JPS58172434A - Air-fuel ratio control device of internal-combustion engine - Google Patents

Air-fuel ratio control device of internal-combustion engine

Info

Publication number
JPS58172434A
JPS58172434A JP5466282A JP5466282A JPS58172434A JP S58172434 A JPS58172434 A JP S58172434A JP 5466282 A JP5466282 A JP 5466282A JP 5466282 A JP5466282 A JP 5466282A JP S58172434 A JPS58172434 A JP S58172434A
Authority
JP
Japan
Prior art keywords
sensor
started
combustion engine
internal combustion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5466282A
Other languages
Japanese (ja)
Other versions
JPS6259216B2 (en
Inventor
Susumu Nogami
野上 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5466282A priority Critical patent/JPS58172434A/en
Publication of JPS58172434A publication Critical patent/JPS58172434A/en
Publication of JPS6259216B2 publication Critical patent/JPS6259216B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1481Using a delaying circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To have an always stable idling operation by such an arrangement that the feedback control of fuel injection is commenced, when activation of an O2 sensor is judged, at the time of starting with low cooling-water temperature and that the feedback control is commenced immediately after or a certain while after the starting at the time of tarting with a higher temperature. CONSTITUTION:If the engine is started in the condition that the cooling-water temperature sensed by a thermo-sensor 15 is below a preset reference valve (for ex., below 40 deg.), a control circuit 16 judges activation of an O2 sensor 1 from the change of the sensor 1 from lean to rich signal. When the activation of O2 sensor 1 is thus judged, a built-in integration circuit is started to make feedback control of a fuel injection valve 7 on the basis of output from the O2 sensor 1. When the engine is started in the condition, on the other hand, that the cooling- water temperature is above reference valve, signal is sent regardless of the condition of O2 sensor 1 after a certain while which is set by a timer circuit, to make feedback control of the fuel injection valve 7 in such a manner as mentioned above.

Description

【発明の詳細な説明】 本発明は車両用内燃機関の排気系に備えられた酸素セン
サを用いて排ガス中の残存酸素iを測定し、′その結果
に応じて燃料噴射量を帰還制御するようにした内燃機関
の空燃比制御IIIの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention measures residual oxygen i in exhaust gas using an oxygen sensor installed in the exhaust system of a vehicle internal combustion engine, and feedback controls the fuel injection amount according to the result. This invention relates to improvements in air-fuel ratio control III for internal combustion engines.

近年排ガス規制の強化にともなって様々に排ガス浄化対
策が提案され、その中の1つに触媒を用いた排ガス浄化
法が挙げらる。この方法は排ガスの三成分である11c
、Go、NOxを、酸化触媒、還元触媒を用いて酸化若
しくは還元して除去するもので、前記排ガスの三成分を
まんべんなく効果的に除去するためには、排ガス中の残
存酸素量を一定の範囲に維持する必要があり、換言すれ
ば、内燃機関に送られる混合気の空気と燃料の重量比、
即ら空燃比(A/F)を一定の範囲に維持する必要があ
った。
In recent years, with the tightening of exhaust gas regulations, various exhaust gas purification measures have been proposed, one of which is an exhaust gas purification method using a catalyst. This method uses the three components of exhaust gas, 11c.
, Go, and NOx are removed by oxidation or reduction using an oxidation catalyst and a reduction catalyst.In order to evenly and effectively remove the three components of the exhaust gas, the amount of residual oxygen in the exhaust gas must be kept within a certain range. In other words, the air-to-fuel weight ratio of the mixture sent to the internal combustion engine,
That is, it was necessary to maintain the air-fuel ratio (A/F) within a certain range.

この空燃比を一定の範囲に維持する方法としては、酸素
センサを用いて排ガス中の残存ia*を検知し、その結
果によって内燃機関に送られる混合気の空燃比を帰還制
御するようにした内燃機関の空燃比制御装置が提案され
ている。
One way to maintain this air-fuel ratio within a certain range is to use an oxygen sensor to detect residual ia* in the exhaust gas, and use the results to perform feedback control on the air-fuel ratio of the air-fuel mixture sent to the internal combustion engine. An air-fuel ratio control device for an engine has been proposed.

しかしながら、従来の内燃機関の空燃比制御装置は、第
1図の実線で示すグラフのように始動当初酸素センサが
活性化されていない状態では、出力電圧が低く、(この
状態での出力信号をリーン信号と呼ぶ)徐々に出力電圧
が高まり、予め設定された比較電圧レベルを始めて越え
た時(この状態での出力信号をリッチ信号と呼ぶ)に酸
素センサが活性化したものと判別し、制御回路での帰還
制御を開始するように構成されているため、例えば高速
走行後等、内燃機関(以下エンジンと呼ぶが充分高温に
なった状態で停止し、再始動させた場合は、燃料温度が
エンジンの冷却水の濃度と略同等で比較的高温状態とな
っている。このように温度が約60℃以上の領域では燃
料配管中にベーパーが発生し易くなっており、ベーパー
が発生するとそのガス化した燃料によって必要量の燃料
が供給されず、空燃比は薄くなっており、酸素センサの
出力は燃料が薄い状態、即ちリーン信号を出力する。エ
ンジンがこの状態のままアンドル運転状態で放置される
と酸素センサの出力は第1図の破線で示すグラフのよう
にリーン信号のまま維持され、前述のように酸木センサ
がリーン信号からリッチ信号になることによって11!
索センサの活性化を判別して帰還制御を開始するように
したシステムでは、いつまでも帰還制御を開始すること
ができず、燃料が薄い状態、即ちリーン状態のまま運転
され、ミスファイア(失火)等が発生し易くなり、アイ
ドルが極めて不安定となる問題点があった。
However, in the conventional air-fuel ratio control device for an internal combustion engine, the output voltage is low when the oxygen sensor is not activated at the time of startup, as shown by the solid line in Figure 1. When the output voltage gradually increases (referred to as a lean signal) and exceeds a preset comparison voltage level for the first time (the output signal in this state is referred to as a rich signal), it is determined that the oxygen sensor has been activated, and control is performed. Since the circuit is configured to start feedback control, if the internal combustion engine (hereinafter referred to as the engine) is stopped when it has reached a sufficiently high temperature, for example after driving at high speed, and then restarted, the fuel temperature will increase. The temperature is approximately the same as the concentration of the engine's cooling water, making it a relatively high temperature state.As shown above, in an area where the temperature is approximately 60°C or higher, vapor is likely to occur in the fuel pipes, and when vapor occurs, the gas Due to the depleted fuel, the required amount of fuel is not supplied, and the air-fuel ratio becomes lean, and the oxygen sensor outputs a lean signal, indicating that the fuel is lean.If the engine is left in idle operation in this state, Then, the output of the oxygen sensor remains as a lean signal as shown by the broken line in Figure 1, and as mentioned above, the oxygen sensor changes from a lean signal to a rich signal, resulting in 11!
In a system that starts feedback control by determining the activation of the fuel sensor, it is impossible to start feedback control forever, and the system continues to operate in a lean state, resulting in misfires and other problems. This has led to the problem that the idle speed becomes extremely unstable.

本発明は、エンジンの冷却水温を検出し、該冷却水温が
予め設定した温度以下、即ち低温状態での始動時はその
まま酸素センサの活性化判別により燃料噴射の帰還制御
を開始し、又冷却水温が予め設定した温度以上、即ち高
温状態での始動時は酸素センサの状態にかかわらず、始
動直後又は予め設定した時間だけ経過後に燃料噴射の帰
還−制御を開始するようにし、前記従来の問題点を解消
した内燃機関の空燃比制御@置を提供しようと(るもの
である。
The present invention detects the cooling water temperature of the engine, and when the cooling water temperature is lower than a preset temperature, that is, when starting in a low temperature state, feedback control of fuel injection is started by determining the activation of the oxygen sensor. When starting at a temperature higher than a preset temperature, that is, at a high temperature, fuel injection feedback control is started immediately after the start or after a preset time has elapsed, regardless of the state of the oxygen sensor, thereby solving the problems of the conventional method. The purpose of this invention is to provide an air-fuel ratio control system for an internal combustion engine that eliminates this problem.

以下、第2乃至第4図により本発明の実施例について説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 2 to 4.

先ず第2図において、1はII素センサ、2はエンジン
の排ガスが出力される排気マニホールド、3は図示しな
いカムによって開閉され、排ガスの流出を制御する排気
バルブ、4は同じく混合気のシリンダ5内への流入を開
閉制御する吸気バルブ、6は点火プラグ、7は燃料の噴
射を行う燃料噴射弁、8は後記サージタンク9がら分岐
して各シリンダ5へ吸入空気を導く吸気マニホールド、
9は吸入空気を各シリンダ5に分岐するサージタンクで
あり、このサージタンク9は吸入空気の各シリンダ5内
への流入が、吸入バルブ4で制−されることにより空気
の流れが波打つことを防止するものである。そして10
はエンジンの吸入空気量をコントロールするスロットル
バルブ、11はエンジンの吸入空気量をメジャリングプ
レート12の変位最によって検知するエア70−メータ
、13は点火プラグ6へ点火用高圧電流を送るイグニッ
ションコイルを含むイグナイタ、14はピストン、15
はエンジンの冷却水温を検知づ゛る温度センサ、16は
空燃比制御回路そして、17は始動スイッチである。
First, in FIG. 2, 1 is an II elementary sensor, 2 is an exhaust manifold from which engine exhaust gas is output, 3 is an exhaust valve that is opened and closed by a cam (not shown) to control the outflow of exhaust gas, and 4 is a cylinder 5 that also contains the air-fuel mixture. 6 is a spark plug; 7 is a fuel injection valve that injects fuel; 8 is an intake manifold that branches from the surge tank 9 described later and guides intake air to each cylinder 5;
Reference numeral 9 denotes a surge tank that branches the intake air to each cylinder 5, and this surge tank 9 prevents the air flow from undulating by restricting the intake air into each cylinder 5 by the intake valve 4. It is intended to prevent and 10
11 is an air meter that detects the intake air amount of the engine by the displacement of the measuring plate 12; and 13 is an ignition coil that sends high voltage current for ignition to the spark plug 6. an igniter including 14 a piston; 15
16 is an air-fuel ratio control circuit, and 17 is a start switch.

更に、本実施例の空燃比制御回路16の構成の要部を第
3図のブロック図によって示すと、前記温度センサ15
による冷却水温度の信号は比較手段に相当する比較回路
18に入力され、予め設定された基準値以上であれば当
該−を示す出力信号をアンドゲート19へ送り、又始動
スイッチ17によるエンジンスタート指令の信号はタイ
マー回路20へ入力し、予め設定された時間丁だけ経過
後に当該−を示づ出力信号を前記アンドゲート19へ送
り、更に酸素センサ1による信号は判別手段に相当する
判別回路21に入力され、該信号が予め設定された値以
上になると酸素センサ1が活性化されたものと判別した
旨の出)>(ffi号をオアゲート22に送り、又前記
アンドゲート19の出力もAアゲート22に入力され、
これらのいずれかがオン信号を入力すれば該オアゲート
22が開かれ、燃料増減量補正用の積分回路23に16
号を送ることによって燃料噴射の帰還制御を開始するよ
うになされている。
Furthermore, when the main parts of the configuration of the air-fuel ratio control circuit 16 of this embodiment are shown in the block diagram of FIG.
The cooling water temperature signal is input to a comparison circuit 18 corresponding to comparison means, and if it is higher than a preset reference value, an output signal indicating - is sent to the AND gate 19, and an engine start command is issued by the start switch 17. The signal is input to the timer circuit 20, and after a preset period of time has elapsed, an output signal indicating the negative is sent to the AND gate 19, and the signal from the oxygen sensor 1 is sent to the discriminating circuit 21 corresponding to discriminating means. When the signal is input and the signal exceeds a preset value, it is determined that the oxygen sensor 1 has been activated. 22,
If any of these inputs an ON signal, the OR gate 22 is opened, and the 16
Feedback control of fuel injection is started by sending a signal.

従って、温度センサ15によって検出される冷却水温度
が予め設定された基準値以下、例えば40℃以下であり
、この状態でエンジンがスタートすると、制御回路は第
1図の実線でしめずグラフのように#I素センサ1のリ
ーン信号からリッチ信号への変化によって酸素センサ1
の活性化を判別して、積分回路23を始動して、燃料噴
射の帰還illを開始し、又冷却水温度が予め設定され
た基準値以上、例えば40℃以上であり、この状態で始
動スイッチ17によるスタート信号が入力すると第4図
に示すようにタイマー回路20が始動し、1時間経過後
にアンドゲート19が開き、酸素センサ1の状態にかか
わらず積分回路23に信号を送って燃料噴射の帰還制御
を開始し、^澹状態で811県センサ1がリーン信号ヲ
羨リッチ信号に変化しなくても自動的に空燃比の帰還制
御を行うことができる。
Therefore, if the coolant temperature detected by the temperature sensor 15 is below a preset reference value, for example 40°C or below, and the engine is started in this state, the control circuit will not be closed by the solid line in Fig. 1, but as shown in the graph. Oxygen sensor 1 changes from lean signal to rich signal of oxygen sensor 1.
The integration circuit 23 is started to start the fuel injection feedback ill, and the cooling water temperature is above a preset reference value, for example 40°C or above, and in this state, the start switch is turned off. When the start signal from 17 is input, the timer circuit 20 starts as shown in FIG. Feedback control is started, and even if the 811 prefecture sensor 1 does not change from a lean signal to a rich signal in the ^^ state, it is possible to automatically perform feedback control of the air-fuel ratio.

尚、本実施例ではタイマー回路20を用いて、スタート
信号が入力してから1時間経過後に帰還制御を開始する
ようになされているが、スタート信号が人力した直後に
帰還制御を開始するようにしても良く、又冷却水温度が
例えば40℃〜70℃の範囲内であればタイマー回路に
よって例えば10秒間の遅延を持たせ、70℃以上であ
ればスタートと同時に帰還制御を開始するようにしても
良い。
In this embodiment, the timer circuit 20 is used to start the feedback control one hour after the start signal is input, but the feedback control is started immediately after the start signal is input manually. For example, if the cooling water temperature is within the range of 40°C to 70°C, a timer circuit is used to provide a delay of, for example, 10 seconds, and if it is over 70°C, feedback control is started at the same time as the start. Also good.

又、本実施例においては第3図に示す如き各機能を有す
る回路の組み合わせによ2て装置を構成しているが、マ
イクロコンピュータを用い、プログラム制御によって同
様の作用を行うよう構成しても良い。
Further, in this embodiment, the device is constructed by combining circuits having various functions as shown in FIG. good.

以上詳述したように本発明の内燃機関の空燃比制御装置
は、冷却水の温度を検出する温度センサの出力を予め設
定した値と比較づる比較手段と、IIi素センサの出力
で該酸素センサの活性化を判別する手段とを帰還制御系
中に設け、冷却水m度が予め設定した値以下の状態で内
燃機関が始動された時は前記酸素センサの活性化信号に
よって前記燃料噴射量の帰還制御を開始し、又冷却水濃
度が予め設定した値以上の状態で内燃機関が始動された
時は前記酸素センサの状態にかかわらず、内燃機関の始
動と共に、又は内燃aimの始動後予め設定した時間経
過後に燃料噴射量の帰還Ill11mlを開始するよう
に構成されている。
As described in detail above, the air-fuel ratio control device for an internal combustion engine of the present invention includes a comparison means for comparing the output of a temperature sensor that detects the temperature of cooling water with a preset value, and a comparison means that compares the output of a temperature sensor that detects the temperature of cooling water, and A means for determining activation of the oxygen sensor is provided in the feedback control system, and when the internal combustion engine is started with the cooling water temperature below a preset value, the activation signal of the oxygen sensor determines the amount of fuel injection. When feedback control is started and the internal combustion engine is started with the cooling water concentration being higher than a preset value, the preset value is set at the same time as the internal combustion engine is started or after the internal combustion aim is started, regardless of the state of the oxygen sensor. The system is configured to start returning the fuel injection amount Ill11ml after the elapse of the specified time.

このため、本発明によればエンジンが高温状態で再始動
してアイドル状態に放置されても、酸素センサの状態に
かかわらず燃料噴射−の帰還IIJIIlが開始される
ので、アイドルが不安定となるといった従来の問題点を
解消することができる。
Therefore, according to the present invention, even if the engine is restarted in a high temperature state and left in an idling state, fuel injection return IIJIIl is started regardless of the state of the oxygen sensor, so the idling becomes unstable. Conventional problems such as these can be solved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の酸素センサの出力信号と帰還制御出力信
号の特性を表わすグラフ、第2図乃至第4図は本発明の
実施例を示すもので、第2図は本発明に適用される内燃
機関の空燃比制御装置をしめず説明図、第3図は同じく
制御回路の要部を示すブロック図、第4図は酸素センサ
の出力信号と帰還制御出力信号の特性を表わすグラフで
ある。 1・・・酸素センサ 7・・・燃料噴射量弁 11・・・エアフローメータ 15・・・温度センサ 16・・・制御回路 17・・・始動スイッチ 18・・・比較回路 19・・・アンドゲート 20・・・タイマー回路 21・・・判別回路 22・・・オアゲート 代理人 弁理士 足算 勉
Fig. 1 is a graph showing the characteristics of the output signal and feedback control output signal of a conventional oxygen sensor, Figs. 2 to 4 show embodiments of the present invention, and Fig. 2 is applied to the present invention. FIG. 3 is a block diagram showing the main parts of the control circuit, and FIG. 4 is a graph showing the characteristics of the output signal of the oxygen sensor and the feedback control output signal. 1...Oxygen sensor 7...Fuel injection amount valve 11...Air flow meter 15...Temperature sensor 16...Control circuit 17...Start switch 18...Comparison circuit 19...AND gate 20... Timer circuit 21... Discrimination circuit 22... OR gate agent Patent attorney Tsutomu Addition

Claims (1)

【特許請求の範囲】[Claims] 1 酸素センサを用いて排ガス中の残存酸素量を測定し
、その結果に応じて燃料噛1量を帰還制御するようにし
た内燃機関の空燃比側wJ装置において、冷却水の温度
を検出する温度センサの出力を予め設定した値と比較す
る比較手段と、酸素センサの出力で該酸素センサの活性
化を判別する手段とを設け、冷却水温度が予め設定した
値以下の状態で内燃機関が始動された時は前記酸素セン
サの活性化信号によって前記燃料噴射量の帰遠制−を開
始し、又冷却水温度が予め設定した値以上の状態で内燃
機関が始動された時は前記酸素センサの状態にかかわら
ず、内燃機関の始動と共に、又は内燃IIIwjの始動
後予め設定した時m経過後に前記燃料噴射量の帰還制御
を開始するように構成したことを特徴とする内燃機関の
空燃比制御Il@置。
1. The temperature at which the temperature of the cooling water is detected in the air-fuel ratio wJ device of an internal combustion engine that measures the amount of residual oxygen in exhaust gas using an oxygen sensor and feedback-controls the amount of fuel intake according to the result. Comparing means for comparing the output of the sensor with a preset value and means for determining activation of the oxygen sensor based on the output of the oxygen sensor are provided, and the internal combustion engine is started when the cooling water temperature is below the preset value. When the internal combustion engine is started with the cooling water temperature exceeding a preset value, the activation signal of the oxygen sensor starts the return control of the fuel injection amount. Regardless of the state, the air-fuel ratio control Il for an internal combustion engine is characterized in that the feedback control of the fuel injection amount is started at the start of the internal combustion engine or after a preset time m has elapsed after the start of the internal combustion IIIwj. @place.
JP5466282A 1982-04-01 1982-04-01 Air-fuel ratio control device of internal-combustion engine Granted JPS58172434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5466282A JPS58172434A (en) 1982-04-01 1982-04-01 Air-fuel ratio control device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5466282A JPS58172434A (en) 1982-04-01 1982-04-01 Air-fuel ratio control device of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58172434A true JPS58172434A (en) 1983-10-11
JPS6259216B2 JPS6259216B2 (en) 1987-12-10

Family

ID=12976993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5466282A Granted JPS58172434A (en) 1982-04-01 1982-04-01 Air-fuel ratio control device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58172434A (en)

Also Published As

Publication number Publication date
JPS6259216B2 (en) 1987-12-10

Similar Documents

Publication Publication Date Title
JP3788424B2 (en) Engine failure diagnosis device
JP3104362B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008002332A (en) Control device for internal combustion engine
JP6525839B2 (en) Control device for internal combustion engine
JPWO2003036065A1 (en) Fuel cut control method
JPS58172434A (en) Air-fuel ratio control device of internal-combustion engine
JP4345389B2 (en) Catalyst temperature raising device for internal combustion engine
JP2775676B2 (en) Fuel supply control device for internal combustion engine
JP2914045B2 (en) Catalyst warm-up device for internal combustion engine
JP4269593B2 (en) Secondary air supply control device for internal combustion engine
JPH05272396A (en) Fuel injection control device for internal combustion engine
JP2002168168A (en) Ignition timing control device for internal combustion engine
JP4296284B2 (en) Catalyst activation determination device for internal combustion engine
JP2022119661A (en) Control device of internal combustion engine
JP6537317B2 (en) Control device for internal combustion engine
JPS6153429A (en) Fuel feeder for alcohol-blended fuel
JP6304937B2 (en) Control device for internal combustion engine
JP6494190B2 (en) Control device for internal combustion engine
JPS58185965A (en) Air/fuel ratio controlling device in internal-cobustion engine
JP3514930B2 (en) Ignition timing control system for lean burn internal combustion engine
JPS59141730A (en) Method of controlling fuel injection quantity of internal-combustion engine
JPH06146980A (en) Rotation speed controller for internal combustion engine
JPH06146955A (en) Operation control device before warming-up for internal combustion engine
JPH0237140A (en) Starting fuel injection control device of engine
JPH07119517A (en) Fuel injection device for engine