JPS5945937B2 - Method for measuring pore diameter of porous membrane - Google Patents

Method for measuring pore diameter of porous membrane

Info

Publication number
JPS5945937B2
JPS5945937B2 JP3355279A JP3355279A JPS5945937B2 JP S5945937 B2 JPS5945937 B2 JP S5945937B2 JP 3355279 A JP3355279 A JP 3355279A JP 3355279 A JP3355279 A JP 3355279A JP S5945937 B2 JPS5945937 B2 JP S5945937B2
Authority
JP
Japan
Prior art keywords
pore diameter
membrane
porous membrane
salt
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3355279A
Other languages
Japanese (ja)
Other versions
JPS55125433A (en
Inventor
光雄 安宅
敏 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3355279A priority Critical patent/JPS5945937B2/en
Publication of JPS55125433A publication Critical patent/JPS55125433A/en
Publication of JPS5945937B2 publication Critical patent/JPS5945937B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry

Description

【発明の詳細な説明】 本発明は、微小孔を有する膜の孔径を測定する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the pore size of a membrane having micropores.

一般に多孔膜は、各種物質の分離、回収、精製などに広
く用いられているが、その中で、孔径1〜数100Aの
微小孔を有するものは、タンパク質、ウィルス、コロイ
ドなどの濃縮や精製、血液透析、体液濃縮に利用されて
いる。
In general, porous membranes are widely used for the separation, recovery, and purification of various substances.Among these, those with micropores with pore diameters of 1 to several 100 A are used for the concentration and purification of proteins, viruses, colloids, etc. It is used for hemodialysis and body fluid concentration.

ところで、このような多孔膜を所要の目的に供する場合
には、その微小孔の孔径を決定する必要があるが、これ
まで知られている方法は、いずれも精度が低い、操作が
はん雑であるなどの問題があり、実用上必ずしも適当な
ものとはいえなかつた。
By the way, in order to use such a porous membrane for a desired purpose, it is necessary to determine the diameter of its micropores, but all of the methods known so far have low precision and require complicated operations. There were problems such as , and it was not necessarily suitable for practical use.

例えば、電子顕微鏡により直接観察し、測定する方法で
は、孔径200A以下の微小孔を測定することはほとん
ど不可能であるし、また水銀圧入法は高圧下で行う必要
があるため、膜の変形を伴い、所望の目的に供すること
ができなくなるという欠点がある。
For example, with the method of direct observation and measurement using an electron microscope, it is almost impossible to measure micropores with a diameter of 200A or less, and mercury intrusion method must be performed under high pressure, which prevents membrane deformation. This has the disadvantage that it cannot be used for the desired purpose.

さらに、水や空気の透過量を測定し、ハーゲン・ポアズ
ィユの式により孔径を求める方法では、いくつかの検証
不可能な仮定をおかなければならないので、正確を期し
がたいし、比較的正確な結果が期待される分子吸着法よ
長時間にわたりはん雑な測定を行わなければならないと
いう不便がある。本発明者らは、このような従来方法の
もつ欠点を;克服し、比較的簡単な操作で、これまで正
確な測定が困難とされていた数100A以下の微/J仔
Lを測定しうる方法を開発すべく鋭意研究を重ねた結果
、異なる種類の塩における相対的な透過率の差異から膜
の孔径を正確に測定しうることを見出し、その知見に基
づいて本発明をなすに至つた。
Furthermore, the method of measuring the amount of permeation of water or air and determining the pore size using the Hagen-Poiseuille equation requires several unverifiable assumptions, making it difficult to ensure accuracy and providing relatively accurate results. Compared to the molecular adsorption method, which provides promising results, this method has the inconvenience of requiring complicated measurements over a long period of time. The present inventors have overcome the drawbacks of such conventional methods, and have made it possible to measure micro/J-L of several hundred amperes or less, which has been difficult to accurately measure, with relatively simple operations. As a result of extensive research to develop a method, we discovered that the pore diameter of a membrane can be accurately measured from the relative permeability differences between different types of salts, and based on this knowledge we have developed the present invention. .

すなわち、本発明に従えば、多孔膜に対する、少なくと
も2種の異なつた塩溶液の膜透過速度を測定し、それら
から誘導される相対的透過率と拡散係数との関係を比較
することにより、容易に多孔膜の孔径を知ることができ
る。本発明方法で用いられる塩溶液としては、陰イオン
が共通で陽イオンのみが異なる塩の溶液の組合せが適当
であ■)。
That is, according to the present invention, by measuring the membrane permeation rates of at least two different salt solutions through a porous membrane and comparing the relationship between relative permeability and diffusion coefficient derived therefrom, The pore diameter of the porous membrane can be determined by As the salt solution used in the method of the present invention, a combination of salt solutions having a common anion and different cations is suitable (1).

このようなものの例としては、塩化リチウム、塩化ナト
リウム、塩化カリウム、塩化セシウム及び塩化カルシウ
ムの中から選ばれた少なくとも2種の塩の水溶液の組合
せ、臭化リチウム、臭化ナトリウム、臭化カリウム、臭
化セシウム及び臭化カルシウムの中から選ばれた少なく
とも2種の塩の水溶液の組合せをあげることができる。
これらの塩は、拡散係数の相対的に大きいものと小さい
ものの2種を用いれば十分であろが、3J種類以上を用
いれば、より測定精度を上げることができる。
Examples of such things include a combination of aqueous solutions of at least two salts selected from lithium chloride, sodium chloride, potassium chloride, cesium chloride and calcium chloride, lithium bromide, sodium bromide, potassium bromide, Examples include a combination of aqueous solutions of at least two salts selected from cesium bromide and calcium bromide.
Although it is sufficient to use two types of these salts, one with a relatively large diffusion coefficient and one with a relatively small diffusion coefficient, the measurement accuracy can be further improved by using 3J or more types.

本発明を具体的に実施するには、多孔膜の一方の側に純
水を、またもう一方の側に塩溶液を接触させ、所定時間
経過後に}ける純水側の塩濃度を、例えば電気伝導度を
利用して測定し、前記塩に対する単位時間当りの透過率
を求める。
To specifically carry out the present invention, one side of the porous membrane is brought into contact with pure water and the other side is brought into contact with a salt solution, and after a predetermined period of time the salt concentration on the pure water side is adjusted by, for example, electric power. Measurement is performed using conductivity, and the transmittance per unit time for the salt is determined.

次に、塩溶液の種類を変える以外は、全く同じ条件で、
同様の操作を繰り返し、別の塩に対する単位時間当りの
透過率を求める。この際の塩溶液の濃度は、測定時間内
での純水側の塩濃度上昇八伝導度計、分光計により容易
に検知しうる程度になること、純水自体の電気伝導度や
吸収係数が大きな誤差を与えないこと、膜の有する荷電
がイオンの透過に大きな影響を与えないこと、塩の移行
による塩溶液側の濃度減少が測定結果に大きな誤差を与
えないこと等の条件を考慮し、濃度0.5〜2モル/t
の範囲で選ぶのが好ましい。この程度の濃度にすれば、
1時間当りに純水側に移行する塩は0.001〜0.0
5モル/tの割合となる。この測定を行う場合、溶液中
の濃度を均一に維持するために、十分にかきまぜながら
行うのが有利である。このようにして、10〜15分ご
との測定を2〜3回繰り返すことにより、極めて正確に
塩の透過率を求めることができる。
Next, under the same conditions except for changing the type of salt solution,
Repeat the same operation to determine the permeability per unit time for another salt. The concentration of the salt solution at this time must be such that it can be easily detected by a conductivity meter or spectrometer, and that the electric conductivity and absorption coefficient of the pure water itself will increase during the measurement time. Considering conditions such as not giving a large error, that the charge of the membrane does not have a large effect on ion permeation, and that the decrease in concentration on the salt solution side due to salt migration does not give a large error to the measurement results, Concentration 0.5-2 mol/t
It is preferable to choose within the range. At this level of concentration,
The amount of salt transferred to the pure water side per hour is 0.001 to 0.0.
The ratio is 5 mol/t. When carrying out this measurement, it is advantageous to carry out the measurement while stirring thoroughly in order to maintain a uniform concentration in the solution. In this way, by repeating the measurement 2 to 3 times every 10 to 15 minutes, the salt permeability can be determined extremely accurately.

この透過率は、必ずしも絶対的な数値を知る必要はなく
、2種若しくはそれ以上の塩の中のいずれかに対し、他
のものがどのような比率になつているのか相対的な割合
を知れば足りる。このようにして得た相対的透過率を縦
軸に、塩の拡散係数を横軸とし、それぞれの関係をグラ
フに示すと、それぞれの孔径に応じた直線が得られるが
、この直線の勾配は、孔径に対応するものとなる。
It is not necessary to know the absolute value for this transmittance, but it is necessary to know the relative ratio of one of the two or more salts to the other. That's enough. If we plot the relationship on a graph with the relative permeability obtained in this way on the vertical axis and the salt diffusion coefficient on the horizontal axis, we will obtain a straight line corresponding to each pore diameter, but the slope of this straight line is , corresponds to the pore diameter.

例えば添付図面は、横軸に拡散係数の常用対数、縦軸に
相対的透過率の常用対数をとり、5種の孔径の異なる多
孔膜ごとにプロツトしたグラフであるが、この図による
と孔径400X4000入の試料A′T!は勾配が1.
00、孔径100λの試料Bでは1.32、孔径50(
A,の試料Cでは1.43、孔径数xの試料Dでは2.
24、孔径1〜2人の試料E′C′Ft$6.63とな
り、孔径が小さくなるに従つて勾配は増大していること
がわかる。
For example, the attached drawing is a graph plotting the common logarithm of the diffusion coefficient on the horizontal axis and the common logarithm of the relative permeability on the vertical axis for each of five porous membranes with different pore sizes. Sample A'T! has a slope of 1.
00, 1.32 for sample B with a pore diameter of 100λ, and a pore diameter of 50 (
1.43 for sample C with A, and 2.43 for sample D with pore diameter number x.
24, sample E'C'Ft of 1 to 2 pore diameters was $6.63, and it can be seen that the gradient increases as the pore diameter becomes smaller.

本発明方法で測定の基そとして利用される各塩使のイオ
ン透過速度は、その原子量の大きさではなく、水和水を
含めたイメンの大きさによつて定められるので、相対的
透過率と相関関係にある因子としては、原子量又は原子
半径を用いずに、拡散係数を用いる必要がある。
The ion permeation rate of each salt used as a basis for measurement in the method of the present invention is determined not by its atomic weight but by the size of the imen including hydration water, so the relative permeability As a factor that has a correlation with the above, it is necessary to use the diffusion coefficient instead of using the atomic weight or the atomic radius.

本発明方法により、その孔径を測定しうる多孔膜は、イ
オン交換膜のように円滑なイオン透過を阻害するような
官能基を有するものでなければ、どのようなものでもよ
く特に制限はなぃ。
The porous membrane whose pore diameter can be measured by the method of the present invention is not particularly limited and may be of any type as long as it does not have functional groups that inhibit smooth ion permeation like ion exchange membranes. .

本発明によると、簡単な装置を用い、非熟練者であつて
も短時間で正確な孔径の測定値が得らねしかも測定条件
が実用条件に近いので、実用に即した結果を得ることが
できるという利点がある。
According to the present invention, even an unskilled person can obtain accurate pore diameter measurements in a short time using a simple device, and since the measurement conditions are close to practical conditions, it is possible to obtain results that are suitable for practical use. It has the advantage of being possible.

次に実施例により本発明をさらに詳細に説明する。実施
例 透析セルに一辺4C!ILの力形の多孔膜を取り付け(
有効面積3?2)、その一方の側に純水100?3を、
他方の側に濃度0.5モル/tの塩溶液100Cf!L
3を満たし、20℃に}いて、10分間経過後の各塩の
陽イ2ン通過量を純水側の電気伝導度を測定することに
よつて求めた。
Next, the present invention will be explained in more detail with reference to Examples. Example dialysis cell with 4C on each side! Attach IL force-shaped porous membrane (
Effective area 3?2), pure water 100?3 on one side,
100 Cf of salt solution with a concentration of 0.5 mol/t on the other side! L
3 and kept at 20°C for 10 minutes, the amount of each salt passing through the cation 2 was determined by measuring the electrical conductivity of the pure water side.

この場合の塩としては、塩化リチウム、塩化ナトリウム
、塩化カリウム、塩化セシウム、塩化カルシウムを用い
た。このようにして、次の5種(A−E)の多孔膜の1
分間当りのイオン通過量と、前記した各塩の水中、0.
5モル/TVC}ける拡散係数との関係をそれぞれ常用
対数単位でグラフに表わした。その結果を図面に示す。
この際の拡散係数は、アール・エィ・ロピンソン他著、
「エレクトロライト・ソリユーシヨンズ(Electr
OlyteSOlutiOns)」、第515ページ(
1959年版)に記載されたデータによつた。A:ジユ
ラガード2500膜(セラニーズ社製、ポリプロピレン
多孔膜、孔径400X4000λ、膜厚25μ)B:ウ
ルトラフィルタ一(ザルトリウス社製、硝酸セルロース
多孔膜、孔径100え、膜厚350μ) c:ウルトラフイルタ一(孔径50X以外1ゴBと同じ
)D:筋小胞体膜(T.KOmetaniandMKa
saitJOurnalOfMembraneBlOl
OgyO第41巻、第295〜308ぺ−ジ記載)E:
酢酸セルロース膜(孔径1〜2X、膜厚60μ)この図
面から明らかなように、各直線の勾配は、孔径により変
り、孔径が小さくなるほど勾配は大となつている。
As the salt in this case, lithium chloride, sodium chloride, potassium chloride, cesium chloride, and calcium chloride were used. In this way, one of the following five types (A-E) of porous membranes was prepared.
The amount of ions passing per minute and the amount of 0.
5 mol/TVC} and the diffusion coefficient are expressed in graphs in common logarithmic units. The results are shown in the drawing.
The diffusion coefficient in this case is as described by R.A. Lopinson et al.
“Electrite Solutions
OlyteSOlutiOns), page 515 (
(1959 edition). A: Jyuragard 2500 membrane (manufactured by Celanese, porous polypropylene membrane, pore size 400X4000λ, membrane thickness 25μ) B: Ultra filter 1 (manufactured by Sartorius, cellulose nitrate porous membrane, pore diameter 100, membrane thickness 350μ) c: Ultra filter 1 ( D: Sarcoplasmic reticulum membrane (T.KOmetaniandMKa
saitJOwnalOfMembraneBlOl
OgyO Vol. 41, pages 295-308) E:
Cellulose acetate membrane (pore size 1 to 2X, membrane thickness 60μ) As is clear from this drawing, the slope of each straight line changes depending on the pore size, and the slope becomes larger as the pore size becomes smaller.

したがつて、未知試料により得られたイ材ン透過量の測
定値をこれらのデータと比較することにより容易にその
孔径を知ることができる。
Therefore, by comparing the measured value of the in-material permeation amount obtained with an unknown sample with these data, the pore diameter can be easily determined.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明方法に}ける各塩の拡散係数とィメン透
過量との関係を示すグラフである。
The drawing is a graph showing the relationship between the diffusion coefficient of each salt and the amount of membrane permeation in the method of the present invention.

Claims (1)

【特許請求の範囲】 1 微小孔を有する多孔膜に対する、少なくとも2種の
異なる塩の膜透過速度を測定し、これから誘導された相
対的膜透過率とこれらの塩の拡散係数とで決定される因
子に基づき孔径を求めることを特徴とする多孔膜の孔径
測定方法。 2 少なくとも2種の異なる塩が、陰イオンを共通とし
陽イオンのみが異なるものである特許請求の範囲第1項
記載の方法。
[Claims] 1 Membrane permeation rates of at least two different salts through a porous membrane having micropores are measured, and determined from the relative membrane permeability derived therefrom and the diffusion coefficients of these salts. A method for measuring the pore diameter of a porous membrane, characterized by determining the pore diameter based on a factor. 2. The method according to claim 1, wherein the at least two different salts share an anion and differ only in cations.
JP3355279A 1979-03-22 1979-03-22 Method for measuring pore diameter of porous membrane Expired JPS5945937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3355279A JPS5945937B2 (en) 1979-03-22 1979-03-22 Method for measuring pore diameter of porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3355279A JPS5945937B2 (en) 1979-03-22 1979-03-22 Method for measuring pore diameter of porous membrane

Publications (2)

Publication Number Publication Date
JPS55125433A JPS55125433A (en) 1980-09-27
JPS5945937B2 true JPS5945937B2 (en) 1984-11-09

Family

ID=12389708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3355279A Expired JPS5945937B2 (en) 1979-03-22 1979-03-22 Method for measuring pore diameter of porous membrane

Country Status (1)

Country Link
JP (1) JPS5945937B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171654A (en) * 1982-03-31 1983-10-08 Agency Of Ind Science & Technol Membrane permeability measurement method
US5477155A (en) 1993-08-11 1995-12-19 Millipore Corporation Current flow integrity test
RU2469292C1 (en) * 2011-04-08 2012-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method of determining diffusion coefficient of liquid in capillary-porous body
RU2505796C2 (en) * 2011-06-09 2014-01-27 ФГОУ ВПО "Российский заочный институт текстильной и легкой промышленности" Method of determination of porous permeable material mass conductivity

Also Published As

Publication number Publication date
JPS55125433A (en) 1980-09-27

Similar Documents

Publication Publication Date Title
Lorimer et al. Properties of particular membranes. Transport processes in ion-selective membranes. Conductivities transport numbers and electromotive forces
Tanaka Measurements of self-diffusion coefficients of water in pure water and in aqueous electrolyte solutions
Hitchcock Protein films on collodion membranes
Gregor et al. Improved Methods of Preparation of “Permselective” Collodion Membranes Combining Extreme Ionic Selectivity with High Permeability.
Deen et al. Hindered diffusion of synthetic polyelectrolytes in charged microporous membranes
Bishop et al. Properties of liquids in small pores: Rates of diffusion of some solutes in cross-linked crystals of β-lactoglobulin
JPS5945937B2 (en) Method for measuring pore diameter of porous membrane
Beckett et al. The manual determination of ammonia in fresh waters using an ammonia-sensitive membrane-electrode
Bower Determination of sodium in saline solutions with a glass electrode
Mastroianni et al. Standard partial molal heat capacities of sodium perchlorate in water from 0-90. deg. and in anhydrous methanol from-5-55. deg.
Shuler et al. The kinetics of membrane processes. III. The Diffusion of various non‐electrolytes through collodion membranes
Bennion et al. Mass transport of binary electrolytes in membranes. concentration dependence for sodium chloride transport in cellulose acetate
Calmon Application of volume change characteristics of sulfonated low cross-linked styrene resin
JPH0547777B2 (en)
Green et al. STUDIES ON PERMEABILITY OF MEMBRANES: VII. Conductivity of Electrolytes within the Membrane.
Asaka Electrochemical properties of asymmetric cellulose acetate membranes
Yasuda et al. Measurement of diffusion coefficient and partition coefficient of sodium in nonionic polymer membranes
Toffaletti et al. Continuous-flow determination of dialyzable calcium in serum.
Armstrong et al. Exchange current determination and time-dependent effects for model liquid membrane ion-selective electrodes
Holsinger et al. Rapid determination of chloride concentration of cheese by use of a pungor electrode
Beg et al. Ionic transport of alkali chlorides in parchment supported cupric orthophosphate membrane and application of absolute reaction rate theory
Rushton et al. Measurement of total, ultrafilterable and ionised serum calcium
JP2024040876A (en) Ion exchange membrane evaluation method and quality control method
Horigome et al. Ion movements in cellulose acetate membranes
Špan et al. Transference and Conductance Measurements in Aqueous Solutions of Sodium Polystyrenesulphonate