JPS58172204A - Method for removing metallic sulfide from alkali hydrosulfide solution - Google Patents

Method for removing metallic sulfide from alkali hydrosulfide solution

Info

Publication number
JPS58172204A
JPS58172204A JP5113082A JP5113082A JPS58172204A JP S58172204 A JPS58172204 A JP S58172204A JP 5113082 A JP5113082 A JP 5113082A JP 5113082 A JP5113082 A JP 5113082A JP S58172204 A JPS58172204 A JP S58172204A
Authority
JP
Japan
Prior art keywords
solution
soln
alkaline
fine
hydrosulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5113082A
Other languages
Japanese (ja)
Other versions
JPS6059165B2 (en
Inventor
Katsuro Watanabe
渡辺 克郎
Akimitsu Kataoka
片岡 昭允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagao Soda Co Ltd
Original Assignee
Nagao Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagao Soda Co Ltd filed Critical Nagao Soda Co Ltd
Priority to JP5113082A priority Critical patent/JPS6059165B2/en
Publication of JPS58172204A publication Critical patent/JPS58172204A/en
Publication of JPS6059165B2 publication Critical patent/JPS6059165B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • C01B17/36Purification

Abstract

PURPOSE:To accelerate flocculation and settling and to enhance the work efficiency of filtration by adding anionic polyacrylamide having a prescribed mol.wt. to an alkalie hydrosulfide soln. contg. fine particles of metallic sulfide and org. matter and having a prescribed spent rate. CONSTITUTION:When the spent rate of an alkali hydrosulfide soln. contg. fine metallic sulfide, org. matter, etc. recovered from a chemical plant is below a prescribed value, the soln. is reacted with H2S to adjust the spent rate to >=90.1%. Anionic polyacrylamide having >=2 millions mol.wt. is then added to the soln. After agitating the soln., formed flocks are settled, and the fine precipitate is filtered off. Thus, the fine metallic sulfide and org. matter in the alkali hydrosulfide soln. are easily filtered off.

Description

【発明の詳細な説明】 本発明は化学工場などから回収されるアルカリ硫化物(
主として水硫化ソーダ)溶液中に共存する微細金属硫化
物と有機物とを効率よく分離する方法に関するものであ
る。
[Detailed Description of the Invention] The present invention utilizes alkali sulfide (
The present invention relates to a method for efficiently separating fine metal sulfides and organic substances coexisting in a solution (mainly sodium hydrogen sulfide).

水硫化アルカリ液は石油精製、石油化学、石炭化学、セ
ロハンレーヨン、スフなどの化学工場から排出される廃
ソーダ液から、またH2S含有ガスから、更にまた、廃
ノーダ液とH2S含有ガスなどから、水硫化アルカリ液
の回収がなされている。しかしこの回収水硫化アルカリ
液中には廃ソーダ液、H,Sガス、ラインなどからの硫
化鉄を主体とした微細、の金属硫化物(以下「微細硫化
物」という)が混入している。
Alkaline hydrosulfide liquid is obtained from waste soda liquid discharged from chemical factories such as petroleum refining, petrochemistry, coal chemistry, cellophane rayon, and sufu, from H2S-containing gas, and from waste noda liquid and H2S-containing gas. Alkaline hydrosulfide solution is being recovered. However, this recovered alkaline hydrosulfide solution contains fine metal sulfides (hereinafter referred to as "fine sulfides") mainly composed of iron sulfide from waste soda solution, H, S gas, and lines.

父、廃ソーダ液にはフェノール類、チオフェノール類、
メルカプタン類、低重合物などの有機物(以下「有機物
」という、ンが溶存しておシ、これらの有機物は廃ソー
ダ液とH2Sとの反応で水硫化アルカリにすることに・
よって水硫化アルカリ液から比重差によって分離除去す
ることができる(特許第401527号、第80040
1号参照゛)ものの、水硫化アルカリ液中に微量混入す
ることはさけられない。この微量混入している有機物は
前述の微細硫化物に付着し、沈降の悪い浮遊状態を形成
している。
Father, waste soda liquid contains phenols, thiophenols,
Organic substances such as mercaptans and low polymers (hereinafter referred to as ``organic substances'') are dissolved, and these organic substances are converted into alkali hydrosulfide by reaction with waste soda solution and H2S.
Therefore, it can be separated and removed from the alkaline hydrosulfide solution based on the difference in specific gravity (Patent Nos. 401527 and 80040).
(See No. 1) However, it is unavoidable that a small amount of it be mixed into the alkaline hydrosulfide solution. This trace amount of organic matter adheres to the fine sulfides mentioned above, forming a suspended state with poor sedimentation.

このような微細硫化物や有機物を含有した水硫化アルカ
リ液からこれらを分離除去しようとすると微粒子のp過
す−ク、有機物によるp過面の目詰り等が著しく濾過助
剤の増加、さらには濾過の長期化がよぎなくされる。
When attempting to separate and remove such fine sulfides and organic substances from an alkaline hydrosulfide solution, the fine particle filtration surface becomes clogged with organic matter, resulting in a significant increase in the amount of filter aids and, furthermore, the filtration process. The prolongation of this situation is no longer possible.

父、微細硫化物ヲあらかじめ沈降させてから分離する手
法を用いると微細硫化物の沈降には通常15〜30時間
を要し、場合によっては2日以上を要することもあり、
さらに一部の有機物が付着したものについては完全な沈
降はのぞめない状態となυ、目詰り問題は解決されない
If a method is used in which fine sulfides are precipitated and then separated, it usually takes 15 to 30 hours for the fine sulfides to settle, and in some cases it may take more than 2 days.
Furthermore, if some organic matter is attached, complete sedimentation cannot be expected, and the clogging problem remains unsolved.

このように水硫化アルカリ液から微細硫化物、有機物な
どの分離除去が著しく困難かつ長時間を要することは、
この濾過操作が水硫化アルカリ液の連続濃縮操作の前処
理工程であるためp過遅延により濃縮工程への供給を減
少させるか一時停止をもよぎなくされる。したがってこ
のような場合作業性の低下はもちろん、設備投資ll の上昇にもなるため、関係者はその対策に苦慮しており
、容易かつ迅速な分離方法が切望されている。
The reason why separating and removing fine sulfides, organic substances, etc. from the alkaline hydrosulfide solution is extremely difficult and takes a long time is that
Since this filtration operation is a pretreatment step for the continuous concentration operation of the alkali hydrosulfide solution, the delay in p-filtration makes it necessary to reduce or temporarily stop the supply to the concentration step. Therefore, in such a case, not only the work efficiency will be lowered but also the capital investment will be increased, so those involved are struggling to find a countermeasure against this problem, and there is a strong need for an easy and quick separation method.

そこで本発明者らは微細硫化物、有機物などを含有する
水硫化アルカリ液からこれらの分離を迅速かつ容易にす
るため種々実験を試みた。
Therefore, the present inventors attempted various experiments in order to quickly and easily separate fine sulfides, organic substances, etc. from an alkaline hydrosulfide solution containing them.

無機系のフロック剤はそれら自体が酸性液であるが又は
溶解して酸性になるためアルカリ性の水硫化アルカリ液
に対して不都合でめったので有機系フロック剤で一般に
無機懸濁物を含むアルカリ液に用いられるアニオン性フ
ロック剤での検討を進めた。
Inorganic flocculants are themselves acidic liquids, but because they become acidic when dissolved, they are inconvenient and rarely used for alkaline hydrosulfide alkaline liquids, so organic flocculants are generally used for alkaline liquids containing inorganic suspensions. We proceeded with the study of the anionic flocking agent used.

中でも比較的強アルカリ液に有効であるとされているア
ニオン性フロック剤について検討’tしたのであるがそ
の使用pH領域がフロック剤の1受用pa領域限度外と
なるため、長時間あるいは加温状態ではフロック剤のア
ルカリによる変質作用が認められた。
Among them, we have considered anionic flocculants that are said to be effective for relatively strong alkaline liquids, but because the pH range in which they can be used is outside the 1-pa range limit for floccants, they cannot be used for long periods of time or under heated conditions. In this case, alteration effect due to the alkali of the flocculant was observed.

とはいえ本発明者らはこの実験においてフロック剤の分
子量が大きいものは凝集沈降が早くかつ一度凝集した□
フロックは容易に分散状態にならないという現象を知見
した。
However, in this experiment, the present inventors found that floccants with larger molecular weights flocculated more quickly and flocculated once.
We discovered the phenomenon that flocs do not easily become dispersed.

そこで本発明者らは分子量の大きいフロック剤を用いる
ことによって凝集沈降を早急に行うときにはフロック剤
のアルカリによる影響が抑制できるものと思考して次の
実験を進めた。
Therefore, the present inventors proceeded with the following experiment with the belief that the influence of the alkali of the flocculant can be suppressed when coagulation and sedimentation is performed quickly by using a flocculant with a large molecular weight.

すなわち使用フロック剤としてポリアクリルアミドの分
子量約50万、100万 200万500万のアニオン
性のものを用いて水硫化ソーダ液中の微細硫化物の沈降
状況についてその添加量を変化させて、それぞれの沈降
時間を調べ表1に示すような結果をえた。
That is, anionic polyacrylamide with a molecular weight of approximately 500,000, 1,002,005,000,000 was used as the flocculant, and the amount added was varied to determine the sedimentation status of fine sulfides in the sodium bisulfide solution. The sedimentation time was investigated and the results shown in Table 1 were obtained.

表1. フロック剤の分子量と沈降時間註;沈降時間二
分、NaBH液: Na5H2−’5.4 ’76 N
a2S2、3 % Na5H液中の微細硫化物:α5 
vo1%(3000rpm、20分) この実験で分子量の大小が予想以上沈降時間に影響Th
eたえることを確認することができた。
Table 1. Molecular weight of flocking agent and sedimentation time Note: Sedimentation time is 2 minutes, NaBH solution: Na5H2-'5.4'76 N
a2S2, 3% Na5H fine sulfide in solution: α5
vo1% (3000 rpm, 20 minutes) In this experiment, the size of the molecular weight influenced the sedimentation time more than expected.Th
We were able to confirm that e.

このとき分子量50万のものは水硫化ソーダ液中に濁り
(微細硫化物の浮遊物〕が認められたが100万以上の
ものはすべてこの現象は認められなかった。この実験結
果は注目すべき効果的な現象である。
At this time, turbidity (fine suspended particles of sulfide) was observed in the sodium hydrogen sulfide solution with a molecular weight of 500,000, but this phenomenon was not observed in all those with a molecular weight of 1,000,000 or more.This experimental result is noteworthy. This is an effective phenomenon.

この濁り現象はフロック剤がアルカリによって分解又は
変質などなんらかの影響を受はフロック効果に影響をあ
たえたためと推考される。
This turbidity phenomenon is presumed to be due to the fact that the flocculant was affected in some way by the alkali, such as decomposition or alteration, which affected the flocculation effect.

そこで本発明者らはアルカリによるフロック剤への影響
について下記の実験を重ねた。
Therefore, the present inventors conducted the following experiments regarding the influence of alkali on the flocking agent.

塩化鉄溶液を添加したNaOH液(約30チ)にH2S
を吸収させてNaOH分のスペント率、すなわち消費率
、(NaOH分がI’I2Sによって消費され完全にN
a8Hになったときのスペント率が100チ、例:Na
OH分の全部がNa2Sになったときのスペント率は5
0チ)が85〜95俤のNa5H液各々を100−の比
色管にとりこれ、らにフロック剤として分子量がおよそ
50万、100万、200万、500万のアニオン性ポ
リアクリルアミド各々0.1チ液500 ppm相当づ
つを添加、攪拌し120分靜置後上澄液の状況を調べ表
2に示すような結果を得た。
Add H2S to NaOH solution (approximately 30 cm) to which iron chloride solution has been added.
The spent rate of NaOH, that is, the consumption rate, (NaOH is consumed by I'I2S and completely N
The spent rate when it becomes a8H is 100ch, for example: Na
The spent rate when all of the OH content becomes Na2S is 5.
Place each Na5H solution with a molecular weight of 85 to 95 mm in a 100 mm colorimeter tube, and add 0.1 mm each of anionic polyacrylamide with a molecular weight of approximately 500,000, 1 million, 2 million, and 5 million as a flocking agent. After adding 500 ppm of the liquid solution and stirring the mixture and leaving it for 120 minutes, the condition of the supernatant liquid was examined and the results shown in Table 2 were obtained.

表2 フロック剤のアルカリによる影響分子量約500
万、200万のものはスペント率90,1%以上、10
0万のものでは92.7ジー チ以上、又50万のものでは95チ以上から濁りを生じ
ないことを確認した。スペント率の向上はアルカリ度の
低下を意味するとはいえ、それ以外にもH8−イオン濃
度が増加する結果としてpH1’3以上の領域において
も効果的にフロック作用が認められることはアルカリ度
以外に何らかの要因が作用したものと思われる。このこ
とはフロック剤の分子量500万、200万のものの使
用で濁シが認められないNa5H液のスペント率は90
.1 %であり、本発明者らが先に開発した回収Na5
H液の反応工程において有機物がNa5H液と分離する
スペント率90チと偶然にも一致しており、(前記特許
第800401号参照〕この付近のスペント率になると
何らかの要因によってフロック化作用が促進されるもの
と考えられる。
Table 2 Effect of alkali on flocking agent Molecular weight approx. 500
10,000,2 million has a spent rate of 90.1% or more, 10
It was confirmed that 0,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 92,7,00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000000 type type type type form type form, 500,000,000,00000 type items have been confirmed that they do not become cloudy at 92.7 geeches or higher. Although an increase in the spent rate means a decrease in alkalinity, the fact that flocculation is effectively observed even in the pH range of 1'3 or higher as a result of an increase in H8- ion concentration is due to other factors other than alkalinity. It seems that some factor was at play. This means that the spent rate of Na5H solution with no turbidity observed when using floccants with molecular weights of 5 million and 2 million is 90.
.. 1%, compared with recovered Na5, which was developed earlier by the present inventors.
Coincidentally, this coincides with the spent rate of 90, at which organic matter separates from the Na5H solution in the reaction process of the H solution (see Patent No. 800,401 above), and when the spent rate is around this, the flocculation effect is promoted due to some factor. It is considered that

このようにフロック剤のアルカリによる影響と思われる
濁りが生じなくなるスペント率と有機物が水硫化アルカ
リ液よシ分離するスペント率が一致することはスペント
率を向上させることによって水硫化アルカリ液から有機
物の分離をよくシ、かつ水硫化アルカリ液への混入を減
弧 少させ、さらにフロック剤の使用に好ましい条件を与え
るものと考えられる。
The fact that the spent rate at which turbidity, which is thought to be caused by the alkali of the flocculant, does not occur, and the spent rate at which organic matter is separated from the alkali hydrosulfide solution coincides with each other. It is believed that this improves separation, reduces contamination with the alkaline hydrosulfide solution, and provides favorable conditions for the use of floccants.

したがって使用フロック剤の重合度は水硫化アルカリ液
のスペント率と不可分の関係にl)スペント率が高い溶
液はど低分子量のフロック剤が使用可能になることを、
意味する。しかし最も好ましいフロック剤(アニオン性
ポリアクリルアミド)の使用米件としては分子量200
万以上のものをスペント率90.14以上の水硫化アル
カリに使用することがふされしい。
Therefore, the degree of polymerization of the flocking agent used is inseparably related to the spent rate of the alkali hydrosulfide solution.l) The solution with a high spent rate allows the use of a low molecular weight flocking agent.
means. However, the most preferred flocking agent (anionic polyacrylamide) has a molecular weight of 200.
It is appropriate to use an alkali hydrosulfide with a spent ratio of 90.14 or more.

これらの実験から、本発明は石油精製、石油化学、石炭
化学、セロハン、レーヨン、スフなどの化学工場から排
出される廃ソーダ液から、また、H2S含有ガスから、
更にまた廃ソーダ液とH2S含有ガスなどから回収され
る水硫化アルカリ液中に混入している微細硫化物、有機
物を分離除去するにあたり、これらの沈降を促進させる
ためのフロック剤として分子量約200万以上のアニオ
ン性ポリアクリルアミドの適量を、スペント率90.1
4以上で回収された水硫化アルカリ液に、またスペント
率がそれ以下のものは更にH2S ’i反応させて90
.1%のスペント率にしてから添加し、攪拌後、静置す
るか又は沈降を妨げない程度の弱い攪拌を行うことによ
って生成フロックを凝集沈降させて分離することを特徴
とする回収水硫化アルカリ液から微細硫化物、有機物を
除去する方法といえる。
From these experiments, the present invention has demonstrated that waste soda liquid discharged from petroleum refining, petrochemical, coal chemical, cellophane, rayon, and sufu chemical factories, as well as H2S-containing gas,
Furthermore, when separating and removing fine sulfides and organic substances mixed in the hydrosulfurized alkali liquid recovered from waste soda liquid and H2S-containing gas, a flocculant with a molecular weight of approximately 2 million is used to promote the sedimentation of these substances. An appropriate amount of the above anionic polyacrylamide was added at a spent rate of 90.1.
The alkaline hydrosulfide solution recovered at 4 or higher, and those with a spent rate lower than that, are further reacted with H2S 'i to 90%
.. A recovered alkaline hydrosulfide solution characterized in that it is added after making the spent ratio 1%, and after stirring, it is allowed to stand or is stirred weakly to the extent that it does not interfere with sedimentation, thereby flocculating and sedimenting the produced flocs and separating them. It can be said that it is a method of removing fine sulfides and organic substances from.

次に本発明を実施例で具体的に説明する。Next, the present invention will be specifically explained using examples.

実施例1 表6に示すような石油精製から排出される廃ソーダ液と
H2S含有ガスとから回収した。Na5H液各々100
−を目盛付10〇−比色管にとり、これにフロック剤と
して市販の分子量約500万のアニオン性ポリアクリル
アミド〔住友化学工業、(株)製スミフロックFA−5
0FA−70有効pH領域前者pH6〜9後者pH8〜
11〕の0.1俤液をそれぞれB o o ppm相当
添加し、倒立攪拌10回を行い、つづいて静置によって
生成フロックを凝集沈降させ、同一試料であらかじめ同
様の方法によって沈降させて沈殿量がほとんどかわらな
くなった量の5tdKなるまでの沈降時間ヲ計ったとこ
ろ、スミフロックFA−50では18分、スミフロック
FA−70では18.2分で両者はとんどかわらなかっ
た。このときどちらも上澄液に濁りは認められなかった
Example 1 Recovered from waste soda liquid and H2S-containing gas discharged from petroleum refining as shown in Table 6. Na5H solution 100 each
- is placed on a 100 - colorimeter tube with a scale, and anionic polyacrylamide with a molecular weight of approximately 5 million, which is commercially available as a flocking agent [Sumifloc FA-5 manufactured by Sumitomo Chemical Co., Ltd.]
0FA-70 effective pH range former pH 6~9 latter pH 8~
11] was added in an amount equivalent to B o o ppm, inverted stirring was performed 10 times, and the resulting flocs were allowed to coagulate and settle by standing still. The same sample was precipitated in the same manner in advance to determine the amount of sediment. When the sedimentation time until the amount of 5tdK reached the same amount as that of 5tdK was measured, it was 18 minutes for Sumifloc FA-50 and 18.2 minutes for Sumifloc FA-70, which showed that there was almost no difference between the two. At this time, no turbidity was observed in the supernatant liquid in either case.

表3 回収Na5H液の性状 Na5H25,32wt% Na2S              2.35   
pNa2003       ’0.96 7FNa2
SO3’    0.24’  lNa2S2O30,
12# スペント率     94.1  チ 沈殿物  α5 v01チ (5000rpm、 20分) 比較例1 70、ツク剤を添加しないで実施例1と同様の操作方法
によって沈降時間を調べた。静置3時間後も沈降分離は
ほとんどされていなかった。
Table 3 Properties of recovered Na5H solution Na5H25, 32wt% Na2S 2.35
pNa2003 '0.96 7FNa2
SO3'0.24' lNa2S2O30,
12# Spent rate 94.1 Precipitate α5 v01 (5000 rpm, 20 minutes) Comparative Example 1 70 The sedimentation time was examined in the same manner as in Example 1 without adding a thickening agent. Even after 3 hours of standing, there was almost no sedimentation and separation.

実施例1と比較例1と、の゛・結果を比較すると明らか
なようにフロック剤使用効果は顕著であった。
As is clear from comparing the results of Example 1 and Comparative Example 1, the effect of using the flocking agent was remarkable.

実施例2 内径約70鯰のガラス・プフナーロート、P紙屋2を用
いP液がメスシリンダー内に入るようにしたp通値に水
柱150鰭の真空をかけて、実施例1と同様にして静置
40分後の上澄液、比較例1と同様にして静置16時間
後の上澄液、各々9omge濾過したところ、その−過
速度はそれぞれ86.4m/分、75.4d/分でめっ
た。
Example 2 Using a glass Puchner funnel with an inner diameter of about 70 mm and a P paper shop 2, a vacuum of 150 mm of water was applied to the P liquid so that it entered the graduated cylinder, and it was left to stand in the same manner as in Example 1. The supernatant liquid after 40 minutes and the supernatant liquid after 16 hours of standing in the same manner as in Comparative Example 1 were each filtered through 9 omg, and the overspeed was 86.4 m/min and 75.4 d/min, respectively. .

フロック剤全添加したとき添加しないものより11++
//分も早くp過ができることは微細硫化物の沈降を妨
げかつp過面の目詰りの起因となる有機物にもフロック
剤が作用して好結果をもたらしたためといえる。
When all the flocking agent is added, it is 11++ higher than that without addition.
The fact that the p-filtration can be carried out as quickly as 1/2 minute can be attributed to the fact that the flocculant prevents the settling of fine sulfides and also acts on the organic matter that causes clogging of the p-filtration surface, resulting in good results.

これら実施例は本発明を具体的に説明するための一例に
すぎず本発明の技術思想は限度内で多くの変更、改良の
要素を含んでいることは勿論であり、本発明の技術的範
囲を拘束するものではない。   、、。
These examples are merely examples for specifically explaining the present invention, and it goes without saying that the technical idea of the present invention includes many changes and improvements within the limits, and the technical scope of the present invention It is not intended to restrict. ,,.

以上説明したように本発明によると分子量200万以上
のアニオン性ポリアクリルアミドの適量を石油精製、石
油化学、石炭化学、セロハン、レーヨン、スフなどの化
学工場から回収される微細硫化物、有機物などを含有し
たスペント率90.14以上の水硫化アルカリ液に添加
攪拌して、生成フロックを沈降させることによって上澄
液のp過を容易にするとともにフロック自体のE適時間
をも大巾に短縮することができ、結果として作業性、経
済性を著しく向上嘔せることができるため、その効果は
多大である。
As explained above, according to the present invention, an appropriate amount of anionic polyacrylamide with a molecular weight of 2 million or more is mixed with fine sulfides, organic substances, etc. recovered from petroleum refining, petrochemical, coal chemical, and chemical factories such as cellophane, rayon, and sufu. It is added to and stirred in the alkaline hydrosulfide solution with a spent ratio of 90.14 or more to settle the formed flocs, thereby facilitating P-filtration of the supernatant liquid and greatly shortening the E-suitability time of the flocs themselves. As a result, workability and economical efficiency can be significantly improved, so the effects are significant.

代理人  内 1)  明 代理人  萩 原 亮 −Agent: 1) Akira Agent Ryo Hagi Hara -

Claims (1)

【特許請求の範囲】[Claims] 水硫化アルカリ溶液中に共存する硫化鉄を主体とする金
属硫化物と有機物の微細沈殿を除去するにあたり、沈殿
促進フロック剤として分子量が200万以上のアニオン
性ポリアクリルアミドを、アルカリ分のスペント率? 
90.14以上にした水硫化アルカリ溶液に添加し、攪
拌後生成フロックを凝集沈降させることを特徴とする水
硫化アルカリ溶液に共存する金属硫化物の微細沈7殿を
除去分離する方法。
In order to remove fine precipitates of metal sulfides, mainly iron sulfide, and organic matter coexisting in an alkaline hydrosulfide solution, anionic polyacrylamide with a molecular weight of 2 million or more is used as a precipitation-promoting flocking agent to increase the spent rate of alkaline content.
90. A method for removing and separating fine precipitates of metal sulfides coexisting in an alkaline hydrosulfide solution, which comprises adding the solution to an alkaline hydrosulfide solution at a concentration of 90.14 or higher, and coagulating and precipitating the generated flocs after stirring.
JP5113082A 1982-03-31 1982-03-31 Method for removing metal sulfides in alkaline hydrosulfide solution Expired JPS6059165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5113082A JPS6059165B2 (en) 1982-03-31 1982-03-31 Method for removing metal sulfides in alkaline hydrosulfide solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5113082A JPS6059165B2 (en) 1982-03-31 1982-03-31 Method for removing metal sulfides in alkaline hydrosulfide solution

Publications (2)

Publication Number Publication Date
JPS58172204A true JPS58172204A (en) 1983-10-11
JPS6059165B2 JPS6059165B2 (en) 1985-12-24

Family

ID=12878225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5113082A Expired JPS6059165B2 (en) 1982-03-31 1982-03-31 Method for removing metal sulfides in alkaline hydrosulfide solution

Country Status (1)

Country Link
JP (1) JPS6059165B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108002351A (en) * 2016-10-31 2018-05-08 中国石油化工股份有限公司 A kind of method of industrial goods purifying of sodium sulfide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108002351A (en) * 2016-10-31 2018-05-08 中国石油化工股份有限公司 A kind of method of industrial goods purifying of sodium sulfide

Also Published As

Publication number Publication date
JPS6059165B2 (en) 1985-12-24

Similar Documents

Publication Publication Date Title
KR100851456B1 (en) Method and apparatus for treatment of water
CA1336020C (en) Clarification process
CA2686255A1 (en) Wastewater mercury removal process
US8182697B2 (en) Method and apparatus for treating selenium-containing wastewater
US5372726A (en) Compound for the treatment of water polluted with metal ions, process for its production and application
US4087359A (en) Process for removing mercury and mercury salts from liquid effluents
NZ232508A (en) Clarifying liquid by adding flocculant and an inert particulate carrier
JPS58172204A (en) Method for removing metallic sulfide from alkali hydrosulfide solution
GB2089335A (en) Removal of mercury from industrial effluent
AU2009101351A4 (en) Treatment of hydrometallurgical process streams for removal of suspended fine particles
EP0660881A4 (en) Recovery of nickel.
CN109574322A (en) A kind of waste water treatment process
RU2083709C1 (en) Method of demercurization of articles containing mercury
JPH10235373A (en) Water treatment
JPH0880488A (en) Complete treatment of organic sewage
US825637A (en) Process of purifying water.
AU658875B2 (en) Clarification process
CN114735723A (en) Potash crude brine refining process
US20220017390A1 (en) Method for the precipitation of arsenic and heavy metals from acidic process water
AU633305B2 (en) Clarification liquors
JP3014614B2 (en) Method for recovering Ni or Zn and their salts from Ni-containing waste liquid
SU887471A1 (en) Method of waste water purification in thiocol production
CA1083272A (en) Treatment of mercury contaminated aqueous media
RU2118296C1 (en) Method of treating natural and waste waters containing iron, heavy, and nonferrous metal ions
CN113800614A (en) Removal of silicon from aqueous streams of mineral processing plants