JPS58172577A - Electronic time piece - Google Patents

Electronic time piece

Info

Publication number
JPS58172577A
JPS58172577A JP5491982A JP5491982A JPS58172577A JP S58172577 A JPS58172577 A JP S58172577A JP 5491982 A JP5491982 A JP 5491982A JP 5491982 A JP5491982 A JP 5491982A JP S58172577 A JPS58172577 A JP S58172577A
Authority
JP
Japan
Prior art keywords
signal
circuit
frequency
phase
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5491982A
Other languages
Japanese (ja)
Inventor
Shinichi Watanabe
新一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP5491982A priority Critical patent/JPS58172577A/en
Publication of JPS58172577A publication Critical patent/JPS58172577A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses

Abstract

PURPOSE:To realize an electronic time piece capable of maximizing a high stability of a high frequency oscillation circuit with a low power consumption by supplying a high frequency oscillation signal to a high frequency switching circuit in an electronic time piece designed to obtain a reference time signal corrected by a high frequency signal. CONSTITUTION:A correction circuit 6 obtains the sum of frequency between a front stage division signal f71 and an interrupt pulse signal f3 and outputs a correction signal f5. In a comparator circuit 3, a high frequency switching circuit 31 and a switching control circuit 32 of a phase comparator circuit 4 (41) samples a high frequency signal fH as a correction signal fed from an input terminal P1 at the rising of the front stage division signal f71 as a sampling signal fed from an input terminal P2 and a phase difference signal preparation circuit 33 outputs a phase difference signal f4. The frequency is expressed by the formula 4. When a frequency deviation is determined with respect to 1Hz of the reference time signal, using f3=f4/2<9>, f71=fL/2<2> and fS=f6/2<13>, the formula 5 is given. This demonstrates that correction can be done by the high frequency oscillation signal fH.

Description

【発明の詳細な説明】 間基準信号を得る電子時計に於いて、高安定な高周波発
振回路を搭載し、この高安定発振信号により校正された
時間基準信号を得る高精度電子時計の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a high-precision electronic timepiece that is equipped with a highly stable high-frequency oscillation circuit and that obtains a time reference signal that is calibrated using the highly stable oscillation signal.

現在、電子時計は水晶振動子の採用により水晶時計とし
て広く普及している。このうち腕時計では32KFlz
台の音叉型水晶振動子を用い月間の進み遅れが数十秒程
度のものが普及している。近年この水晶時計を改良して
年間でも数秒、数十秒以内に入る電子時計が製品化ある
いは開発されている。これら高精度電子時計の改良法の
主なものに次の2方法が掲げられる。
Currently, electronic watches are widely used as crystal watches due to the adoption of crystal oscillators. Among these, 32KFlz for watches.
A device that uses a tuning fork type crystal oscillator and has a monthly lead/lag of several tens of seconds is in widespread use. In recent years, electronic clocks have been commercialized or developed that improve upon this crystal clock and can keep time within a few seconds or even tens of seconds a year. The following two methods are the main methods for improving these high-precision electronic watches.

(1)前記32KHz台の音叉型水晶振動子を用い、こ
のほぼ2次曲線となる周波数温度特性を、別に用意する
温度センサの出力により補正する。
(1) Using the tuning fork type crystal resonator of the 32 KHz range, the frequency-temperature characteristic, which is approximately a quadratic curve, is corrected by the output of a separately prepared temperature sensor.

c2)4MRz台のAT板水晶振動子の厚み滑り振動に
よる高安定でほぼ3次曲線となる良好な周波数温度特性
を有する振動子を用いる。
c2) Use a 4MRz AT board crystal oscillator that is highly stable due to thickness shear vibration and has good frequency-temperature characteristics that form an approximately cubic curve.

このうち後者−社エージングの面で良好なため高精度時
計には適しているが、高周波での発振、分周のだめの消
費電力が大きく、又良好な温度特性を持つ水晶振動子や
量産が難かしい。この点、前者は低周波なので消費電力
は小さく、量産的に安定している2次曲線となる周波数
温度特性を補正(以後温度補償と呼ぶ)すれば良いため
量産が可能である。
Of these, the latter is suitable for high-precision watches because it has good aging performance, but it consumes a lot of power for high-frequency oscillation and frequency division, and it is difficult to mass-produce crystal units with good temperature characteristics. That's funny. In this respect, since the former has a low frequency, power consumption is small, and mass production is possible because it is only necessary to correct (hereinafter referred to as temperature compensation) the frequency-temperature characteristic, which is a quadratic curve that is stable in mass production.

以上の観点から搭載する電池の容量に制限のある腕時計
において前者の方法による電子時計の利点は大きい。し
かし、この方法は温度補償量自体が大きいことから温度
補償の精度を上げることは難かしく、又温度セン7すの
エージングなどによる温度補償精度の悪化が避けられな
い。そこで前記4M[Tz台の如き高周波発振回路の出
力信号を校正用信号とし、前記32KHz台の如き低周
波発振回路の出力信号に依り前記校正用信号をサンプ1
ノングし、該サンプリングの結果により前記低周波発振
信号を分周して得られる時間基準信号を補正する方法が
本発明の出願人等により提案されている。
From the above point of view, the electronic timepiece using the former method has a great advantage in wristwatches with limited battery capacity. However, in this method, since the amount of temperature compensation itself is large, it is difficult to improve the accuracy of temperature compensation, and deterioration of temperature compensation accuracy due to aging of the temperature sensor 7 is unavoidable. Therefore, the output signal of the high frequency oscillation circuit such as the 4M[Tz range is used as a calibration signal, and the calibration signal is sampled based on the output signal of the low frequency oscillation circuit such as the 32KHz range.
The applicant of the present invention has proposed a method of correcting a time reference signal obtained by frequency-dividing the low-frequency oscillation signal based on the sampling result.

この方法を以下高周波校正方法と称する。This method is hereinafter referred to as a high frequency calibration method.

この高周波校、正方法は高精度時計の必須の条件である
良好なエージング特性を活かすと共に、高周波発振回路
のみ高周波動作として消費電流の増加を極力押えること
を可能とする。なお、この高周波校正方法によれば次に
示す効果ヲ泥生ずる。
This high-frequency calibration/correction method makes use of good aging characteristics, which is an essential condition for high-precision timepieces, and also allows only the high-frequency oscillation circuit to operate at high frequencies, thereby minimizing the increase in current consumption. Note that this high-frequency calibration method produces the following effects.

(1)高周波発振回路を間欠発振とし更に消費電力を小
さくすることができる。
(1) The high frequency oscillation circuit can be caused to perform intermittent oscillation, further reducing power consumption.

(2)  温度補償を施すとき、高周波水晶振動子の緩
やかな周波数温度特性の補正のため良好な温度補償精度
となる。
(2) When temperature compensation is performed, good temperature compensation accuracy is achieved due to the correction of the gentle frequency temperature characteristics of the high frequency crystal resonator.

この他にも、デジタル的な補正を可能とするため種々の
効果を有する。
In addition to this, it has various effects because it enables digital correction.

以上で説明の如く高周波校正方法は多くの利点を有する
が、前記高周波の校正用信号のサンプリングによる高周
波発振回路への悪影響が有9、この悪影響を無視しえる
程小さくする事は低消費電力を条件とする時、非常に困
難であった。このため高周波校正方法は高周波発振回路
を相当長い時間間隔での間欠発振とする応用が中心とな
り、その適用範囲が限定されていた。
As explained above, the high-frequency calibration method has many advantages, but the sampling of the high-frequency calibration signal has an adverse effect on the high-frequency oscillator circuit9. It was very difficult to set the conditions. For this reason, the high frequency calibration method has been mainly applied to a high frequency oscillation circuit in which intermittent oscillation is performed at considerably long time intervals, and its range of application has been limited.

本発明は、この高周波校正方法を用いる電子時計におけ
る、低周波発振回路の出力信号に依り高周波発振回路の
出力信号をサンプリングすることにより両発振回路の出
力信号を比較する比較回路において、サンプリングによ
る高周波発振回路への悪影響がほとんど無く、低消費電
力で、確実な比較結果の得られる比較回路を達成するも
のである。
The present invention provides a comparator circuit that samples the output signal of the high-frequency oscillation circuit based on the output signal of the low-frequency oscillation circuit and compares the output signals of both oscillation circuits in an electronic watch using this high-frequency calibration method. The objective is to achieve a comparison circuit that has almost no adverse effect on the oscillation circuit, consumes low power, and provides reliable comparison results.

以下図面に従って本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明になる位相比較回路を用いた電子時計の
実施例の回路ブロック図であり、第2図(A)、(B)
は第1図の位相比較回路の実施例の回路ブロック図で′
あり、第3図、第4図は第2図(A)、CB)の電圧波
形図である。
FIG. 1 is a circuit block diagram of an embodiment of an electronic timepiece using the phase comparator circuit according to the present invention, and FIGS. 2(A) and (B)
is the circuit block diagram of the embodiment of the phase comparator circuit in Figure 1.
3 and 4 are voltage waveform diagrams of FIG. 2 (A) and CB).

第1図の構成について説明する。The configuration shown in FIG. 1 will be explained.

1は低周波発振回路であり、その発振周波数fLは32
768Hzより若干低く設定されている。
1 is a low frequency oscillation circuit, and its oscillation frequency fL is 32
It is set slightly lower than 768Hz.

2は高周波発振回路であり、その発振周波数fBはトリ
マーコンデンサにより4194304H2K調整されて
いる。7は分周回路であり前記低周波発振回路1より低
周波発振信号fLを入力し前段分周信号’?+を出力す
る2段の前段分周回路71と、この前段分周信号f7+
と後述の比較回路6から割り込みパルス列言号f3を入
力信号とし補正信号fak出力する排他的論理和回路よ
りなる補正回路6と、この補正信号f6を入力し時間基
準信号f、として1秒信号を出力する13段の後段分周
回路72に、よりなる。8は時刻表示手段であり前記時
間基準信号f、により時刻表示を行なう。
2 is a high frequency oscillation circuit, the oscillation frequency fB of which is adjusted by 4194304H2K by a trimmer capacitor. 7 is a frequency dividing circuit which inputs the low frequency oscillation signal fL from the low frequency oscillation circuit 1 and outputs the pre-stage frequency divided signal '? A two-stage pre-stage frequency dividing circuit 71 that outputs +, and this pre-stage frequency dividing signal f7+
and a correction circuit 6 consisting of an exclusive OR circuit which takes the interrupt pulse train word f3 as an input signal from a comparison circuit 6 to be described later and outputs a correction signal fak, and inputs this correction signal f6 and generates a 1 second signal as a time reference signal f. It consists of a 13-stage rear-stage frequency dividing circuit 72 that outputs. Reference numeral 8 denotes a time display means for displaying the time based on the time reference signal f.

6は比較回路であり、入力端子P、より校正用の基準信
号として前記高周波発振回路2より高周波発振信号f!
Iが供給され入力端子P2よりサンプリング信、号とし
て前記低周波発振回路1の出力信号f、を前記前段分周
回路71で分周した前段分周信号f91が供給され出力
端子P、より両入力信号の位相差周波数を有する位相差
信号f4f出力する位相比較回路4と、この位相差信号
f4を入力信号とし割り込みパルス列信号f3を出力す
る9段のカウンタよりなる位相差カウンタ5によりなる
Reference numeral 6 denotes a comparator circuit which receives a high frequency oscillation signal f! from the high frequency oscillation circuit 2 as a reference signal for calibration from an input terminal P.
I is supplied from the input terminal P2, and a pre-stage divided signal f91 obtained by dividing the output signal f of the low frequency oscillation circuit 1 by the pre-stage frequency dividing circuit 71 is supplied as a sampling signal from the input terminal P2, and from the output terminal P, both inputs are supplied. It consists of a phase comparison circuit 4 which outputs a phase difference signal f4f having a phase difference frequency of the signal, and a phase difference counter 5 consisting of a nine stage counter which uses this phase difference signal f4 as an input signal and outputs an interrupt pulse train signal f3.

上記構成になる電子時計の動作を説明する。The operation of the electronic timepiece having the above configuration will be explained.

補正回路6は前段分周信号f7+と、割り込みパルス信
号f、との周波数和をとる公知のミキシング回路であり
その出力である補正信号f6の周波数は次式であられさ
れる。
The correction circuit 6 is a known mixing circuit that calculates the frequency sum of the pre-stage frequency-divided signal f7+ and the interrupt pulse signal f, and the frequency of the correction signal f6 which is its output is calculated by the following equation.

’6 −’?+   +’3            
         ・・・・・・・・・(1)ここで 
’?+”fL /2” 、fB=f6/2+sを用い、
時間基準信号のI Hzに対する周波数偏差を求めると
、 =fL/2IS十f、/213−1 □−1011,100,(2) となる。ここで割り込みパルス列信号f、の周波数をゼ
ロとすると■式は次式に変形される。
'6-'? ++'3
・・・・・・・・・(1) Here
'? +”fL/2”, using fB=f6/2+s,
The frequency deviation of the time reference signal with respect to IHz is calculated as follows: =fL/2ISf,/213-1 □-1011,100, (2). Here, if the frequency of the interrupt pulse train signal f is set to zero, the equation (2) is transformed into the following equation.

すなわち時間基準信号f8が低周波発振信号fLを15
段の分周回路で分周した信号となり、低周波発振回路1
、分周回路7、時刻表示手段8は通常の電子時計の動作
となる。
That is, the time reference signal f8 is 15 times higher than the low frequency oscillation signal fL.
The signal is frequency-divided by the frequency divider circuit in the second stage, and the low-frequency oscillator circuit 1
, the frequency dividing circuit 7, and the time display means 8 operate as a normal electronic watch.

構成で説明の如く低周波発振周波数fLは32768H
zより若干低く設定されており(3)式によると時間基
準信号f8の周波数誤差は若干マイナスとなる。比較回
路6はこの周波数誤差を補正するだめの(2)式におけ
る割り込みパルス列信号f、を作る回路となる。
As explained in the configuration, the low frequency oscillation frequency fL is 32768H
It is set slightly lower than z, and according to equation (3), the frequency error of the time reference signal f8 is slightly negative. The comparator circuit 6 is a circuit that generates the interrupt pulse train signal f in equation (2) to correct this frequency error.

比較回路3における位相比較回路4は構成で説明の如く
前段分周信号’71と高周波発振信号f8の位相差周波
数を有する位相差信号f4を出力するが、この周波数は
前段分周信号f7+が32768Hzより低く設定され
た低周波発振信号で、を分周した信号であることと、高
周波発振信号fHが4194304Hz丁度に設定され
ることから次式%式% ) この(4)式と ’3=f4/29 f用いるときC)
式は次式に変形される。
As explained in the configuration, the phase comparison circuit 4 in the comparison circuit 3 outputs a phase difference signal f4 having a phase difference frequency between the pre-stage frequency-divided signal '71 and the high-frequency oscillation signal f8, but this frequency is 32768 Hz in the pre-stage frequency-divided signal f7+. Since it is a low frequency oscillation signal set to a lower frequency and is a signal obtained by dividing the frequency of , and the high frequency oscillation signal fH is set to exactly 4194304Hz, the following formula % formula %) This formula (4) and '3=f4 /29 When using fC)
The equation is transformed into the following equation.

この(5)式により本実施例による電子時計は高周波発
振信号fMにより校正されることが示されたことになる
This equation (5) shows that the electronic timepiece according to this embodiment is calibrated by the high frequency oscillation signal fM.

第2図(A)の構成について説明する。The configuration of FIG. 2(A) will be explained.

41は位相比較回路であり入力端子P、より高周波発振
信号f8が供給され、入力端子P2よりサンプリング信
号として低周波発振信号fLを分周した前段分周信号’
71が供給され、出力端子P、より位相差信号f4を出
力する。
Reference numeral 41 denotes a phase comparator circuit to which a high frequency oscillation signal f8 is supplied from the input terminal P, and a pre-stage frequency divided signal ' which is obtained by dividing the low frequency oscillation signal fL as a sampling signal from the input terminal P2.
71 is supplied, and the output terminal P outputs a phase difference signal f4.

位相比較回路41の構成について説明する。The configuration of the phase comparison circuit 41 will be explained.

61は高周波開閉回路であり入力端子P、より高周波信
号fMを共に入力信号とし、もう片方の入力信号を開閉
制御信号S、2とそのインバータ311による反転信号
S3□とし、それぞれゝf位位相号U、0位相相号Vの
反転信号を出力する、それぞれ論理積ゲートとインバー
タ、論理和ゲートとインバータとみなされ、CMO8に
より構成されるNANDゲート312とNORゲート3
16と該NORゲート613の出力を反転しO位相相号
Vを出力するインバータ314によりなる。
Reference numeral 61 denotes a high-frequency switching circuit, which takes both the input terminal P and the higher frequency signal fM as input signals, and the other input signal is the switching control signal S, 2, and its inverted signal S3□ by the inverter 311, and the f-phase phase signal, respectively. A NAND gate 312 and a NOR gate 3, which are respectively regarded as an AND gate and an inverter, and an OR gate and an inverter, and are configured by CMO8, output an inverted signal of U, 0 phase signal V.
16 and an inverter 314 that inverts the output of the NOR gate 613 and outputs an O phase signal V.

62は開閉制御回路であり、前記1位相相号Uと0位相
相号vl入力信号とし反位相検出信号PDを出力するA
ND回路622と、この反位相P2から供給されるサン
プリング信号としての前段分周信号f7+の論理Oでセ
ットされサンプリング許可信号S8.を出力するNAN
D回路2個よりなるフリップフロップ34と、このサン
プリング許可信号S5.と入力端子P、からの前段分周
信号f7+を入力信号とし開閉制御信号S、2を出力す
るAND回路621よりなる。
62 is an opening/closing control circuit, which outputs an anti-phase detection signal PD as input signals of the 1 phase phase signal U and 0 phase signal vl.
The ND circuit 622 and the sampling enable signal S8. which is set at logic O of the pre-stage frequency divided signal f7+ as a sampling signal supplied from the anti-phase P2. NAN to output
A flip-flop 34 consisting of two D circuits and this sampling permission signal S5. and input terminal P, and an AND circuit 621 which receives the pre-stage frequency-divided signal f7+ from the input terminal P as an input signal and outputs the opening/closing control signal S,2.

33は位相差信号作成回路であり、前記高周波開閉回路
31から出力される2信号よりなる位相相信号Vの論理
0でリセットされる位相差信号f、を出力端子P、。K
出力するフリップフロップによりなる。
Reference numeral 33 denotes a phase difference signal generating circuit, which outputs a phase difference signal f, which is reset at logic 0 of the phase signal V made up of two signals outputted from the high frequency switching circuit 31, to a terminal P. K
It consists of a flip-flop that outputs.

次に上記構成による位相比較回路41の動作を第3図を
用いて説明する。
Next, the operation of the phase comparator circuit 41 having the above configuration will be explained using FIG. 3.

第3図において(イ)は高周波信号fH,(ロ)は前段
分周信号’71、(ハ)は1位相信号U1(ニ)は0位
相信号V、(ホ)は反位相検出信号PD、(へyはサン
プリング許可信号834、(ト)は開閉制御信号SSt
、(チ)は位相差信号f4の各波形図を回路遅れを部分
的に誇張してあられしである。
In FIG. 3, (a) is the high frequency signal fH, (b) is the pre-stage frequency division signal '71, (c) is the 1-phase signal U1, (d) is the 0-phase signal V, (e) is the anti-phase detection signal PD, (y is the sampling permission signal 834, (g) is the opening/closing control signal SSt
, (H) are waveform diagrams of the phase difference signal f4 with circuit delays partially exaggerated.

前述の如く前段分周信号’71は、32768Hzより
若干低く設定された低周波発振信号fLを2段の前段分
周回路71により分周した信号であるのでその周波数は
、8192 Hzより若干低い周波数となっており、又
高周波信号f[Iが4194304Hz丁度に設定され
ている。この、ことからfRは’?+の約512倍であ
りその位相関係は(イ)に示す高周波発振信号f!Iの
斜線で示す512個おきの信号に対しく口)に示す如く
前段分周信号’?1の立上りを示す”Is”*、・・・
・・・、t6時点は右へ移動する。
As mentioned above, the pre-stage frequency division signal '71 is a signal obtained by dividing the low frequency oscillation signal fL, which is set slightly lower than 32,768 Hz, by the two-stage pre-stage frequency divider circuit 71, so its frequency is slightly lower than 8,192 Hz. The high frequency signal f[I is set to exactly 4194304 Hz. From this, fR is '? + about 512 times, and the phase relationship is the high frequency oscillation signal f! shown in (a). For every 512 signals indicated by diagonal lines in I), the pre-stage frequency divided signal '? "Is"*, which indicates the rising edge of 1,...
..., moves to the right at time t6.

今、このtl、t2、・・・・・・、t6の各時点の直
前では(ロ)に示す前段分周信号f71の論理。なので
クリップフロップ34はセットされサンプリング許可信
号S5.は論理1となっているが、AND回路321は
前段分周信号’?+が論理。なので(ト)に示す開閉制
御信号ssx’に論理0としている。このときはNAN
D回路312、NOR回路316ともに閉じており、(
ハ)(ニ)に示す如く1位相信号U、Q位相信号Vとも
論理1となっている。これによりAND回路322は(
ポ)に示す反位相検出信号−PD−を論理1としている
Now, immediately before each time point tl, t2, . Therefore, the clip-flop 34 is set and the sampling permission signal S5. is logic 1, but the AND circuit 321 outputs the pre-stage frequency divided signal '? + is logic. Therefore, the opening/closing control signal ssx' shown in (g) is set to logic 0. At this time, NAN
Both the D circuit 312 and the NOR circuit 316 are closed, and (
C) As shown in (d), both the 1-phase signal U and the Q-phase signal V are logic 1. As a result, the AND circuit 322 (
The anti-phase detection signal -PD- shown in (p) is set to logic 1.

今、tI%  t2・・・・・・、t6の各時点で(ロ
)に示す前段分周信号f7+が立上るとき(へ)に示す
サンプリング許可信号S44は既に論理1なのでAND
回路321は(ト)に示す如く開閉制御信号S32を論
理1に反転させる。これによりN A N D 回路3
12、NOR回路313は開き、tI、tl、t、時点
では(イ)に示す高周波発振信号f、の論理1の範囲内
なので(ハ)に示すt8、t4時点では高周波発振信号
fHの論理0の範囲内なので(ニ)に示す如く0位相信
号■が論理0に反転する。
Now, when the pre-stage frequency division signal f7+ shown in (b) rises at each time point of tI% t2..., t6, the sampling permission signal S44 shown in (f) is already logic 1, so AND
The circuit 321 inverts the opening/closing control signal S32 to logic 1 as shown in (g). As a result, N A N D circuit 3
12. The NOR circuit 313 is opened, and at time tI, tl, t, the high frequency oscillation signal f shown in (A) is within the range of logic 1, so at time t8 and t4 shown in (C), the high frequency oscillation signal fH is logic 0. Since it is within the range of , the 0 phase signal ■ is inverted to logic 0 as shown in (d).

AND回路322はこの両相相信号U、又はVの反転に
より(ホ)に示す反位相検出信号PDを販〃 論理0とするためフリップフロップ34はリセットされ
(へ)に示すサンプリング許可信号S、4は論理Oに反
転する。これによりAND回路621は(ト)に示す開
閉制御信号S3□を再度反転させ論理0とするため、N
AND回路612、NOR回路316は再度閉鎖され(
ハ)、(ニ)に示す如く両相相信号U%Vともに論理1
に反転する。
The AND circuit 322 generates the anti-phase detection signal PD shown in (e) by inverting the two-phase phase signal U or V. In order to make the logic 0, the flip-flop 34 is reset and the sampling permission signal S shown in (e) is generated. 4 is inverted to logic O. As a result, the AND circuit 621 inverts the opening/closing control signal S3□ shown in (g) again and makes it logic 0, so N
AND circuit 612 and NOR circuit 316 are closed again (
As shown in c) and (d), both phase signals U%V are logic 1.
to be reversed.

以上により高周波開閉回路61と開閉制御回路32は入
力端子P2より供給されるサンプリング信号としての前
段分周信号’?+の立上りで入力端子P1 よ、り供給
される校正用信号としての高周波相信号Uとして下に凸
のパルス信号を出力し、又論理0のときはO位相信号V
として下に凸のパルス信号を出力する回路であることが
示された。位相差信号作成回路33は、この1位相信号
Uのパルス信号でセットされO位相信号Vのパルス信号
によりリセットされ、(チ)に示す位相差信号f4禽出
力することになる。
As described above, the high frequency switching circuit 61 and the switching control circuit 32 receive the pre-stage frequency divided signal '?' as a sampling signal supplied from the input terminal P2. At the rising edge of +, a downward convex pulse signal is output as a high frequency phase signal U as a calibration signal supplied from the input terminal P1, and when the logic is 0, an O phase signal V is output.
It was shown that the circuit outputs a downwardly convex pulse signal. The phase difference signal generating circuit 33 is set by the pulse signal of the 1-phase signal U and reset by the pulse signal of the O-phase signal V, and outputs the phase difference signal f4 shown in (H).

第2図(B)の構成について説明する。The configuration of FIG. 2(B) will be explained.

42は位相比較回路であり第2図(A)で説明した位相
比較回路41における位相差信号作成回路33を改良し
たもので、その他については全く同じなので説明を省略
する。
42 is a phase comparison circuit which is an improved version of the phase difference signal generation circuit 33 in the phase comparison circuit 41 explained in FIG.

位相比較回路42において35は位相差信号作信号S、
とその反転信号をインバータ362を介して出力するク
リップフロンプロ61と、データ入力端子りより供給さ
れる前記現位相信号S、をクロック入力端子Tより供給
される前記前段分周信号’71の立上りでサンプリング
し出力端子Q、点より前位相信号S、とその反転信号を
出力するフリップフロップ366よりなるシフトレジス
タ66と、前記現位相信号S、と前位相信号S2を入力
とするNAND回路371とこの現位相信号S、の反転
信号と前位相信号S、の反転信号を入力とするNAND
回路672と前記NAND−何路371の出力信号の論
理Oでセットされ前記NAND回路372の出力信号の
論理0でリセットされるフリップフロップ373よりな
る位相差安定化回路37により構成される。
In the phase comparator circuit 42, 35 is a phase difference signal generating signal S,
and the clip front processor 61 which outputs the inverted signal thereof via the inverter 362, and the current phase signal S supplied from the data input terminal at the rising edge of the pre-stage frequency divided signal '71 supplied from the clock input terminal T. a shift register 66 consisting of a flip-flop 366 that samples at the output terminal Q and outputs the previous phase signal S and its inverted signal; and a NAND circuit 371 that receives the current phase signal S and the previous phase signal S2 as inputs. NAND with inputs of the inverted signal of this current phase signal S and the inverted signal of the previous phase signal S.
The phase difference stabilizing circuit 37 includes a circuit 672 and a flip-flop 373 which is set by the logic 0 of the output signal of the NAND circuit 371 and reset by the logic 0 of the output signal of the NAND circuit 372.

上記構成になる位相比較回路42の動作を第4図を用い
て説明する。
The operation of the phase comparator circuit 42 having the above configuration will be explained using FIG. 4.

第4図において(イ)は1位相信号U、(ロ)はO位相
信号V、(ハ)は現位相信号S1、(ニ)は前位相信号
S2、(ホ)は位相差信号f4の各波形図を回路遅れを
部分的に誇張してあられしである。
In Fig. 4, (a) is the 1-phase signal U, (b) is the O-phase signal V, (c) is the current phase signal S1, (d) is the previous phase signal S2, and (e) is the phase difference signal f4. It's a shame that the circuit delay is partially exaggerated in the waveform diagram.

高周波開閉回路3,1と開閉制御回路62により高周波
信号fMは前段分周信号f7+の立上りです又論理0の
ときはO位相信号Vに下に凸のパルス信号が出力され、
通常はこの位相信号U、Vのパルス信号は連続し、かつ
交互に出力される。しかし、実験によれば位相差が小さ
く設定されるときや、外乱などにより、位相差以上の位
相信号U、■のパルス信号の繰返しが行なわれることが
多い。
The high-frequency switching circuits 3 and 1 and the switching control circuit 62 generate the high-frequency signal fM at the rising edge of the pre-stage divided signal f7+, and when the logic is 0, a downwardly convex pulse signal is output as the O-phase signal V.
Normally, the pulse signals of the phase signals U and V are output continuously and alternately. However, according to experiments, when the phase difference is set to be small or due to external disturbances, the pulse signals of the phase signals U and (2), which are larger than the phase difference, are often repeated.

本実施例ではこのうち低周波発振周波数fLを3276
8 Hzよりかなシ小さくすることで位相差を大きくす
ることができるため位相差小による動作不良を避けるこ
とができる。
In this example, the low frequency oscillation frequency fL is 3276
Since the phase difference can be increased by making the frequency smaller than 8 Hz, malfunctions due to a small phase difference can be avoided.

信号Vにパルス信号が連続で、かつ交互に出力される途
中のt、時点に外乱などにより1位相信号Uにパルス信
号が出力された例を示す。このとき信号Vによりセント
、リセットされ(ハ)に示す如く現位相信号S、を出力
し、さらにフリップフロップ663はこの現位相信号S
1を前段分周信号’71によりサンプリングしく二)に
示す如く現位相信号をシフトした前位相信号S、を出力
する。
An example is shown in which a pulse signal is outputted to the one-phase signal U due to a disturbance or the like at time t during which pulse signals are continuously and alternately outputted to the signal V. At this time, it is reset by the signal V and outputs the current phase signal S as shown in (c), and furthermore, the flip-flop 663 outputs the current phase signal S.
1 is sampled by the pre-stage frequency division signal '71, and the pre-phase signal S, which is obtained by shifting the current phase signal, is output as shown in 2).

フリップフロップ373は、(ハ)(ニ)に示す現位相
信号S1、前位相信号S、が共に論理1のときセットさ
れ、共に論理0のときリセットされるため(ホ)に示す
如き位相差信号が出力される。
The flip-flop 373 is set when the current phase signal S1 and the previous phase signal S shown in (c) and (d) are both logic 1, and reset when both are logic 0, so that the flip-flop 373 generates a phase difference signal as shown in (e). is output.

すなわちt、における外乱の影響が無視されたことにな
る。
In other words, the influence of the disturbance at t is ignored.

上記の如く本発明によれば、低周波発振回路と高周波発
振回路を備え、高周波信号で校正された時間基準信号を
得る電子時計に於いて、両発掘回路の出力信号を比較す
る比較回路を、高周波開閉回路と開閉回路と位相差信号
作成回路とによりなる位相比較回路を有する構成とする
ことにより、高周波発振信号をそのまま高周波開閉回路
に供給することにより低消費電力化ができ、さらにこの
昼周波開閉回路に於いて高周波発振信号をCMOSゲー
トの入力とすることから高入力インピーダンスが得られ
、高周波発振回路へのサンプリングによる悪影響を、は
とんど無くすることを可能とし、さらにこのCMOSゲ
ートを一対の論理積ゲートと論理和ゲートにより構成し
たことにより、開閉制御回路によシこの両ゲートを低周
波発振回路の出力信号に依るサンプリング信号で開放制
御し、通過する位相情報としての位相信号を得た後、す
ぐ両ゲートを閉鎖制御することが可能となり、確実な位
相比較が常時高周波動作するエレメント無しで実現され
、低消費電力化が達成される。さらに位相差信号作成回
路を位相信号を入力とする2段のシフトレジスタと位相
差安定化回路とにより構成し、位相信号の連続2回の情
報により位相差信号を作成することにより、より確実な
位相差信号が得られる。
As described above, according to the present invention, in an electronic watch that includes a low frequency oscillation circuit and a high frequency oscillation circuit and obtains a time reference signal calibrated with a high frequency signal, a comparison circuit that compares the output signals of both excavation circuits is provided. By adopting a configuration that includes a phase comparison circuit consisting of a high-frequency switching circuit, a switching circuit, and a phase difference signal generation circuit, power consumption can be reduced by supplying the high-frequency oscillation signal as it is to the high-frequency switching circuit. By inputting the high frequency oscillation signal to the CMOS gate in the switching circuit, a high input impedance can be obtained, making it possible to almost eliminate the adverse effects of sampling on the high frequency oscillation circuit. By constructing a pair of AND gate and OR gate, the opening/closing control circuit controls the opening and closing of both gates using a sampling signal based on the output signal of the low frequency oscillation circuit, and the phase signal as the phase information passing through is controlled by the opening/closing control circuit. After obtaining the signal, both gates can be controlled to close immediately, and reliable phase comparison can be achieved without the need for elements that operate at high frequencies all the time, resulting in lower power consumption. Furthermore, the phase difference signal creation circuit is configured with a two-stage shift register that receives the phase signal as input, and a phase difference stabilization circuit, and by creating a phase difference signal using information from two consecutive phase signals, more reliable A phase difference signal is obtained.

以上に示す本発明によれば高周波発振回路の高安定度を
最大限に生かす電子時計を低消費電力で実現することを
可能とする。とれにより高精度電子時計の改良に寄与す
るところ大である。
According to the present invention described above, it is possible to realize an electronic timepiece that takes full advantage of the high stability of a high frequency oscillation circuit with low power consumption. This will greatly contribute to the improvement of high-precision electronic watches.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した電子時計の実施例の回路ブロ
ック図。 第2図(A)、(B)は本発明になる位相比較回路の実
施例の回路ブロック図。 第3図、第4図は各々第2図(A)、(B)の電圧波形
図。 1・・・・・・・・・低周波発振回路、2・・・・・・
・・・高周波発振回路、3・・・・・・・・・比較回路
、 4.41.42・・・・・・位相比較回路、31・・・
・・・高周波開閉回路、 32・・・・・・開閉制御回路、 36.35・・・・・・位相差信号作成回路。 第 1 図 第2図 ;パ3図 第4図
FIG. 1 is a circuit block diagram of an embodiment of an electronic timepiece to which the present invention is applied. FIGS. 2A and 2B are circuit block diagrams of an embodiment of the phase comparator circuit according to the present invention. FIGS. 3 and 4 are voltage waveform diagrams of FIGS. 2(A) and (B), respectively. 1...Low frequency oscillation circuit, 2...
...High frequency oscillation circuit, 3...Comparison circuit, 4.41.42...Phase comparison circuit, 31...
...High frequency switching circuit, 32... Switching control circuit, 36.35... Phase difference signal creation circuit. Figure 1 Figure 2; Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 基準信号を発生する低周波発振回路、前記基準信号を分
周して時間基準信号を作成する分周回路、前記時間基準
信号により時刻表示を行う時刻表示手段を備え、さらに
校正用信号を発生する高周波発振回路、前記低周波発振
回路と高周波発振回路との出力信号を比較する比較回路
、及び前記比較回路の出力信号により前記時間基準信号
を補正するための補正回路とを備えることにより高周波
発振回路で校正された時間基準を得る電子時計に於いて
、前記比較回路は前記高周波発振回路の高周波信号を共
に入力信号とする一対の論理積ゲートと論理和ゲートを
有し、前記高周波信号の開閉を行うことによシ2信号よ
りなる位相信号を出力する高周波開閉回路と、前記高周
波開閉回路を前記低周波発振回路の出力信号に依る信号
で開放制御し前記位相信号に依り閉鎖制御する開閉制御
回路と、前記位相信号により位相差による周波数を有す
る位相差信号を作成する位相差信号作成回路とを有する
位相比較回路を有することを特徴とする電子時計。
A low frequency oscillation circuit that generates a reference signal, a frequency dividing circuit that divides the frequency of the reference signal to create a time reference signal, and a time display means that displays time using the time reference signal, and further generates a calibration signal. A high frequency oscillation circuit comprising a high frequency oscillation circuit, a comparison circuit for comparing output signals of the low frequency oscillation circuit and the high frequency oscillation circuit, and a correction circuit for correcting the time reference signal using the output signal of the comparison circuit. In the electronic clock that obtains a time reference calibrated by the electronic clock, the comparison circuit has a pair of AND gate and OR gate that both receive the high frequency signal of the high frequency oscillation circuit as input signals, and controls the opening and closing of the high frequency signal. a high-frequency switching circuit that outputs a phase signal made up of two signals; and a switching control circuit that controls opening and closing of the high-frequency switching circuit using a signal based on the output signal of the low-frequency oscillation circuit and controlling the closing based on the phase signal. and a phase difference signal creation circuit that creates a phase difference signal having a frequency according to the phase difference from the phase signal.
JP5491982A 1982-04-02 1982-04-02 Electronic time piece Pending JPS58172577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5491982A JPS58172577A (en) 1982-04-02 1982-04-02 Electronic time piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5491982A JPS58172577A (en) 1982-04-02 1982-04-02 Electronic time piece

Publications (1)

Publication Number Publication Date
JPS58172577A true JPS58172577A (en) 1983-10-11

Family

ID=12984015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5491982A Pending JPS58172577A (en) 1982-04-02 1982-04-02 Electronic time piece

Country Status (1)

Country Link
JP (1) JPS58172577A (en)

Similar Documents

Publication Publication Date Title
US4427302A (en) Timekeeping signal source for an electronic timepiece
KR20200093012A (en) Time synchronization device, electronic device, time synchronization system and time synchronization method
JP2624176B2 (en) Electronic clock and time correction method
JPH1168559A (en) Phase-locked loop circuit
JPS6035637B2 (en) electronic clock
US6747374B2 (en) Circuit for correcting deviation in oscillating frequency
JPS58172577A (en) Electronic time piece
JPS5945261B2 (en) Digital frequency adjustment circuit
US4241435A (en) Electronic timepiece oscillator circuit
JPS6147580A (en) Electronic timepiece with temperature compensating function
JPH04165716A (en) Frequency control circuit
JPS5883296A (en) Electronic time piece
JPS6122305Y2 (en)
JPS585395B2 (en) Suishiyoudokei no Kankiyuhoushiki
JPS6231848B2 (en)
JPS62230224A (en) Phase synchronizing oscillation circuit
JPS6124957Y2 (en)
JPS5841379A (en) Electronic time piece with temperature compensation
JPS6024432B2 (en) Electronic clock frequency adjustment device
JPS62131630A (en) Pll circuit
JPH0518286B2 (en)
JPS5860279A (en) Electronic time piece
JPS5890193A (en) Electronic clock
JPS6333739B2 (en)
JPS61112407A (en) Electronic clock with temperature compensation