JPS58172814A - Method of producing nb3sn superconductive wire - Google Patents

Method of producing nb3sn superconductive wire

Info

Publication number
JPS58172814A
JPS58172814A JP57055126A JP5512682A JPS58172814A JP S58172814 A JPS58172814 A JP S58172814A JP 57055126 A JP57055126 A JP 57055126A JP 5512682 A JP5512682 A JP 5512682A JP S58172814 A JPS58172814 A JP S58172814A
Authority
JP
Japan
Prior art keywords
tin
heat
wire
heat treatment
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57055126A
Other languages
Japanese (ja)
Inventor
鈴木 英元
市原 政光
中根 麓
伸夫 青木
神定 良昌
智幸 熊野
哲夫 星野
荒原 幸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP57055126A priority Critical patent/JPS58172814A/en
Publication of JPS58172814A publication Critical patent/JPS58172814A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 し発明の技術分野〕 本発明はNb3Sn超電導線、特に外部拡散法によるN
b5Sn超電導線の製造方法に関する。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to a Nb3Sn superconducting wire, particularly a Nb3Sn superconducting wire produced by an external diffusion method.
The present invention relates to a method of manufacturing b5Sn superconducting wire.

[発明の技術的背景とその問題点] 従来よりNb3Sn超電導線の製造方法としては、ブロ
ンズ(Cu Sn )マトリックス中にニオブを多数本
埋め込み、伸線機、ブロンズ中のスズとニオブを反応さ
せてNb3Snを生成させるいわゆるブロンズ法が知ら
れている。しかして、この方法ではブロンズが銅より加
工性が悪いため多くの中間焼鈍をする必要があり、工程
が複雑になるという欠点があった。
[Technical background of the invention and its problems] Conventionally, the method for producing Nb3Sn superconducting wire is to embed a large number of niobium in a bronze (CuSn) matrix, use a wire drawing machine, and react the tin and niobium in the bronze. A so-called bronze method for producing Nb3Sn is known. However, this method has the disadvantage that many intermediate annealing operations are required because bronze is less workable than copper, making the process complicated.

これに対して、銅マトリツクス中にニオブフィラメント
を多数本埋め込んだ線材の外周にスズをめっきし、これ
に拡散熱処理を施すいわゆる外部拡散法は伸線が容易で
工程が少なくて済むという利点がある反面、次のような
問題があった。
On the other hand, the so-called external diffusion method, in which the outer periphery of a wire with many niobium filaments embedded in a copper matrix is plated with tin and then subjected to diffusion heat treatment, has the advantage that wire drawing is easy and requires fewer steps. On the other hand, there were the following problems.

すなわち拡散熱処理温度がスズの融点以下の場合はスズ
と銅の反応が遅いという欠点があり、逆に拡散熱処理温
度がスズの融点以上ではスズと銅の反応は非常に早くな
るが、当然スズの溶落ちが起こり、健全なNb5Sn超
電導線を得ることができないという欠点があった。
In other words, if the diffusion heat treatment temperature is below the melting point of tin, the reaction between tin and copper will be slow.On the other hand, if the diffusion heat treatment temperature is above the melting point of tin, the reaction between tin and copper will be very fast. There was a drawback that burn-through occurred and a healthy Nb5Sn superconducting wire could not be obtained.

なお、スズめっき厚が7μ−゛以下であれば、溶落ちは
生じず高温で拡散熱処理が可能になるが、Nb3Sn超
電導線の特性がスズ濃度に起因していることからスズめ
っき厚を7μ−以下のとすることは実用的ではない。
Note that if the tin plating thickness is 7 μ-゛ or less, diffusion heat treatment at high temperature is possible without causing burn-through, but since the characteristics of Nb3Sn superconducting wire are caused by the tin concentration, the tin plating thickness should be set to 7 μ-゛. The following is not practical.

本発明者らは、外部拡散法における上述の欠点を解消す
るため鋭意研究を進めた結果、スズめっき層の外層にポ
リボロシロキサン樹脂を主成分とする耐熱塗料を塗布焼
付した後、拡散熱処理を施せばスズめっき層の外周に高
温の熱処理に耐える塗膜が形成されているので、めっき
厚が7μ−以上であってもスズの溶落ちが防止でき、し
かも従来スズが表面に付着しているため線間で粘着が生
じ易く、ボビンに巻き付けて熱処理を行なうということ
ができず、短尺の熱処理しかできなかったが、前述した
方法を使用すれば長尺の熱処理が可能になることも見出
した。
The inventors of the present invention have carried out intensive research to eliminate the above-mentioned drawbacks of the external diffusion method. After applying and baking a heat-resistant paint mainly composed of polyborosiloxane resin to the outer layer of the tin plating layer, the inventors applied diffusion heat treatment to the outer layer of the tin plating layer. If applied, a coating film that can withstand high-temperature heat treatment is formed on the outer periphery of the tin plating layer, so even if the plating thickness is 7μ or more, tin burn-off can be prevented, and conventionally, tin adheres to the surface. Because of this, stickiness easily occurs between the wires, and it was not possible to heat treat the wires by winding them around a bobbin, so it was only possible to heat treat short lengths. However, they discovered that it is possible to heat treat long lengths by using the method described above. .

[発明の目的] 本発明はこのような知見に基づいてなされたもので、高
温で拡散熱処理を摘してもスズの溶落ち佳・   [ のないNb5Sn超電導線を製造することを目的とする
[Object of the Invention] The present invention has been made based on the above findings, and an object of the present invention is to manufacture an Nb5Sn superconducting wire that does not show tin burn-off even after diffusion heat treatment at high temperatures.

〔発明の概要] すなわち本発明方法は、外部拡散法によるNb5sn超
電導線を製造する方法においてスズめっき層の外周にポ
リボロシロキサン樹脂を主成分とする耐熱塗料を塗布焼
付した後、拡散熱処理を施すことを特徴とするものであ
る。
[Summary of the invention] That is, the method of the present invention is a method for manufacturing Nb5sn superconducting wire by an external diffusion method, in which a heat-resistant paint containing polyborosiloxane resin as a main component is applied and baked on the outer periphery of a tin plating layer, and then a diffusion heat treatment is performed. It is characterized by this.

本発明に使用する耐熱塗料としては、ポリボロシロキサ
ン樹脂にシリコーン樹脂、無機質充填剤を配合し、クレ
ゾール、N−メチル−2−ピロリドン(NMP)等の有
機溶剤に溶解あるいは分散させて得られるものがあげら
れる。この塗料の焼付により得られる塗膜は、約800
℃までの高温の熱処理にも耐えることができるものであ
る。なお、この塗料の焼付はスズの融点(232℃以下
)が望ましい。耐熱塗料に使用するポリボロシロキサン
樹脂は (a) S ’ X 4 、S I RX 3 、S 
I RR’ X 2 テ表わされるシラン化合物(但し
、上式中R,R’・□已・i。
The heat-resistant paint used in the present invention is obtained by blending a polyborosiloxane resin with a silicone resin and an inorganic filler, and dissolving or dispersing the mixture in an organic solvent such as cresol or N-methyl-2-pyrrolidone (NMP). can be given. The coating film obtained by baking this paint is approximately 800
It can withstand heat treatment at temperatures up to ℃. Note that the baking of this paint is preferably performed at the melting point of tin (232° C. or lower). The polyborosiloxane resins used in heat-resistant paints are (a) S'X4, SIRX3, S
A silane compound represented by I RR'

はアルキル基また□はアリール基、Xは水M基、アルコ
キシル基、アセトキリル基であって、Xが水酸基の場合
はその脱水縮合物も含む[Si X4についてはXが4
個とも水酸基である場合を除り])の1種または2種以
上と (b)ホウ酸、無水ホウ酸、ホウ酸金属塩、ハロゲン化
ホウ素、ホウ酸エステルの1種または2種以上とをSi
 ニホウ素の原子比で1=10〜10:1好ましくは5
:1〜1:5の範囲で50〜800℃で加熱して縮重合
させることにより得られる。
is an alkyl group or □ is an aryl group;
(b) one or more of boric acid, boric anhydride, boric acid metal salt, boron halide, and boric acid ester; Si
The atomic ratio of diboron is 1 = 10 to 10:1, preferably 5
:1 to 1:5 by heating at 50 to 800°C to perform condensation polymerization.

このとき必要に応じてアセチルアセトン、無水酢酸、ク
レゾール、テトラヒドロフラン、キシレン、NMP、ジ
メチルアセトアミドのような有機溶剤を用いてもよい。
At this time, organic solvents such as acetylacetone, acetic anhydride, cresol, tetrahydrofuran, xylene, NMP, and dimethylacetamide may be used as necessary.

しかして上記(a>、(b)成分ととともに下記の成分
を配合して反応させることにより、得られるポリボロシ
ロキサン樹脂の可どう性や耐水性を向上させることもで
きる。
However, by blending and reacting the following components with the above components (a> and (b)), the flexibility and water resistance of the resulting polyborosiloxane resin can be improved.

(C)メチシフ1ニルシリコーンオイル、ジメチルシリ
コーンオイル等のシリコーンオイル(d )芳香族アル
コール、脂肪族多価アルコール、フェノール類、芳香族
カルボン酸 (e )鉛、マンガン、コバルト、亜鉛、カルシウム等
の有機塩の混合物 (f)トリエタノールアミン、モノエタノールアミン、
ジェタノールアミン、フェニレンジアミン、エチレンジ
アミン、トリメチレンジアミン等の含窒素化合物 (C)〜(f)成分の配合量は、(a)成分と(b)成
分との合計11001m曇部あたり、(C)成分は5〜
100重量部、(d >の成分は5〜30重量部、(e
)成分は0.05〜1011部、<f>成分は、N原子
の数が(b)成分中のホウ素原子の数100あたり5〜
200となる量とすることが望ましい。上記(C)〜(
f)成分は、半袖でもしくは2種以上で用いられる。
(C) Silicone oils such as methysif-1-nyl silicone oil and dimethyl silicone oil (d) Aromatic alcohols, aliphatic polyhydric alcohols, phenols, aromatic carboxylic acids (e) Lead, manganese, cobalt, zinc, calcium, etc. Mixture of organic salts (f) triethanolamine, monoethanolamine,
The blending amounts of nitrogen-containing compounds (C) to (f) such as jetanolamine, phenylenediamine, ethylenediamine, and trimethylenediamine are as follows: (C) Ingredients are 5~
100 parts by weight, (d> components are 5 to 30 parts by weight, (e
) component is 0.05 to 1011 parts, and <f> component is such that the number of N atoms is 5 to 100 per 100 boron atoms in component (b).
It is desirable to set the amount to 200. Above (C) - (
f) Components may be used in short form or in combination of two or more types.

本発明において樹脂組成物に配合されるシリコーン樹脂
は市販のものが使用でき、例えば東芝シリコーン社製の
TSR116がある。このような純シリコーンの他シリ
コーンアルキッド、シリコーンポリエステル、シリコー
ンエポキシ等がある。
As the silicone resin blended into the resin composition in the present invention, commercially available silicone resins can be used, such as TSR116 manufactured by Toshiba Silicone Co., Ltd. In addition to pure silicone, there are silicone alkyds, silicone polyesters, silicone epoxies, and the like.

このものの配合量はポリボロシロキサン樹脂100重量
部あたり5〜400好ましくは10〜200重量部が適
している。この範囲未満では可とう性が劣り、この値を
越えると耐熱性が低下する。
The appropriate amount of this compound is 5 to 400 parts by weight, preferably 10 to 200 parts by weight, per 100 parts by weight of the polyborosiloxane resin. If it is less than this range, the flexibility will be poor, and if it exceeds this value, the heat resistance will be reduced.

さらにまた、無機質充填剤としては、雲母、タルク、酸
化アルミニウム、酸化ジルコニウム、酸化マグネシウム
、タングステン、ケイ酸アルミニウム、ケイ酸マグネシ
ウム、数種の金属酸化物を混合溶解したセラミックフリ
ット等がある。これらは単独で使用してもよく、ま、た
混合して使用しても同様の効果が得られる。これらの無
機質充填剤は天然産でもよく合成品でもよいが、いずれ
も粒径10μ−以下の微粉末が望ましい。このものの配
合量はポリボロシロキサン樹脂とシリコーン樹脂との合
計量100重量部あたり5〜300好ましくは5〜20
0m一部が適している。この値未満では耐熱性に劣り、
この値を越えると機械特性が低下する。
Furthermore, examples of the inorganic filler include mica, talc, aluminum oxide, zirconium oxide, magnesium oxide, tungsten, aluminum silicate, magnesium silicate, and ceramic frit prepared by mixing and dissolving several metal oxides. These may be used alone or in combination to obtain the same effect. These inorganic fillers may be natural or synthetic, but are preferably fine powders with a particle size of 10 μm or less. The amount of this compound is 5 to 300, preferably 5 to 20, per 100 parts by weight of the total amount of polyborosiloxane resin and silicone resin.
Part of 0m is suitable. Below this value, the heat resistance is poor;
If this value is exceeded, the mechanical properties will deteriorate.

本発明においては、スズめっき層の外周に耐熱塗料を塗
布焼付したのち、ボビン等に巻きつけて拡散熱処理を施
すが、この拡散熱処理条件は500〜800℃で20〜
200時間が適している。
In the present invention, after applying and baking a heat-resistant paint on the outer periphery of the tin plating layer, it is wrapped around a bobbin and subjected to diffusion heat treatment.
200 hours is suitable.

[発明の実施例] 次に本発明の実施例について説明する。[Embodiments of the invention] Next, examples of the present invention will be described.

(耐熱塗料の製造方法) ジフェニルジヒドロキシシラン432Q  (2モル)
、ホウ酸83o(1,3モル)、粘度(25℃)が10
センチストークスのジメチルシリコーンオイル256g
をフラスコに入れ、窒素雰囲気中で攪拌下に室温から4
00℃まで6時間を要して昇温させ、さらに400℃で
1時間加熱攪拌して縮重合反応を行なった。反応過程で
66(]の水と70(+の未反応の低分子量シリコーン
オイルが溜出除去された。
(Production method of heat-resistant paint) Diphenyldihydroxysilane 432Q (2 mol)
, boric acid 83o (1,3 mol), viscosity (25°C) 10
Centistokes dimethyl silicone oil 256g
into a flask and stirred in a nitrogen atmosphere from room temperature for 4 hours.
The temperature was raised to 00°C over 6 hours, and the mixture was further heated and stirred at 400°C for 1 hour to carry out a polycondensation reaction. During the reaction process, 66(] of water and 70(+) of unreacted low molecular weight silicone oil were distilled and removed.

このようにして得られたポリボロシロキサン樹脂は、常
温で無色固形状であり、収量は525gであった。この
樹脂の数平均分子量はポリスチレン換算で1500であ
り、700℃までの焼成残存率は35%であった。これ
をNMPに溶解させて不揮発分45・6%の樹脂溶液と
した。
The polyborosiloxane resin thus obtained was colorless and solid at room temperature, and the yield was 525 g. The number average molecular weight of this resin was 1500 in terms of polystyrene, and the residual rate after firing up to 700°C was 35%. This was dissolved in NMP to obtain a resin solution with a nonvolatile content of 45.6%.

このポリボロシロキサン樹脂溶液3339をシリコーン
樹脂(東芝シリコーン社製TSR116)300g、酸
化マグネシウム120gとともに、NMP300(+に
溶解させて耐熱塗料を製造した。
This polyborosiloxane resin solution 3339 was dissolved in NMP300 (+) together with 300 g of silicone resin (TSR116 manufactured by Toshiba Silicone Co., Ltd.) and 120 g of magnesium oxide to produce a heat-resistant paint.

実施例 銅パイプに純ニオブロッドを挿入し、六角形状に伸線し
た。これを295本束ねて、さらに銅パイプに挿入し、
1.0miφまで伸線して銅とニオブの断面積比が1,
38の線材を得た。これにスズを電気めっきした後仲線
し、スズめっき厚50μ蒙、30μlの2つの試料を作
製した。この試料のそれぞれに前述した耐熱塗料を塗布
し、炉長7゜4mの焼付炉を使用して焼付温度220℃
、線速11IlZ分で焼付けた。塗布焼付を6回繰返し
、さらに4回空焼した結果、被膜厚34μmの絶縁被膜
が形成された。これらの線材200mを径が約35CI
Iのステンレス製ボビンに巻付け、アルゴンガス雰囲気
中で550℃、48時間の熱処理を施した。その結果ス
ズの溶落ちや線間の粘着はなく、健全なブロンズマトリ
ックス線材を得ることができた。さらに、これを725
℃で6日間の熱処理を施すと、37.7μmのニオブフ
ィラメントの周囲にスズめっき厚が50μmの場合は約
6μm、スズめっき厚30μ−の場合は約4μ−のNb
3Sn層が生成された。この線材の超電動特性を測定し
たところめっき厚50μmの場合は630A/n2.3
0μmの場合は500A/n2 (共に7T)の臨界電
流密度が得られた。
Example A pure niobium rod was inserted into a copper pipe and drawn into a hexagonal shape. We bundled 295 of these and inserted them into a copper pipe.
When the wire is drawn to 1.0 miφ, the cross-sectional area ratio of copper and niobium is 1,
38 wire rods were obtained. This was electroplated with tin and then wired to produce two samples with a tin plating thickness of 50 μl and a tin plating thickness of 30 μl. Each of these samples was coated with the heat-resistant paint described above, and baked at a baking temperature of 220°C using a baking oven with an oven length of 7.4 m.
, and was baked at a linear speed of 11 IlZ minutes. As a result of repeating coating and baking six times and dry baking four more times, an insulating film with a film thickness of 34 μm was formed. The diameter of 200m of these wires is approximately 35CI.
It was wound around a stainless steel bobbin No. I and heat-treated at 550° C. for 48 hours in an argon gas atmosphere. As a result, we were able to obtain a sound bronze matrix wire with no tin burn-through or adhesion between wires. Furthermore, add this to 725
After heat treatment at ℃ for 6 days, approximately 6 μm of Nb is formed around a 37.7 μm niobium filament when the tin plating thickness is 50 μm, and approximately 4 μm when the tin plating thickness is 30 μm.
A 3Sn layer was produced. When we measured the superelectric properties of this wire, it was 630 A/n2.3 when the plating thickness was 50 μm.
In the case of 0 μm, a critical current density of 500 A/n2 (both 7 T) was obtained.

[発明の効果] 以上の実施例からも明らかなように、本発明方法による
耐熱塗料を塗布した外部拡散法によるNb5sn超電導
線の製造では、ブロンズ法に比べ伸線が容易で工程が少
なくて済み、また従来の外部拡散法に比べて高温でスズ
の拡散熱処理が可能である。また、線間の粘着が防止で
きるため長尺の熱処理が可能となり、その結果短時間で
長尺のNb3Sn超電導線を供給できるという利点があ
る。
[Effects of the Invention] As is clear from the above examples, in the production of Nb5sn superconducting wire by the external diffusion method coated with the heat-resistant paint according to the method of the present invention, wire drawing is easier and fewer steps are required than in the bronze method. Furthermore, tin diffusion heat treatment is possible at a higher temperature than the conventional external diffusion method. Furthermore, since adhesion between the wires can be prevented, long lengths can be heat treated, and as a result, there is an advantage that long lengths of Nb3Sn superconducting wire can be supplied in a short time.

また、耐熱塗料は熱処理後絶縁被膜として働くため、絶
縁層を新たに設ける必要もないという長所も有している
Furthermore, since the heat-resistant paint acts as an insulating film after heat treatment, it also has the advantage that there is no need to provide a new insulating layer.

第1頁の続き 1号昭和電線電纜株式会社内Continuation of page 1 No. 1 Showa Electric Wire and Wire Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)銅基マトリックス中にニオブフィラメントを多数
本埋め込んだ線材の外周に、スズをめっきし、これに拡
散熱処理を施してNb5Sn超電導線を製造する方法に
おいて、前記スズめっき層の外周にポリボロシロキサン
樹脂を主成分とする耐熱塗料を塗布焼付した後、拡散熱
処理を施すことを特徴とするNb3Sn超電導線の製造
方法。 〈2)耐熱塗料の焼付は、スズの融点以下で行なう特許
請求の範囲Nb5Sn超電導線の製造方法。
(1) In a method of manufacturing a Nb5Sn superconducting wire by plating tin on the outer periphery of a wire in which many niobium filaments are embedded in a copper-based matrix and subjecting it to diffusion heat treatment, the outer periphery of the tin plating layer is coated with polyborosilicate. A method for producing a Nb3Sn superconducting wire, which comprises applying and baking a heat-resistant paint containing siloxane resin as a main component, and then subjecting it to diffusion heat treatment. (2) A method for producing a Nb5Sn superconducting wire as claimed in the claim, wherein the baking of the heat-resistant paint is carried out at a temperature below the melting point of tin.
JP57055126A 1982-04-02 1982-04-02 Method of producing nb3sn superconductive wire Pending JPS58172814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055126A JPS58172814A (en) 1982-04-02 1982-04-02 Method of producing nb3sn superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055126A JPS58172814A (en) 1982-04-02 1982-04-02 Method of producing nb3sn superconductive wire

Publications (1)

Publication Number Publication Date
JPS58172814A true JPS58172814A (en) 1983-10-11

Family

ID=12990062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055126A Pending JPS58172814A (en) 1982-04-02 1982-04-02 Method of producing nb3sn superconductive wire

Country Status (1)

Country Link
JP (1) JPS58172814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519176U (en) * 1991-08-27 1993-03-09 株式会社吉野工業所 Creamy substance dispensing container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519176U (en) * 1991-08-27 1993-03-09 株式会社吉野工業所 Creamy substance dispensing container

Similar Documents

Publication Publication Date Title
US4476192A (en) Enameled wires having resistance to overload and process for producing the same
US5436409A (en) Electrical conductor member such as a wire with an inorganic insulating coating
DE3213247A1 (en) POLYBORSILOXANE COATING AND INSULATED ELECTRICAL LADDER
JPH03203129A (en) Manufacture of cable insulated with inorganic insulator
US6617284B1 (en) Superconductor composite material
JPS58172814A (en) Method of producing nb3sn superconductive wire
JPS58169812A (en) Superconductive insulated wire
JPS639326B2 (en)
JPS6237806A (en) Insulated wire
DE69502270T2 (en) Electrical conductor element such as a wire with an inorganic insulating coating
JPS6139692B2 (en)
JPS58171530A (en) Heat treatment of wire rod
JPS58170003A (en) Superconductive coil
JPH0423362B2 (en)
CA2142765C (en) Inorganic insulating member
SU943859A1 (en) Electro-insulating composition
JPH0155567B2 (en)
JPH02222511A (en) Manufacture of heat-resisting coil
JP2709592B2 (en) Heat-resistant insulated wire
JP3848449B2 (en) Manufacturing method of oxide superconducting wire
JPS58174271A (en) Manufacture of single-side insulator coated metallic tape
JPS63237314A (en) Manufacture of superconductive compound material
JPH07296648A (en) High heat resistant insulated wire
JPS6344243B2 (en)
JPS6342804B2 (en)