぐれた機械的強度の大きい熱遮蔽体例えば前記したよう
にアルミナ、焼結ジルコニウムなどに代えて、熱伝導率
において劣るが機械的強度の大きい焼結窒化硅素、焼結
炭化硅素などの熱遮蔽体を用いることができる。
In addition, it is possible to increase the thermal conductivity of the heat shield by taking into account the effect of suppressing heat flow due to the voids. Instead of zirconium or the like, a heat shielding material such as sintered silicon nitride or sintered silicon carbide, which has poor thermal conductivity but high mechanical strength, can be used.

従ってそれだけ機械的強度の不安に対処しうるタービン
動翼が得られることになる。
Therefore, a turbine rotor blade that can cope with concerns about mechanical strength can be obtained.

第1表および第2表はタービン翼の温度を、空:気冷却
の場合と水冷却の場合とについて試算した結果の一例で
ある。
Tables 1 and 2 are examples of the results of trial calculations of the temperatures of turbine blades in the case of air/air cooling and the case of water cooling.

これから明らかなように本発明の熱遮蔽層のない場合に
は、例えば空気冷却においてガス温度が1400℃の場
合、動翼の金属構造物の表面温度は1135℃、冷却部
における温度は870℃であるのに対し、本発明熱遮蔽
層のある場合には738℃、605℃となり、表面温度
は約40係、温度差は約50係小となる。
As is clear from this, in the case without the heat shielding layer of the present invention, for example, when the gas temperature is 1400°C in air cooling, the surface temperature of the metal structure of the rotor blade is 1135°C, and the temperature in the cooling part is 870°C. On the other hand, when the heat shielding layer of the present invention is present, the temperature becomes 738° C. and 605° C., the surface temperature is about 40 times smaller, and the temperature difference is about 50 times smaller.

以上本発明をタービン動翼を例にとって説明したが、タ
ービン静翼についても同様に適用でき、また燃焼筒の内
部周面に上記と同一要領により熱遮蔽層を設けることに
よって金属構造物の保護を行うことができる。
Although the present invention has been explained above using turbine rotor blades as an example, it can be similarly applied to turbine stationary blades, and metal structures can be protected by providing a heat shielding layer on the inner circumferential surface of the combustion tube in the same manner as described above. It can be carried out.

以上の説明から明らかなように、本発明によればタービ
ン動翼、静翼、燃焼筒など、高温ガス雰囲気に接する金
属構造物の耐熱性を大きく向上でき、これによりガスタ
ービン入口のガス温度の上昇などを可能としてタービン
の高効率化を図りうるすぐれた利点を有するもので、実
用上極めて有用である。
As is clear from the above description, according to the present invention, the heat resistance of metal structures in contact with high-temperature gas atmospheres, such as turbine rotor blades, stator blades, and combustion tubes, can be greatly improved, thereby reducing the gas temperature at the gas turbine inlet. It has the excellent advantage of making it possible to raise the turbine and increase the efficiency of the turbine, making it extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はタービン翼のガス温度に対する保護方
法の説明図、第3図は本発明の原理説明図、第4図、第
5図は本発明の一実施例の部分斜視図、および要部の断
面図である。 1・・・金属構造物、3・・・熱遮蔽体、4・・・空隙
部。
1 and 2 are explanatory diagrams of a method for protecting turbine blades against gas temperature; FIG. 3 is an explanatory diagram of the principle of the present invention; FIGS. 4 and 5 are partial perspective views of an embodiment of the present invention; and a sectional view of main parts. DESCRIPTION OF SYMBOLS 1... Metal structure, 3... Heat shield, 4... Cavity part.

Claims (1)

【特許請求の範囲】[Claims] 1 断熱性を有する熱遮蔽体片の裏面に基部がくびれだ
被保持突条を設け、また被遮蔽金属構造物の表面には入
口部がくびれだ上記突条の保持溝を設け、上記突条を溝
に差込んだとき熱遮蔽体片と被遮蔽金属構造物との間に
空隙をもつように構成して、熱遮蔽体の断熱性と空隙に
より金属構造物の熱遮蔽を行うことを特徴とするガスタ
ービンにおける高温ガス雰囲気接触金属構造物の熱遮蔽
構造。
1 A retaining protrusion having a constricted base is provided on the back surface of a heat shield piece having heat insulating properties, and a retaining groove for the protrusion having a constricted entrance part is provided on the surface of the metal structure to be shielded, and the protrusion is When the heat shield piece is inserted into the groove, there is a gap between the heat shield piece and the metal structure to be shielded, so that the metal structure is thermally shielded by the heat insulating properties of the heat shield and the gap. Thermal shielding structure for metal structures in contact with high temperature gas atmosphere in gas turbines.
JP53133190A 1978-10-31 1978-10-31 Heat shielding structure of metal structure in contact with high temperature gas atmosphere in gas turbine Expired JPS5817324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53133190A JPS5817324B2 (en) 1978-10-31 1978-10-31 Heat shielding structure of metal structure in contact with high temperature gas atmosphere in gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53133190A JPS5817324B2 (en) 1978-10-31 1978-10-31 Heat shielding structure of metal structure in contact with high temperature gas atmosphere in gas turbine

Publications (2)

Publication Number Publication Date
JPS5560604A JPS5560604A (en) 1980-05-07
JPS5817324B2 true JPS5817324B2 (en) 1983-04-06

Family

ID=15098798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53133190A Expired JPS5817324B2 (en) 1978-10-31 1978-10-31 Heat shielding structure of metal structure in contact with high temperature gas atmosphere in gas turbine

Country Status (1)

Country Link
JP (1) JPS5817324B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386025U (en) * 1986-11-27 1988-06-04

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934499A (en) * 1982-08-21 1984-02-24 Tokyo Yogyo Co Ltd Impeller for blower
JPS6098791U (en) * 1984-07-24 1985-07-05 株式会社荏原製作所 impeller
JPS6098794U (en) * 1984-07-25 1985-07-05 株式会社荏原製作所 impeller
US6224339B1 (en) * 1998-07-08 2001-05-01 Allison Advanced Development Company High temperature airfoil
EP2769969B1 (en) * 2013-02-25 2018-10-17 Ansaldo Energia IP UK Limited Method for manufacturing a metal-ceramic composite structure and metal-ceramic composite structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4987908A (en) * 1972-12-28 1974-08-22
JPS54106714A (en) * 1978-02-08 1979-08-22 Ishikawajima Harima Heavy Ind Co Ltd Turbine vane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4987908A (en) * 1972-12-28 1974-08-22
JPS54106714A (en) * 1978-02-08 1979-08-22 Ishikawajima Harima Heavy Ind Co Ltd Turbine vane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386025U (en) * 1986-11-27 1988-06-04

Also Published As

Publication number Publication date
JPS5560604A (en) 1980-05-07

Similar Documents

Publication Publication Date Title
JP4070856B2 (en) Turbine blade with slot cooling blade tip
JP4527848B2 (en) Airfoil with insulated tip
US6612808B2 (en) Article wall with interrupted ribbed heat transfer surface
US3902820A (en) Fluid cooled turbine rotor blade
JP4477032B2 (en) Closed loop steam cooled turbine shroud
US6224337B1 (en) Thermal barrier coated squealer tip cavity
US6190129B1 (en) Tapered tip-rib turbine blade
JP3671981B2 (en) Turbine shroud segment with bent cooling channel
US6991430B2 (en) Turbine blade with recessed squealer tip and shelf
US6086328A (en) Tapered tip turbine blade
US5183385A (en) Turbine blade squealer tip having air cooling holes contiguous with tip interior wall surface
US6155778A (en) Recessed turbine shroud
JP5143389B2 (en) Steam-cooled gas turbine blades for reducing tip leakage loss
JP4731238B2 (en) Apparatus for cooling a gas turbine engine rotor blade
US6769866B1 (en) Turbine blade and method for producing a turbine blade
US20020182074A1 (en) Film cooled blade tip
US3994622A (en) Coolable turbine blade
US5090866A (en) High temperature leading edge vane insert
CA2262698A1 (en) Cooled moving blade for gas turbines
JP2007146841A (en) Cooling microcircuit for use in turbine engine component, and turbine blade
JP5271688B2 (en) Gas turbine components
JPH05214958A (en) Gas turbine
CN103321692B (en) Thermal isolation apparatus
JPS5817324B2 (en) Heat shielding structure of metal structure in contact with high temperature gas atmosphere in gas turbine
JPS5925086B2 (en) gas turbine blade