JPS58171654A - Membrane permeability measurement method - Google Patents

Membrane permeability measurement method

Info

Publication number
JPS58171654A
JPS58171654A JP5455282A JP5455282A JPS58171654A JP S58171654 A JPS58171654 A JP S58171654A JP 5455282 A JP5455282 A JP 5455282A JP 5455282 A JP5455282 A JP 5455282A JP S58171654 A JPS58171654 A JP S58171654A
Authority
JP
Japan
Prior art keywords
solute
membrane
concn
electrical conductivity
nondissociative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5455282A
Other languages
Japanese (ja)
Other versions
JPH0236177B2 (en
Inventor
Mitsuo Ataka
光雄 安宅
Kensaku Mizoguchi
溝口 健作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5455282A priority Critical patent/JPS58171654A/en
Publication of JPS58171654A publication Critical patent/JPS58171654A/en
Publication of JPH0236177B2 publication Critical patent/JPH0236177B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Abstract

PURPOSE:To measure membrane permeability to a nondissociative solute easily and rapidly, by bringing aq. solns. contg. nondissociative solute different in concn. into contact with both sides of the membrane, adding an electrolytic soln. equal in concn. to each aq. soln., and measuring the change of electrical conductivity of the aq. nondissociative solute soln. low in concn. CONSTITUTION:Aq. solns. of nondissociative solute, such as alcohol, glycerin, or acetone, different in concn. are placed on both sides of a membrane, and a salt of an alkali metal, such as K, Na, or Li, or a salt of an alkaline earth metal, such as Ca or Mg, not interacting with the membrane and said nondissociative solute and not forming a complex is added to each aq. soln. to give a concn. equal to each other. The nondissociative solute permeates the membrane from the high concn. side to the low. concn. side to lower conductivity of the low concn. side. On the other hand, decrease rate of conductivity was measured in advance when said solute was added in a constant rate to an electrolytic soln. of a constant concn. The drop of conductivity is measured and compared with this premeasured data, thus permitting rapid measurement of membrane permeability.

Description

【発明の詳細な説明】 本発明は、非解離性溶質・の膜透過率を簡単に測定する
方法、さらに詳しくいえば水溶液中の電解質に基づく電
気伝導度が非解離性溶質の存在により変化する現象を利
用して、非解離性溶質の膜透過率を測定する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for easily measuring the membrane permeability of non-dissociable solutes, and more specifically, a method in which the electrical conductivity based on electrolytes in an aqueous solution changes due to the presence of non-dissociable solutes. The present invention relates to a method of measuring the membrane permeability of non-dissociable solutes using this phenomenon.

濃度の異なる溶液を膜を介して接触させたときその膜が
溶液中の溶質に対して透過性である場合、溶質は濃度の
高い側から低い側へ移行する。この時の単位時間当シ、
単位膜面積当り及び単位濃度勾配当りの溶質移行量が膜
透過率である。
When solutions of different concentrations are brought into contact through a membrane and the membrane is permeable to the solute in the solution, the solute will migrate from the side with higher concentration to the side with lower concentration. At this time, the unit time is
The amount of solute transferred per unit membrane area and per unit concentration gradient is membrane permeability.

この膜透過率は、該膜が溶媒と溶質を分離する性能の基
本的指標であって、通常、いずれか一方の側の溶液にお
ける濃度の時間に対する変化を測定することによって求
められる。この濃度の測定は種々の方法、例えば電気伝
導度、可視、紫外、赤外領域における吸光度、原子吸光
、屈折率、あるいは放射性同位元素の分析値などを用い
る方法によって行いつる。
Membrane permeability is a fundamental indicator of the membrane's ability to separate solvent and solute and is usually determined by measuring the change in concentration in the solution on either side over time. This concentration can be measured by various methods, such as methods using electrical conductivity, absorbance in the visible, ultraviolet, and infrared regions, atomic absorption, refractive index, or analytical values of radioactive isotopes.

これらの方法のうち、電気伝導度を用いて溶質の濃度を
求める方法は、この電気伝導度の測定を溶液中に単に伝
導度セルを投入することによって行いつるので、試料の
採取や移動、場合によっては希釈、濃縮、発色などの操
作を併用しなければならない他の方法に比べて、極めて
容易にかつじん速に濃度を決定することができ、また誤
りの介入する余地が少ない。さらにこの方法は、一般に
鋭敏であること、測定可能濃度範囲が広いこと、測定値
の有効数字が側桁も得られること、あるいは電気伝導度
計は分光器や示差屈折計よりも安価であり、またスイッ
チの切換だけで何点もの電気伝導度計並行して測定しう
ろことなど、優れた利点を有している。
Among these methods, the method of determining the concentration of solute using electrical conductivity measures the electrical conductivity by simply inserting a conductivity cell into the solution. Compared to other methods that require simultaneous use of operations such as dilution, concentration, and color development, concentration can be determined extremely easily and rapidly, and there is less room for error. Additionally, this method is generally more sensitive, has a wider measurable concentration range, provides measurements with significant digits, or conductivity meters are less expensive than spectrometers or differential refractometers. It also has excellent advantages, such as the ability to measure multiple electrical conductivity meters in parallel just by flipping a switch.

しかしながら、従来、水溶液の場合、電気伝導度を用い
て直接濃度を決定しうる溶質は、水中でイオンに解離す
るような電解質に限定されておシ、非解離性の多くの有
機化合物については、はん雑な操作を必要とする吸光度
や屈折率を測定して、その濃度を決定せざるをえなかっ
た。
However, in the case of aqueous solutions, solutes whose concentration can be directly determined using electrical conductivity have traditionally been limited to electrolytes that dissociate into ions in water, and for many non-dissociable organic compounds, The concentration had to be determined by measuring absorbance and refractive index, which required complicated operations.

本発明者らは、このような事情に鑑み、非解離性溶質の
膜透過率を電気伝導度を用いて求める方法について鋭意
研究を重ねた結果、電解質水溶液にアルコールのような
非解離性溶質を添加すると、その量に応じて該水溶液の
電気伝導度が変化することを見出し、この知見に基づい
て本発明を完成するに至った。
In view of these circumstances, the present inventors have conducted intensive research on a method for determining the membrane permeability of non-dissociable solutes using electrical conductivity. It was discovered that when added, the electrical conductivity of the aqueous solution changes depending on the amount, and based on this knowledge, the present invention was completed.

すなわち、本発明は非解離性溶質の膜透過率を測定する
に当り、膜の両側にそれぞれ異なった濃度の非解離性溶
質を含む水溶液を接触させ、かつ各水溶液に等しい濃度
の電解質を加え、低濃度の非解離性溶質水溶液における
電気伝導度の変化を測定し、非解離性溶質の透過量を求
めることを特徴とする膜透過率測定方法を提供するもの
である。
That is, in measuring the membrane permeability of a non-dissociable solute, the present invention involves contacting both sides of the membrane with aqueous solutions containing different concentrations of the non-dissociable solute, and adding an equal concentration of electrolyte to each aqueous solution. The present invention provides a membrane permeability measurement method characterized by measuring changes in electrical conductivity in a low concentration non-dissociable solute aqueous solution and determining the amount of permeation of the non-dissociable solute.

本発明方法において用いる電解質については、膜やアル
コールと相互作用したシ、あるいは複合体を形成したシ
しないものであれば特に制限はないが、好ましくはナト
リウム、カリウム、リチウムなどのアルカリ金属の塩、
カル7ウム、マグネシウムなどのアルカリ土類金属の塩
であり、特に好ましいものは塩化ナトリウムである。ま
た、その濃度は0.0001〜10重量係の範囲が好ま
しい。
The electrolyte used in the method of the present invention is not particularly limited as long as it does not interact with the membrane or alcohol or form a complex, but preferably salts of alkali metals such as sodium, potassium, and lithium,
Salts of alkaline earth metals such as calcium and magnesium are particularly preferred, and sodium chloride is particularly preferred. Moreover, the concentration is preferably in the range of 0.0001 to 10% by weight.

まだ、本発明方法において用いる非解離性溶質としては
、例えば−価アルコール類、多価アルコール類、アルデ
ヒド類、ケトン類、エーテル類、エステル類などが挙げ
られるが、好ましいものはメタノール、エタノール、プ
ロパツール、グリセロール、アセトンなどであシ、特に
好ましいものとしてエタノールが挙げられる。
Non-dissociable solutes used in the method of the present invention include, for example, -hydric alcohols, polyhydric alcohols, aldehydes, ketones, ethers, esters, etc., but preferred ones include methanol, ethanol, and propylene alcohols. Among them, ethanol, glycerol, acetone, etc. is particularly preferred.

本発明方法の特徴は、無機塩などの電解質の水溶液に、
前記の非解離性溶質を添加すると、その添加量に応じて
水溶液の電気伝導度が変化するので、この電気伝導度を
測定して該溶質の濃度を求めるという方法を用いて、非
解離性溶質の膜透過率を測定することにある。
The feature of the method of the present invention is that an aqueous solution of an electrolyte such as an inorganic salt,
When the above-mentioned non-dissociable solute is added, the electrical conductivity of the aqueous solution changes depending on the amount added. The objective is to measure the membrane permeability of the membrane.

そこで、電解質水溶液に非解離性溶質を添加すると、そ
の添加量に応じて水溶液の電気伝導度が変化する例を、
電解質水溶液としてo、i重量係の塩化ナトリウム水溶
液を、非解離性溶質としてエタノールを用いて示すと第
1図のようになる。すなわち、エタノールを塩化ナトリ
ウム水溶液に添加していくと、その電気伝導度の減少率
は添加量に比例し、容積基準で5係(重量基準で約4係
)添加したとき、電気伝導度の減少率は13係になる。
Therefore, when a non-dissociative solute is added to an electrolyte aqueous solution, the electrical conductivity of the aqueous solution changes depending on the amount added.
Fig. 1 shows an aqueous solution of sodium chloride with a weight ratio of o and i as an electrolyte aqueous solution and ethanol as a non-dissociable solute. In other words, when ethanol is added to a sodium chloride aqueous solution, the rate of decrease in electrical conductivity is proportional to the amount added. The rate will be 13.

また、塩化ナトリウムの濃度が1重量係、0.01重量
係及び0.0α1重量係の水溶液においても、電気伝導
度の減少率はエタノールの添加量に比例し、容量基準で
5係添加したときの電気伝導度の減少率は12〜13チ
である。さらに、塩化カリウム、塩化カルシウムの水溶
液においても、塩化すトリウム水溶液の場合と同様の電
気伝導度の減少率を示す。
Furthermore, even in aqueous solutions where the concentration of sodium chloride is 1 part by weight, 0.01 part by weight, and 0.0α1 part by weight, the rate of decrease in electrical conductivity is proportional to the amount of ethanol added, and when 5 parts are added on a volumetric basis, The rate of decrease in electrical conductivity is 12-13 cm. Furthermore, aqueous solutions of potassium chloride and calcium chloride also exhibit the same rate of decrease in electrical conductivity as in the case of thorium chloride aqueous solutions.

一方、電解質を含まない蒸留水においては、エタノール
を添加したときの電気伝導度は、時間的に安定でなく、
また、添加量と電気伝導度の変化量との間に、直線的な
関係はみられなかった。
On the other hand, in distilled water that does not contain electrolytes, the electrical conductivity when ethanol is added is not stable over time;
Further, no linear relationship was observed between the amount added and the amount of change in electrical conductivity.

ところで、前記のように、電解質水溶液に対して容量基
準で5憾のエタノールを添加することによって、電気伝
導度が土数係も低下したことは、単に絶縁性の液体の希
釈効果によるだけでなく、エタノールの添加による水の
構造変化が同時に起るためと考えられる。
By the way, as mentioned above, the fact that the electric conductivity also decreased by the earth coefficient by adding 5 ml of ethanol by volume to the electrolyte aqueous solution is not only due to the dilution effect of the insulating liquid. This is thought to be due to the simultaneous change in the structure of water due to the addition of ethanol.

また、非解離性溶質として、エタノール以外にメタノー
ル、n−プロパツール、グリセロール及びアセトンを用
い、0.1重量係の塩化ナトリウム水溶液に添加したと
ころ、いずれも添加量に比例して水溶液の電気伝導度は
変化[7、容量基準で5係添加したとき電気伝導度の減
少率は、それぞれ10′%(第2図)、14壬(第3図
)、11チ、9係(第4図)であった。
In addition, when methanol, n-propanol, glycerol, and acetone were used as non-dissociable solutes in addition to ethanol, and they were added to a 0.1 weight percent sodium chloride aqueous solution, the electrical conductivity of the aqueous solution was found to be proportional to the amount added. The rate of decrease in electrical conductivity is 10'% (Figure 2), 14 mm (Figure 3), 11 mm, and 9 mm (Figure 4) when 5 mm is added based on capacity. Met.

また、非解離性溶質の添加量は、0.001重H’%以
下の微量であっても、電解質水溶液における電気伝導度
の減少率を求めるには十分である。
Further, even if the amount of non-dissociable solute added is as small as 0.001% by weight or less, it is sufficient to determine the rate of decrease in electrical conductivity in the electrolyte aqueous solution.

本発明は、このような、電解質水溶液に非解離性溶質を
添加すると、その添加量に比例して水溶液の電気伝導度
が変化するという現象を応用して、該溶質の膜透過率を
測定する方法である。すなわち、膜を介して、電解質の
濃度が等しくかつ非解離性溶質の濃度が異なる2種類の
水溶液を接触させると、非解離性溶質はその濃度の高い
側から膜を透過して低い側へ移行し、移行した側の水溶
液の電気伝導度を減少させる。この減少割合は、前記の
ように透過溶質量に比例することから、既知量の非解離
性溶質の添加によって生じる電気伝導度の減少率を予め
求めておき、該溶質が膜を透過して移行した側の電気伝
導度の減少率を求めれば、膜を透過した溶質の量を計算
することができる。
The present invention measures the membrane permeability of the solute by applying the phenomenon that when a non-dissociable solute is added to an electrolyte aqueous solution, the electrical conductivity of the aqueous solution changes in proportion to the amount added. It's a method. In other words, when two aqueous solutions with equal electrolyte concentrations and different non-dissociative solute concentrations are brought into contact through a membrane, the non-dissociative solutes will pass through the membrane from the higher concentration side and migrate to the lower concentration side. and decrease the electrical conductivity of the aqueous solution on the transferred side. Since this rate of decrease is proportional to the amount of permeated solute as described above, the rate of decrease in electrical conductivity caused by the addition of a known amount of non-dissociable solute is determined in advance, and the solute is transferred through the membrane. By determining the rate of decrease in electrical conductivity on the side where the membrane is exposed, it is possible to calculate the amount of solute that has passed through the membrane.

本発明の膜透過率測定方法によれば、従来の方法に比べ
て容易に、じん速に、力・つ正確に溶質の膜透過率を測
定しうる。
According to the membrane permeability measuring method of the present invention, the membrane permeability of a solute can be measured easily, quickly, and accurately compared to conventional methods.

次に参考例及び実施例によって本発明をさらに詳細に説
明する。
Next, the present invention will be explained in more detail with reference to Reference Examples and Examples.

参考例 濃度0.1重量%の塩化ナトリウム水溶液10〇−をビ
ーカーに入れ、各非解離性溶質を精密ディ7タルビベツ
トを用いて1分間に0 、2 mlの速度で最高5−1
で添加し、その間の各添加量における電気伝導度を測定
してその減少率を求めた。
Reference Example: Put 100ml of an aqueous solution of sodium chloride with a concentration of 0.1% by weight into a beaker, and add each non-dissociable solute to a maximum of 5-1ml at a rate of 0.2ml per minute using a precision dial bibet.
The electrical conductivity was measured at each addition amount during that time, and the rate of decrease was determined.

なお、ビーカー内の溶液は、測定中絶えずマグネテイツ
クスターラーでかきまぜ、温度上昇を防ぐために、スタ
ーラーとビーカーの間に断熱材を置いた。測定温度は2
1〜25℃であった。非解離性溶質として、エタノール
、メタノーノペ n−プロパノーノ呟グリセロール、ア
セトンを用い、これらを5 rnl添加したときの電気
伝導度の減少率は、それぞれ13係、10%、14係、
11%及び9係であり、塩化ナトリウム水溶液の初期電
気伝導匠は1.94m5/cmであった。
The solution in the beaker was constantly stirred with a magnetic stirrer during the measurement, and a heat insulating material was placed between the stirrer and the beaker to prevent temperature rise. The measured temperature is 2
The temperature was 1-25°C. Using ethanol, methanol, n-propanol, and acetone as non-dissociable solutes, the reduction rates of electrical conductivity when 5 rnl of these were added were 13%, 10%, and 14%, respectively.
The initial electrical conductivity of the sodium chloride aqueous solution was 1.94 m5/cm.

寸た、溶質の添加量と電気伝導度の減少率との関係を、
溶質がエタノール、メタノール、n−プロパツール及び
アセトンの場合について、それぞれ第1図、第2図、第
3図、第4図に示した。
In other words, the relationship between the amount of solute added and the rate of decrease in electrical conductivity is
The cases where the solute is ethanol, methanol, n-propertool, and acetone are shown in FIGS. 1, 2, 3, and 4, respectively.

なお、電気伝導度の減少率は次の式によシ求めた0 σ゛溶質添加後の電気伝導度 σ0.初期電気伝導度 実施例1 フロロボアーFP500膜(住友電工製、孔径5μm)
を拡散セル(有効膜面積3.5cJ)に装着し、まず比
較のために、電解質が存在しない系におけるエタノール
の膜透過率を、屈折率変化から求めた。
The rate of decrease in electrical conductivity was calculated using the following formula: 0 σ゛Electric conductivity after solute addition σ0. Initial electrical conductivity Example 1 Fluorobor FP500 membrane (manufactured by Sumitomo Electric, pore diameter 5 μm)
was attached to a diffusion cell (effective membrane area: 3.5 cJ), and for comparison, the membrane permeability of ethanol in a system without electrolyte was determined from the change in refractive index.

すなわち、膜の片側にはエタノール5o−と蒸留水50
−との混合物を、他の側には蒸留水100 TnlVを
入れ、両側をかきまぜながらエタノールを透過させた。
That is, one side of the membrane contains 50° of ethanol and 50° of distilled water.
- and 100 TnlV of distilled water was added to the other side, and the ethanol was allowed to permeate while stirring both sides.

蒸留水側の屈折率の変化(25,0℃で測定)を第5図
に示す。これとは別に、蒸留水に既知量のエタノールを
添加したときの屈折率を測定して較正曲線を作成した。
Figure 5 shows the change in refractive index on the distilled water side (measured at 25.0°C). Separately, a calibration curve was created by measuring the refractive index when a known amount of ethanol was added to distilled water.

添加1−当シの屈折率変化は5.2X10  であった
。以上の結果から、エタノールの膜透過量は1.6X1
0  ff17!/分・Caであることが分った。
The refractive index change for addition 1-1 was 5.2×10. From the above results, the amount of ethanol permeated through the membrane is 1.6X1
0ff17! /min・Ca.

次に膜の両側に入れる液体に、いずれもioo■の塩化
ナトリウムを溶解し、エタノールを含んでいなかった側
の電気伝導度変化を測定した。その結果を第6図に示す
。これから算出したエタノールの膜透過量は1.4X1
’1]  d/分・crdであり、前記の値とよく一致
し、電気伝導度の測定による簡便な膜透過率決定法の有
用性が確認された。
Next, ioo■ of sodium chloride was dissolved in the liquid placed on both sides of the membrane, and the change in electrical conductivity on the side that did not contain ethanol was measured. The results are shown in FIG. The amount of ethanol permeated through the membrane calculated from this is 1.4X1
'1] d/min·crd, which was in good agreement with the above value, confirming the usefulness of the simple membrane permeability determination method by measuring electrical conductivity.

実施例2 ミクロフィルターFM−22(富士フィルム製、孔径0
.22μm)を用いて、実施例1とまったく同様にして
膜透過率を測定した。
Example 2 Microfilter FM-22 (manufactured by Fuji Film, pore size 0
.. The membrane permeability was measured in exactly the same manner as in Example 1 using a 22 μm).

塩魚添加系において、屈折率変化から求めたエタノール
膜透過量は3X10−3d/分・crlであシ、フロロ
ポアー膜の場合の2割以下であった。
In the salt fish addition system, the amount of ethanol permeation through the membrane determined from the change in refractive index was 3×10 −3 d/min·crl, which was less than 20% of that in the case of the fluoropore membrane.

捷だ、塩添加系の場合、この膜を透過したエタノールに
よる電気伝導度の減少率は、1時間に1係以下であり、
充分な有効数字を得ることができなかったが、エタノー
ルの膜透過量はやはり3×10’rnl/分・ctrl
程度の値が得られた。
In the case of a salt-added system, the rate of decrease in electrical conductivity due to ethanol permeating through this membrane is less than 1 factor per hour.
Although it was not possible to obtain sufficient significant figures, the amount of ethanol permeated through the membrane was still 3 x 10'rnl/min/ctrl.
The value of degree was obtained.

屈折率変化から求めた膜透過率と、本発明方法を用いて
求めた膜透過率はほぼ一致し、膜透過率が極めて小さい
場合においても、本発明方法が適用可能であることを示
していた。
The membrane transmittance determined from the refractive index change and the membrane transmittance determined using the method of the present invention almost matched, indicating that the method of the present invention is applicable even when the membrane transmittance is extremely small. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図及び第4図は参考例において、
溶質としてそれぞれエタノール、メタノール、n−プロ
パツール及びアセトンを用いた場合の溶質の添加量と電
気伝導度の減少率との関係を示すグラフ、第5図及び第
6図は、それぞれ実施例 における時間と屈折率との関
係及び時間と電気伝導度の減少率との関係を示すグラフ
である。 π−ゾロI?ノ〜ル隊加貢1−】 第5図
Figures 1, 2, 3 and 4 are reference examples,
Figures 5 and 6 are graphs showing the relationship between the amount of solute added and the rate of decrease in electrical conductivity when ethanol, methanol, n-propanol, and acetone are used as solutes, respectively, over time in Examples. 3 is a graph showing the relationship between the refractive index and the time and the rate of decrease in electrical conductivity. π-Zoro I? Noll Corps Contribution 1-] Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 非解離性溶質の膜透過率を測定するに当シ、膜の両
側にそれぞれ異なった濃度の非解離性溶質を含む水溶液
を接触させ、かつ各水溶液に等しい濃度の電解質を加え
、低濃度の非解離性溶質水溶液における電気伝導度の変
化を測定し、非解離性溶質の透過量を求めることを特徴
とする膜透過率測定方法。
1. To measure the membrane permeability of non-dissociable solutes, aqueous solutions containing different concentrations of non-dissociable solutes are brought into contact with both sides of the membrane, and an equal concentration of electrolyte is added to each aqueous solution. A membrane permeability measuring method characterized by measuring changes in electrical conductivity in an aqueous solution of a non-dissociable solute and determining the amount of permeation of the non-dissociable solute.
JP5455282A 1982-03-31 1982-03-31 Membrane permeability measurement method Granted JPS58171654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5455282A JPS58171654A (en) 1982-03-31 1982-03-31 Membrane permeability measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5455282A JPS58171654A (en) 1982-03-31 1982-03-31 Membrane permeability measurement method

Publications (2)

Publication Number Publication Date
JPS58171654A true JPS58171654A (en) 1983-10-08
JPH0236177B2 JPH0236177B2 (en) 1990-08-15

Family

ID=12973847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5455282A Granted JPS58171654A (en) 1982-03-31 1982-03-31 Membrane permeability measurement method

Country Status (1)

Country Link
JP (1) JPS58171654A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030749A1 (en) * 1995-03-29 1996-10-03 Toa Electronics Ltd. Method of determining nonelectrolyte concentration in electrolyte solution and method and apparatus for preparing solution containing mixture of electrolyte with nonelectrolyte
JP2016219576A (en) * 2015-05-19 2016-12-22 日立化成株式会社 Permeability evaluation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125433A (en) * 1979-03-22 1980-09-27 Agency Of Ind Science & Technol Method of measuring diameter of hole of porous film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125433A (en) * 1979-03-22 1980-09-27 Agency Of Ind Science & Technol Method of measuring diameter of hole of porous film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030749A1 (en) * 1995-03-29 1996-10-03 Toa Electronics Ltd. Method of determining nonelectrolyte concentration in electrolyte solution and method and apparatus for preparing solution containing mixture of electrolyte with nonelectrolyte
JP2016219576A (en) * 2015-05-19 2016-12-22 日立化成株式会社 Permeability evaluation method

Also Published As

Publication number Publication date
JPH0236177B2 (en) 1990-08-15

Similar Documents

Publication Publication Date Title
Mills et al. Self-diffusion in electrolyte solutions: a critical examination of data compiled from the literature
Droll et al. Studies on Coördination Compounds. XV. Formation Constants for Chloride and Acetylacetonate Complexes of Palladium (II)
Kolthoff et al. Amperometric (Polarometric) Titrations. I. The amperometric titration of lead with dichromate or chromate
CN104730139B (en) The analysis method of fluorinion concentration under a kind of radioactivity
Stokes et al. Tracer diffusion of iodide ion in aqueous alkali chloride solutions at 25
Bates Standardization of acidity measurements extension of the pH concept to mixed solvents and heavy water
Smith et al. Miniature solid state potassium electrode for serum analysis
JPS58171654A (en) Membrane permeability measurement method
Yoe et al. An investigation of the reaction of aluminum with the ammonium salt of aurintricarboxylic acid under different experimental conditions, and its application to the colorimetric determination of aluminum in water
Wilson et al. Measurement of a Reaction Rate at Equilibrium by Means of a Radioactive Indicator. The Reaction between Arsenic Acid and Iodine
Kuhlmann et al. Electrochemical sensing of dissolved hydrogen in aqueous solutions as a tool to monitor magnesium alloy corrosion
Janata et al. Polarographic determination of hydrogen ion activities in strongly acidic media: a new acidity function
Karlberg Response-time properties of some hydrogen ion-selective glass electrodes in non-aqueous solutions
Lanford et al. The solubility of lead iodide in solutions of potassium iodide-complex lead iodide ions
Russell et al. Acidity measurements with the hydrogen electrode in mixtures of acetic acid and acetic anhydride
RU2364859C1 (en) Method of donnan potential determining
Otal et al. Fluoride detection and quantification, an overview from traditional to innovative material-based methods
Filipović et al. Polarographic characteristics of+ 5 vanadium in phosphate, borate and carbonate buffers
Flaschka et al. Photometric titrations—VI: The determination of submicrogram quantities of calcium and magnesium
Huitt et al. Equilibrium Effects in Determination of Sulfur Dioxide with Pararosaniline and Formaldehyde.
King A study of the mechanism of water transfer across frog skin by a comparison of the permeability of the skin to deuterated and tritiated water
JPS5945937B2 (en) Method for measuring pore diameter of porous membrane
Mittal et al. Cerium (III)-selective membrane electrode based on dibenzo-24-crown-8 as a neutral carrier
Werner et al. A nitrate-selective electrode based on bis (triphenylphosphine) iminium salts
Schiödt Swelling of erythrocytes in solutions of ammonium salts