JPS58185965A - Air/fuel ratio controlling device in internal-cobustion engine - Google Patents

Air/fuel ratio controlling device in internal-cobustion engine

Info

Publication number
JPS58185965A
JPS58185965A JP57068995A JP6899582A JPS58185965A JP S58185965 A JPS58185965 A JP S58185965A JP 57068995 A JP57068995 A JP 57068995A JP 6899582 A JP6899582 A JP 6899582A JP S58185965 A JPS58185965 A JP S58185965A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
secondary air
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57068995A
Other languages
Japanese (ja)
Inventor
Atsushi Takahashi
淳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57068995A priority Critical patent/JPS58185965A/en
Publication of JPS58185965A publication Critical patent/JPS58185965A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M23/00Apparatus for adding secondary air to fuel-air mixture
    • F02M23/04Apparatus for adding secondary air to fuel-air mixture with automatic control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent an air/fuel ratio from becoming rich upon the high temperature restarting of an engine in which a secondary air control valve for introducing secondary air into an intake air system, is controlled by means of an engine operating condition dtecting means including an oxygen sensor, by holding the secondary air control valve at its open position upon high temperature restarting. CONSTITUTION:Upon high temperature starting in such a condition that a starter switch 50 is turned on, the temperature of cooling water detected by a cooling water temperature sensor 48 is above 70 deg.C, intake-air pipe negative pressure detected by a second negative pressure 44 is below, for example, -80mm.Hg, and the output of an oxygen sensor 36 becomes 1 (indicating a rich mixture condition), an AND circuit 46c in a control circuit 46 generates its output by which a secondary air control valve 32 is opened and held at a predetermined open degree through a constant voltage generator 46d. Accordingly, seconary air is introduced into an intake-air pipe 30 downstream of a throttle valve 24, and therefore, the air/fuel ratio upon the above-mentioned starting is prevented from becoming rich. Since the output of the negative pressure switch 44 becomes 0 after the firing of the engine, the above-mentioned valve 32 is closed.

Description

【発明の詳細な説明】 本発明は、内燃機関の空燃比制御装置に係り、特に、三
元触媒を用いて排気ガス浄化対策が施烙れた自動車用エ
ンジンに用いるのに好適な、排気ガスの空燃比を検知す
るための酸素濃度センサと、吸気系に導入される2次空
気の量を制御するための2次空気制御弁と、前記酸素濃
度センサ出力の(1) 空燃比を含む機関運転状態に応じて前記2次空気制御弁
を制御する制御回路とな肩する内燃機関の空燃比制御装
置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device for an internal combustion engine, and in particular, an exhaust gas control device suitable for use in an automobile engine in which exhaust gas purification measures are taken using a three-way catalyst. an oxygen concentration sensor for detecting the air-fuel ratio of the engine; a secondary air control valve for controlling the amount of secondary air introduced into the intake system; and (1) the air-fuel ratio of the oxygen concentration sensor output. The present invention relates to an improvement in an air-fuel ratio control device for an internal combustion engine, which serves as a control circuit for controlling the secondary air control valve according to operating conditions.

内燃機関、特に、厳しい排気ガス浄化対策が要求される
自動車用エンジンにおいては、近年、精密な空燃比制御
を行うことが必要となっており、例えば、理論空燃比よ
りリッチ側とこれたベース空燃比の混合気を形成する気
化器と、排気ガス甲の残存酸素l#度から排気ガスの空
燃比を検知するための酸素濃度センサと、吸気系に導入
される2次空気の散音制御するための2次空気制御弁と
、前記酸素濃度センサ出力の空燃比を含む機関運転状態
に応じて、空燃比が理論空燃比近傍となるよう前記2次
空気制御弁を制御する制御回路と全方する内燃機関の空
燃比制御装置が実用化されている。
In recent years, it has become necessary to perform precise air-fuel ratio control in internal combustion engines, especially automobile engines that require strict exhaust gas purification measures. A carburetor that forms a mixture with a fuel ratio, an oxygen concentration sensor that detects the air-fuel ratio of the exhaust gas from the residual oxygen level in the exhaust gas, and a noise control of the secondary air introduced into the intake system. a control circuit that controls the secondary air control valve so that the air-fuel ratio is near the stoichiometric air-fuel ratio according to engine operating conditions including the air-fuel ratio output from the oxygen concentration sensor; Air-fuel ratio control devices for internal combustion engines have been put into practical use.

このような空燃比制御装置によれば、空燃比を理論空燃
比近傍となるように制御することができ、従って、排気
系に配役きれる三元触媒における排気浄化性能紮十分冒
めることができるものである。
According to such an air-fuel ratio control device, the air-fuel ratio can be controlled to be close to the stoichiometric air-fuel ratio, and therefore the exhaust purification performance of the three-way catalyst that can be used in the exhaust system can be sufficiently improved. It is something.

(2) しかしながら従来は、高現時の再始動性に問題を有した
。即ち、高負荷走行後、エンジン全停止トざぜ、放置し
た状態から、再始動する際には、気化器本体が60〜9
0℃の高温となり、気化器のフロート室内で発生した多
量の蒸発ガソリンが、メインノズル及びインナペント等
を介し7て吸気通路内に充満し、エアクリーナや吸気管
内に蒸発ガソリンが残留し7て、再始動時の空燃比がオ
ーバーリッチとなり、失火奮起こして、再始動時の始動
時間が長びいていた。
(2) However, in the past, there was a problem in restartability at high current times. In other words, after driving under high load, when the engine is completely stopped and then restarted after being left unused, the carburetor body will be at a temperature of 60 to 90%.
At a high temperature of 0℃, a large amount of evaporated gasoline generated in the float chamber of the carburetor fills the intake passage through the main nozzle and inner vent, and evaporated gasoline remains in the air cleaner and intake pipe, causing it to be reused. The air-fuel ratio at startup was overrich, causing misfires and prolonging the starting time when restarting.

不発明は、前記従来の欠点全解消するべ(なされたもの
で、高温再始動時の始動時間を短縮し、高現時の再始動
性を改善することができる内燃機関の窒燃比制御装+f
を提供することを目的とする。
The invention is to overcome all of the drawbacks of the conventional technology, and to provide a nitrous fuel ratio control system for internal combustion engines that can shorten the starting time at high temperature restarts and improve restartability at high engine speeds.
The purpose is to provide

本発明は、排気ガスの空燃比を検知するための酸素濃度
センサと、吸気系に導入される2次空気の情を制rf4
1するだめの2次空気制御弁と、前記酸素請厩センザ出
力の空燃比を含む(段間運転状態に応じて前記2次空気
1f!I仰弁を制御する制御回路とを有する内燃機関の
空燃比制御装置i¥:において、高温再始動時は、前記
2次空気制御弁を開弁保持し、空燃比のリッチ化を防止
ターるようにして、前記目的を達成し友ものである。
The present invention provides an oxygen concentration sensor for detecting the air-fuel ratio of exhaust gas and an RF4 sensor for controlling the secondary air introduced into the intake system.
An internal combustion engine comprising: a secondary air control valve for one output; and a control circuit for controlling the secondary air 1f!I elevation valve according to the inter-stage operating state, In the air-fuel ratio control device i, the secondary air control valve is held open at the time of high-temperature restart to prevent the air-fuel ratio from becoming richer, thereby achieving the above object.

以下図面を参照して、本発明の実施例全詳細に説明する
Embodiments of the present invention will now be described in detail with reference to the drawings.

本実施例は、第1図に示す如く、大気を取入れるための
エアクリーナ12と、理論空燃比よりリッチ側とされた
ベース空燃比の混合気を形成するための、フロート室1
6.メインウェル18、メインノズル20、ベンチュリ
22、運転席に配設されたアクセルペダル(図示省略)
と連動して開閉されるスロットル弁24、及び、前記フ
ロート室16と吸気通路26を連通するインナベント2
8を有する気化器14と、吸気管30と、該吸気管30
に導入される大気(2次空気)の量を制御するための2
次空気制御弁32と、排気管34と、該排気管34に配
設−g7′1.た、排気ガス中の残存酸素濃度からJJ
F気ガスの空燃比を検知するための酸素濃度センサ36
と、前記スロットル弁24の全閉位置直下に形成された
アイドルセンシングボート3Bと、該アイドルセンシン
グボート38に発生する負圧が小となるオフアイドル時
にオンとなる第1の負圧スイッチ40と、ボート42に
より取出これる吸気管30内の負圧に応じて、該吸気管
負圧が所定値(例えば−80朋Hg’)より高くなる低
中負荷域でオンとなる第2の負圧スイッチ44と、前記
酸素#度センサ36出力の空燃比、前記第1の負圧スイ
ッチ40出力から検知されるアイドル状態の有無、前記
第2の負圧スイッチ44出力から検知はれる機関負荷状
態を含む機関運転状態に応じて、通常運転状態のオフア
イドル時又は低中負荷域には、空燃比が理論空燃比近傍
となるよう前記2次空気制御弁32をフィードバック制
御し、又、同じくアイドル時には、前記フィードバック
制御を停止し、或いは、前記2次空気制御弁32の制御
速度を切換え、又、同I−<高負荷域では前記フィード
バック制御を停止する電子制御回路46と、エンジンブ
ロックに配設された、エンジン冷却水流を検知するため
の冷却水濡センサ48と、エンジン10を始動するため
のス(5) タータスイッチ50と、点火スイッチ52とを有する自
動車用エンジン10の空燃比制御装置において、前記電
子制御回路46内で、前記スタータスイッチ50がオン
ときれてから所定時間(例えば1〜1.5秒)以内であ
り、前記冷却水濡センサ48出力から検知されるエンジ
ン冷却水流が70℃以上であり、前記第2の負圧スイッ
チ44で検知される吸気管30内の負圧が低い、完爆前
のクランキング状態にあり、且つ、前記酸素濃度センサ
36の出力により検知される空燃比がリッチである高温
再始動時は、前記2次空気制御弁32を一定開度に開弁
保持して、空燃比のリッチ化を防止するようにしたもの
である。
As shown in FIG. 1, this embodiment includes an air cleaner 12 for taking in atmospheric air, and a float chamber 1 for forming an air-fuel mixture with a base air-fuel ratio richer than the stoichiometric air-fuel ratio.
6. Main well 18, main nozzle 20, venturi 22, accelerator pedal located at the driver's seat (not shown)
a throttle valve 24 that opens and closes in conjunction with the above, and an inner vent 2 that communicates the float chamber 16 with the intake passage 26.
8, an intake pipe 30, and the intake pipe 30.
2 to control the amount of atmosphere (secondary air) introduced into the
Next, the air control valve 32, the exhaust pipe 34, and the arrangement of the exhaust pipe 34-g7'1. From the residual oxygen concentration in the exhaust gas, JJ
Oxygen concentration sensor 36 for detecting the air-fuel ratio of F gas
, an idle sensing boat 3B formed directly below the fully closed position of the throttle valve 24, and a first negative pressure switch 40 that is turned on during off-idle when the negative pressure generated in the idle sensing boat 38 is small. A second negative pressure switch that is turned on in a low and medium load range where the intake pipe negative pressure is higher than a predetermined value (for example, -80 Hg') according to the negative pressure in the intake pipe 30 that can be taken out by the boat 42. 44, the air-fuel ratio output from the oxygen level sensor 36, the presence or absence of an idling state detected from the output of the first negative pressure switch 40, and the engine load state detected from the output of the second negative pressure switch 44. Depending on the engine operating state, the secondary air control valve 32 is feedback-controlled so that the air-fuel ratio is close to the stoichiometric air-fuel ratio during off-idling in normal operating state or in the low-medium load range, and when idling, An electronic control circuit 46 that stops the feedback control or switches the control speed of the secondary air control valve 32 and stops the feedback control in the I-<high load range, and an electronic control circuit 46 disposed in the engine block. In addition, an air-fuel ratio control device for an automobile engine 10 having a cooling water wetness sensor 48 for detecting an engine cooling water flow, a starter switch 50 (5) for starting the engine 10, and an ignition switch 52, In the electronic control circuit 46, within a predetermined time (for example, 1 to 1.5 seconds) after the starter switch 50 is turned on, the engine cooling water flow detected from the output of the cooling water wetness sensor 48 is 70°C. As described above, if the negative pressure in the intake pipe 30 detected by the second negative pressure switch 44 is low, the cranking state is before complete explosion, and the air is detected by the output of the oxygen concentration sensor 36. At the time of high-temperature restart when the fuel ratio is rich, the secondary air control valve 32 is kept open at a constant opening degree to prevent the air-fuel ratio from becoming rich.

前配電子制御回路46の、高温再始動時に前記2次空気
制御弁32を制御するための回路は、第2図に詳細に示
す如(、前記スタークスイッチ50の出力に応じて、該
スタータスイッチ50が閉じられると所定時間(1〜1
.5秒)だけ信号1を発生するタイマ46aと、前記冷
却水温セ/す48の出力に応じて、エンジン冷却水流が
70℃(6) 以上である時に信号1を発生する比較器46bと、前記
タイマ46a、比較器46b、第2の負圧スイッチ44
、酸素濃胛センサ36の出力が全て1となった時に出力
1を発生するAND回路46cと、該AND回路46c
の出力に応じて、前記2次空気制御弁32を所定開度で
開弁保持するための定電圧を発生する定電圧発生器46
dとから構成されている。
The circuit for controlling the secondary air control valve 32 in the front electronic control circuit 46 at the time of high temperature restart is as shown in detail in FIG. 50 is closed, the predetermined time (1 to 1
.. a timer 46a that generates a signal 1 for 5 seconds), a comparator 46b that generates a signal 1 when the engine cooling water flow is 70° C. (6) or higher in accordance with the output of the cooling water temperature sensor 48; Timer 46a, comparator 46b, second negative pressure switch 44
, an AND circuit 46c that generates an output of 1 when all outputs of the oxygen concentration sensor 36 become 1, and the AND circuit 46c.
a constant voltage generator 46 that generates a constant voltage for keeping the secondary air control valve 32 open at a predetermined opening according to the output of the
It is composed of d.

以下作用を説明する。The action will be explained below.

捷ず、スタータスイッチ50がオフとされている通常運
転状態においては、前記タイマ46aの出力が1となる
ことがなく、従って、2次空気制御弁32は、酸素濃度
センサ36の出力の空燃比、前記第1の負圧スイッチ4
0出力から検知されるアイドル状態の有無、前記第2の
負圧スイッチ44出力から検知される機関負荷状態を含
む機関運転状態に応じて、オフアイドル時又は低中負荷
域には、空燃比が理論空燃比近傍となるようフィードバ
ック制御され、父、アイドル時には、前記フィードバッ
ク制御が停止されるか、或いは、制御速度が切換えられ
、又、高負荷域では、前記フィードバック制御が停止さ
れる。
In the normal operating state when the starter switch 50 is turned off and the starter switch 50 is turned off, the output of the timer 46a never becomes 1, and therefore the secondary air control valve 32 adjusts the air-fuel ratio of the output of the oxygen concentration sensor 36. , the first negative pressure switch 4
Depending on the engine operating state, including the presence or absence of an idle state detected from 0 output and the engine load state detected from the output of the second negative pressure switch 44, the air-fuel ratio changes during off-idle or in the low-medium load range. Feedback control is performed so that the air-fuel ratio is close to the stoichiometric air-fuel ratio, and when the engine is idling, the feedback control is stopped or the control speed is switched, and in the high load range, the feedback control is stopped.

一方、スタータスイッチ50が閉じられ、前記冷却水濡
センサ48により検知はれるエンジン冷却水温が70°
C以上であり、前記第2の負圧スイッチ44により検知
式れる吸気管負圧が−80rnrnHgより低(、且つ
、前記酸素濃度センサ36の出力が1(リッチ状態)と
なる高温再始動時には、前記AND回路46cに出力が
発生し、定電圧発生器46dの出力により、2次空気制
御弁32が所定開度に開弁保持されて、空燃比のリッチ
化が防止される。従って、高温再始動時の空燃比のオー
バーリッチ化が防止され、高温時の再始動性が改善され
る。前記第2の負圧スイッチ44の出力が0となるエン
ジン完爆後、或いは、前記タイマ46aの出力がオフと
なる、スタータスイッチ50がオンとなってから1〜1
.5秒経過した後、或いは、前記酸素m反センサ36が
0となるIJ−ン状態となると、AND回路46cの出
力が0となり、通常運転状態と同様の制御に移る。
On the other hand, the starter switch 50 is closed, and the engine coolant temperature detected by the coolant wetness sensor 48 is 70°.
At the time of a high-temperature restart when the intake pipe negative pressure detected by the second negative pressure switch 44 is lower than -80rnrnHg (and the output of the oxygen concentration sensor 36 is 1 (rich state)), An output is generated in the AND circuit 46c, and the secondary air control valve 32 is kept open at a predetermined opening degree by the output of the constant voltage generator 46d, thereby preventing the air-fuel ratio from becoming rich. Over-riching of the air-fuel ratio at the time of starting is prevented, and restartability at high temperatures is improved.After the engine completes explosion when the output of the second negative pressure switch 44 becomes 0, or after the output of the timer 46a 1 to 1 after the starter switch 50 is turned on.
.. After 5 seconds have elapsed, or when the oxygen m anti-sensor 36 becomes 0, the output of the AND circuit 46c becomes 0, and the control shifts to the same as in the normal operating state.

本実施例においては、2次空気制御弁32の空気QR入
口32aをエアクリーナ12がら独立させているので、
該2次空気制御弁32がら蒸発ガソリンを含まない清浄
な大気が導入されることとなり、パーコレーション防止
の効果が更に太きい。
In this embodiment, since the air QR inlet 32a of the secondary air control valve 32 is made independent from the air cleaner 12,
Clean air containing no evaporated gasoline is introduced through the secondary air control valve 32, and the percolation prevention effect is further enhanced.

勿論、エアクリーナ12の内側から取出した2次空気を
、2次空気制御弁32の空気取入口32mに供給するこ
とも可能である。
Of course, it is also possible to supply the secondary air taken out from inside the air cleaner 12 to the air intake port 32m of the secondary air control valve 32.

又、本実施例においては、高温再始動状態を検知するた
めのセンサとして、通常の自動車用エンジンに既に配設
されている、酸素@度センサ36、第2の負圧スイッチ
44、冷却水濡センサ48、スタータスイッチ50の出
力を利用しているため、構成が極めて容易である。同、
高温再始動時を検知する方法は、前記実施例に限定され
ず、例えば、酸素濃度センサ36の出力を利用しないよ
うにすることも、勿論可能である。
Further, in this embodiment, as sensors for detecting a high temperature restart state, the oxygen @ temperature sensor 36, the second negative pressure switch 44, and the cooling water wetness sensor 36, which are already installed in a normal automobile engine, are used as sensors for detecting a high temperature restart state. Since the outputs of the sensor 48 and the starter switch 50 are used, the configuration is extremely easy. same,
The method for detecting the time of high temperature restart is not limited to the above embodiment, and it is of course possible to not use the output of the oxygen concentration sensor 36, for example.

以上説明した通り、本発明によれば、高温再始動時に、
空燃比の適切なり一ン化を行うことかで@、バール−ジ
ョンによる空燃比のオーバーリッチ化を防止して始動時
間を短縮することができ、高温時の再始動性を向−ヒす
ることができる。父、オーバーリッチによる点火プラグ
のくすぶりや触媒の過熱等も防止することができるとい
う優れた効果を有する。
As explained above, according to the present invention, at the time of high temperature restart,
By properly adjusting the air-fuel ratio, it is possible to prevent the air-fuel ratio from becoming overrich due to bulging, shorten the starting time, and improve restartability at high temperatures. Can be done. It also has the excellent effect of preventing spark plugs from smoldering and catalyst overheating due to over-rich conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る内燃機関の空燃比制御装置が配
設された自動車用エンジンの空燃比制御装置の実施例の
構成を示す、一部ブロック線図金倉む断面図、第2図は
、前記実施例で用いられている電子制御回路の高温再始
動時制側j部分を示すブロック線図である。 10・・・エンジン、12・・・エアクリーナ、14 
・気化器、26・・・吸気通路、30・・・吸気管、3
4・・・排気管、32・・・2次空気制御弁、36・・
・酸素濃度センサ、40.44・・・負圧スイッチ、4
6・・・電子制御回路、48・・・冷却水濡センサ、5
0・・・スタータスイッチ。 代理人  高 矢    論 (ほか1名)
FIG. 1 is a partial block diagram showing the configuration of an embodiment of an air-fuel ratio control device for an automobile engine in which the air-fuel ratio control device for an internal combustion engine according to the present invention is installed, and FIG. 2 is a block diagram showing the high temperature restart tense side j portion of the electronic control circuit used in the embodiment. FIG. 10...Engine, 12...Air cleaner, 14
・Carburetor, 26... Intake passage, 30... Intake pipe, 3
4...Exhaust pipe, 32...Secondary air control valve, 36...
・Oxygen concentration sensor, 40.44...Negative pressure switch, 4
6...Electronic control circuit, 48...Cooling water wetness sensor, 5
0...Starter switch. Agent Takaya Ron (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1)  排気ガスの空燃比を検知するための酸素濃度
センサと、吸気系に導入きれる2次空気の量を制御する
ための2次空気制御弁と、前記酸素#度センサ出力の空
燃比を含む機関運転状態に応じて前記2次空気制御弁を
制御する制御回路とを有する内燃機関の空燃比制御装置
において、高湛再始動時は、前記2次空気制御弁を開弁
保持して、空燃比のリッチ化を防1卜するようにしたこ
とを特徴とする内燃機関の空燃比制御装置。
(1) An oxygen concentration sensor for detecting the air-fuel ratio of exhaust gas, a secondary air control valve for controlling the amount of secondary air that can be introduced into the intake system, and an air-fuel ratio output from the oxygen degree sensor. In the air-fuel ratio control device for an internal combustion engine, the air-fuel ratio control device for an internal combustion engine has a control circuit that controls the secondary air control valve according to engine operating conditions including: An air-fuel ratio control device for an internal combustion engine, characterized in that the air-fuel ratio is prevented from becoming rich.
JP57068995A 1982-04-23 1982-04-23 Air/fuel ratio controlling device in internal-cobustion engine Pending JPS58185965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57068995A JPS58185965A (en) 1982-04-23 1982-04-23 Air/fuel ratio controlling device in internal-cobustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57068995A JPS58185965A (en) 1982-04-23 1982-04-23 Air/fuel ratio controlling device in internal-cobustion engine

Publications (1)

Publication Number Publication Date
JPS58185965A true JPS58185965A (en) 1983-10-29

Family

ID=13389745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57068995A Pending JPS58185965A (en) 1982-04-23 1982-04-23 Air/fuel ratio controlling device in internal-cobustion engine

Country Status (1)

Country Link
JP (1) JPS58185965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101649A (en) * 1984-10-22 1986-05-20 Fuji Heavy Ind Ltd Air-fuel ratio controlling apparatus
JPH0561809U (en) * 1992-01-17 1993-08-13 株式会社三協精機製作所 Rotating magnetic head device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101649A (en) * 1984-10-22 1986-05-20 Fuji Heavy Ind Ltd Air-fuel ratio controlling apparatus
JPH0561809U (en) * 1992-01-17 1993-08-13 株式会社三協精機製作所 Rotating magnetic head device

Similar Documents

Publication Publication Date Title
JP2006207575A (en) Internal combustion engine and control method thereof
JPS6324140B2 (en)
JP3104362B2 (en) Air-fuel ratio control device for internal combustion engine
US4495904A (en) Apparatus for facilitating engine starting
JPS58185965A (en) Air/fuel ratio controlling device in internal-cobustion engine
JPH0232853Y2 (en)
JPH08312416A (en) Engine strating control device
JPH08200166A (en) Air-fuel ratio control device
JPH0526120A (en) Evaporated fuel controller of internal combustion engine
JP3990902B2 (en) Control device for internal combustion engine
JP2914045B2 (en) Catalyst warm-up device for internal combustion engine
JPS58217750A (en) Idle-up device in air-fuel ratio control engine
JPS60147561A (en) Fuel vapor removing device for internal-combustion engine
JPH06146956A (en) Internal combustion engine stopping time estimating device and fuel supply device
JPH0213737Y2 (en)
JPH0678726B2 (en) Blow-by control device for alcohol fuel engine
JPH0744754Y2 (en) Air-fuel ratio controller for starting internal combustion engine
JPS5882042A (en) Apparatus for controlling air-fuel ratio at time of starting engine
JPH055439A (en) Fuel injection device for engine
JP5169956B2 (en) Control device for start of internal combustion engine
JPS63113173A (en) Air-fuel ratio control method for internal combustion engine
JPH05332201A (en) Start facilitation device of internal combustion engine
JPH0738684Y2 (en) Start-up air-fuel ratio controller for carburetor internal combustion engine
JPS58172434A (en) Air-fuel ratio control device of internal-combustion engine
JPH0458029A (en) Fuel used discriminating device for internal combustion engine