JPS58171480A - Catalytic gasification of coal - Google Patents
Catalytic gasification of coalInfo
- Publication number
- JPS58171480A JPS58171480A JP57052307A JP5230782A JPS58171480A JP S58171480 A JPS58171480 A JP S58171480A JP 57052307 A JP57052307 A JP 57052307A JP 5230782 A JP5230782 A JP 5230782A JP S58171480 A JPS58171480 A JP S58171480A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- catalyst
- gasification
- tin
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は石炭またはその炭化物の改良された接触ガス化
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for catalytic gasification of coal or its carbides.
石炭−を水蒸気、酸素含有ガス、水素、二酸化炭素また
はこれらの混合物と反応させてガス化する方法は古くか
ら行われ、種々の方法が提案されている。しかしながら
、これらの方法は900〜100θ℃またはそれ以上の
高温度を必要とするトに、石炭類のガス化率も必らずし
も充分とは限C)なし・。反応速度の増大と同時に、脱
硫、脱硝を目的とした石炭類の接触ガス化の検討も進W
)1″]れており、アルカリ金属および一部の遷移金属
が石炭と水蒸気、水素または空気との反応速度を高める
ことが知られている。しかしながら、これらの触媒も活
性の点でなお改善の余地を残しており、さらに高活性の
触媒が要望される。Methods of gasifying coal by reacting it with steam, oxygen-containing gas, hydrogen, carbon dioxide, or a mixture thereof have been practiced for a long time, and various methods have been proposed. However, these methods require high temperatures of 900 to 100[theta]C or higher, and the gasification rate of coal is not necessarily sufficient.C) None. At the same time as increasing the reaction rate, studies are also progressing on catalytic gasification of coal for the purpose of desulfurization and denitrification.
)1''], and alkali metals and some transition metals are known to increase the reaction rate of coal with steam, hydrogen or air.However, these catalysts still require improvement in terms of activity. There is still room for this, and a catalyst with even higher activity is desired.
本発明者らは石炭類の二酸化炭素および/または水蒸気
による接触ガス化における高活性触媒を探索した結果、
鉛およびスズがgoθ℃以上の高温においてガス化速度
を著しく促進することを見い出して本発明を完成した。As a result of our search for a highly active catalyst for catalytic gasification of coal with carbon dioxide and/or steam, the present inventors found that
The present invention was completed by discovering that lead and tin significantly accelerate the gasification rate at high temperatures of goθ°C or higher.
、
本発明の石炭類の接触ガス化方法は鉛またはスズの存在
下に石炭または炭化物を二酸化炭素および/または水蒸
気と高温において反応せしめてガス化することを特徴と
するものである。The catalytic gasification method of coals of the present invention is characterized by gasifying coal or carbide by reacting it with carbon dioxide and/or water vapor at high temperature in the presence of lead or tin.
本発明において用いられる石炭は褐炭などの低品位の石
炭をも含めて広範囲の石炭が使用可能である。また石炭
の炭化物も同様に使用することができる。さらに、石炭
以外の物質の炭化物も使用できる。ガス化工程に供給さ
れる石炭類の粒度は採用されるガス化方式によって広範
囲に変り得るが、好ましくは粒径θ/n以下、特に好ま
しくは粒径θ0/ 〜0.0!;ranである。A wide variety of coals can be used in the present invention, including low-grade coals such as lignite. Also, carbide of coal can be used similarly. Furthermore, carbides of substances other than coal can also be used. The particle size of the coal supplied to the gasification process can vary widely depending on the gasification method employed, but is preferably a particle size of θ/n or less, particularly preferably a particle size of θ0/~0.0! ;ran.
触媒の存在量は原料石炭中の炭素/原子当り触媒金属θ
00/〜o、 o s原子、特に0.O/〜0.02原
子であることが好ましい。触媒は酸化物として添加され
てもよく、硫酸塩などの鉱酸塩として添加してもよく、
また酢酸塩、シュウ酸塩などのイ1゛機酸塩として添加
してもよい、あるいは、金属粉として原料石炭類に添加
することもできる。触媒の添加方法は原料石炭類に上記
の触媒前駆体または触媒を固体で混合する方法、触媒前
駆体の溶液または懸濁液を石炭類に含浸させる方法、触
媒R?J駆体の固体または水溶液を二酸化炭素および/
または水蒸気ととも吹き込んで石炭に付着させる方法な
どを、採用されるガス化方式に応じて用いろことができ
る。The amount of catalyst present is the catalyst metal θ per carbon/atom in raw coal.
00/~o, o s atoms, especially 0. It is preferable that it is O/~0.02 atoms. The catalyst may be added as an oxide or as a mineral acid salt such as a sulfate;
Further, it may be added as an acid salt such as acetate or oxalate, or it may be added to raw coal as metal powder. The catalyst can be added by mixing raw material coal with the above catalyst precursor or catalyst in solid form, impregnating coal with a solution or suspension of the catalyst precursor, or using Catalyst R? A solid or aqueous solution of the J precursor is treated with carbon dioxide and/or
Alternatively, depending on the gasification method employed, a method such as blowing it together with steam and making it adhere to the coal can be used.
ガス化剤である二酸化炭素および水蒸気は単独で、また
は混合して添加される。混合比率は1品ガスの組成に応
じて決定されるが、例えばCo、/′H20モル比で0
7〜IOの範囲が用℃・られる。これらのガス化剤は、
さらに水素または酸素含イ1゛ガスの適当量とともに用
いることができる。これらガスの量は、反応温度を保持
するに必要な量とされる。二酸化炭素または水蒸気の量
は原料石炭類中の炭素1モル当り、各々7〜2モルまた
は7〜2モルが好ましい。The gasifying agents carbon dioxide and water vapor are added alone or in combination. The mixing ratio is determined depending on the composition of the first gas, but for example, if the Co,/'H20 molar ratio is 0.
A range of 7 to IO is used. These gasifying agents are
Additionally, it can be used with appropriate amounts of hydrogen or oxygen-containing gases. The amount of these gases is determined to be the amount necessary to maintain the reaction temperature. The amount of carbon dioxide or water vapor is preferably 7 to 2 moles or 7 to 2 moles, respectively, per mole of carbon in the raw coal.
反応圧力は常圧〜/ OkYcrl aを用いるのが好
ましい。The reaction pressure is preferably normal pressure to /OkYcrla.
反応温度は触媒である鉛またはスズが金属状態を示すg
oθ℃以上、特に330℃以上が好ましい。反応温度の
上限は、反゛応炉の炉材などにより制限されるが、好ま
しくは900〜q、!;o℃である。上記の反応温度に
おいてガス化速度は著1〜く増大するが、これは鉛また
はスズがgOO℃以上の高温において金属の状態で、か
つ溶融していること、また溶融金属の表面張力が小さい
ことなどから、反応条件下で石炭類と触媒との接触が良
いためとも考えられる。The reaction temperature is the temperature at which the catalyst, lead or tin, becomes metallic.
The temperature is preferably oθ°C or higher, particularly 330°C or higher. The upper limit of the reaction temperature is limited by the reactor material, etc., but is preferably 900~q! ;o℃. The gasification rate increases significantly at the above reaction temperature, but this is because lead or tin is in a metal state and molten at a high temperature of gOO℃ or higher, and the surface tension of the molten metal is small. This may be due to good contact between the coal and the catalyst under the reaction conditions.
反応方式は固定床、流動床、輸送床、溶融床などの各方
式が用いられる。また、連続式、非連続式、あるいは内
熱式、外熱式のいずれの方式も用いられる。好ましくは
連続内熱式が用いられる。As the reaction method, various methods such as fixed bed, fluidized bed, transport bed, and molten bed are used. Further, any of a continuous type, a discontinuous type, an internal heating type, and an external heating type can be used. Preferably, a continuous internal heating type is used.
触媒として用いられた鉛またはスズはガス化上程から灰
分とともに排出される。若干の炭素(例えば灰分の70
チ)を灰分中に残すことによって鉛またはスズは金属状
態で灰分中に存在するから、適当な方法で容易に灰分が
ら回収することができる。Lead or tin used as a catalyst is discharged together with ash from the gasification stage. Some carbon (e.g. 70% of ash)
By leaving lead or tin in the ash, lead or tin exists in the ash in a metallic state, so it can be easily recovered from the ash using an appropriate method.
本発明において、触媒としてスズを用いる場合のガス転
化率は二酸化炭素をガス化剤として(11(・る方が高
いめで、スズを触媒として用いる方法では、セメント工
場、火力発電所などの高温の二酸化炭素を大量に発生す
る工場の近くに〃ス化プラントを設置するのが、二酸化
炭素の有効利用の点で好ましい。In the present invention, the gas conversion rate when tin is used as a catalyst is higher when carbon dioxide is used as a gasifying agent (11). In terms of effective use of carbon dioxide, it is preferable to install a carbon dioxide conversion plant near a factory that generates a large amount of carbon dioxide.
本発明によれば、従来のガス化温度よりも低(・温度で
、高いガス化速度とガス転化率をもって石炭類のガス化
が可能である。ま−た、ガス化温度が低いのでガス化炉
の材質、熱効率の面で有利である。According to the present invention, it is possible to gasify coal with a high gasification rate and gas conversion rate at a temperature lower than the conventional gasification temperature. It is advantageous in terms of furnace material and thermal efficiency.
以下に実施例を示して本発明を具体的に説明する。EXAMPLES The present invention will be specifically described below with reference to Examples.
実施例/
原料としてフェノール樹脂を窒素ガス中テア000℃に
おいて熱処理し、粒径7qμm以下に微粉砕して得られ
た炭素含量9ムg重量%のチャーを用いた。Example/ As a raw material, a char having a carbon content of 9 mg wt % obtained by heat-treating a phenol resin at 000° C. in nitrogen gas and pulverizing it to a particle size of 7 q μm or less was used.
このチャー1gに対して触媒前駆体として酸化スズθ0
乙g、酸化鉛θ09fi、硫酸第一スズ00乙乙g、シ
ュウ酸第−スズθ0639または酢酸第一スズθ093
gをそれぞれ添加し、モルタ−グラインダーにより、/
時間粉砕混合した。得られた各混合物をそれぞれ熱てん
びんを用い、二酸化炭素を23Qml1分の流量で流し
、毎分10℃の昇温速度で室温から1000℃まで加熱
し、温度の函数として転化率を第1図および第2図に示
したなお、比較のために触媒を添加しないチャーについ
て同様に試験を行なった。Tin oxide θ0 is used as a catalyst precursor for 1 g of this char.
Otsu g, lead oxide θ09fi, stannous sulfate 00 Otsu g, stannous oxalate θ0639 or stannous acetate θ093
g respectively, and with a mortar grinder, /
Grind and mix for hours. Each of the obtained mixtures was heated from room temperature to 1000°C at a heating rate of 10°C per minute using a thermobalance while flowing carbon dioxide at a flow rate of 23Qml per minute, and the conversion rate was calculated as a function of temperature in Figure 1. For comparison, a similar test was conducted on char shown in FIG. 2 without the addition of a catalyst.
これらの結果から明らかなように、触媒を添加しない場
合には第1図の曲線/により示された如く、1000℃
まで加熱されても転化率は/6優にすぎない。これに対
して、第1図の曲線コおよび3はそれぞれ酸化鉛および
酸化スズを添加した場合の熱重量曲線であるが、明らか
に触媒の添加により反応速度が特にg50℃以上で増大
してい゛ることか認められる。さらに第2図に示された
結果から明らかなように、スズを触媒とする場合は、触
媒活性はスズの添加形態に実質的に無関係であることが
認められる。As is clear from these results, when no catalyst is added, as shown by the curve / in Figure 1,
Even when heated to 100%, the conversion rate is only 6/6. On the other hand, curves C and 3 in Figure 1 are thermogravimetric curves when lead oxide and tin oxide are added, respectively, and it is clear that the addition of a catalyst increases the reaction rate, especially at temperatures above 50°C. It is recognized that this is true. Furthermore, as is clear from the results shown in FIG. 2, when tin is used as a catalyst, it is recognized that the catalytic activity is substantially unrelated to the form of tin addition.
実施例コ
酢酸第一スズの/2.!;%水溶液73m1及び3.5
meを実施例/で用いたチヤーコgに混合して含浸させ
、実施例/と同様にして熱重量曲線を得た。Example stannous acetate/2. ! ;% aqueous solution 73ml and 3.5
Me was mixed with Charcot g used in Example/and impregnated, and a thermogravimetric curve was obtained in the same manner as in Example/.
結果を、実施例/において固体の酢酸スズを用いて得ら
れた結果とともに第3図に示した。The results are shown in FIG. 3 together with the results obtained using solid tin acetate in Example/.
第3図から明らかなように、添加方法の相違による触媒
活性の相違は認められない。As is clear from FIG. 3, no difference in catalytic activity was observed due to the difference in the addition method.
実施例3
直径30咽、長さsootrrmの反応管を垂直に電気
炉中に置き、この中に粒径007〜0.0jtMの第1
表の組成をもつ石炭(オーストラリア産)10gを入れ
た。この石炭は予じめ、酢酸第一スズの20重量%溶液
石炭/ kg当りふθQ mlを添加して混合した。Example 3 A reaction tube with a diameter of 30 m and a length of sootrrm was placed vertically in an electric furnace, and a first particle with a particle size of 007 to 0.0 jtM was placed in the electric furnace.
10 g of coal (produced in Australia) having the composition shown in the table was added. This coal was mixed in advance by adding θQ ml of a 20% by weight solution of stannous acetate per kg of coal.
第1表
この反応管の底部から混合比率CO2/H20(モ砒)
が/の二酸化炭素と水蒸気とを毎時2モルの流量で供給
しながら、反応管温度を900°Cに保って石炭をガス
化した。反応温度が90g℃に達してから3分後の乾ガ
ス組成はH22/ %、Co A3%。Table 1 Mixing ratio CO2/H20 from the bottom of this reaction tube (More)
Coal was gasified by maintaining the reaction tube temperature at 900° C. while supplying carbon dioxide and steam at a flow rate of 2 moles per hour. Three minutes after the reaction temperature reached 90g℃, the dry gas composition was H22/%, CoA3%.
CH,0,7%、 Co2/乙チであった。石炭が全部
ガス化するまでの時間は73分であった。なお、時間の
経過とともに減少する石炭の・量に応じて供給ガス化剤
の量を減少させた。CH, 0.7%, Co2/Otsuchi. It took 73 minutes for all of the coal to be gasified. Note that the amount of gasifier supplied was reduced in accordance with the amount of coal that decreased over time.
上記と同様に反応温度をgSθ℃および9SO℃とした
場合のガス化完r時間は、それぞれlIO分および5分
であった。なお、酢酸第一スズを含浸しない石炭につい
て900℃において同様の条件でガス化を行ったが、゛
30分後のガス化率はgθチであった。Similarly to the above, when the reaction temperature was set to gSθ°C and 9SO°C, the gasification completion time was 1IO minutes and 5 minutes, respectively. Incidentally, coal not impregnated with stannous acetate was gasified at 900° C. under the same conditions, but the gasification rate after 30 minutes was gθ.
実施例q
実施例3で用いたと同様の酢酸第一スズ含浸石炭を内径
3cm、高さgOcmの試験用ガス化炉に07kg充填
した。石炭の粒径はθ/〜05閣のものを用いた。Example q 07 kg of stannous acetate-impregnated coal similar to that used in Example 3 was charged into a test gasifier having an inner diameter of 3 cm and a height of gOcm. The particle size of the coal used was θ/~05.
このガス化炉に空気を0.’/ @3/hrの流量で送
入して石炭の燃焼熱で炉内の温度を950 ’Cまで上
昇させた。ついで炉の底部からCO□10モル/hrお
よび)(2070モル/hr を炉内温度が850℃
に降下するまで供給してガス化を行なった。この間に得
られた乾ガスの平均組成は8220%、coigs。This gasifier is supplied with 0.0% air. The coal was fed at a flow rate of 3/hr, and the combustion heat of the coal raised the temperature inside the furnace to 950'C. Then CO□10 mol/hr and
Gasification was carried out by supplying water until it dropped to . The average composition of the dry gas obtained during this period was 8220%, coigs.
CH,θ/%、C0,22%であった。炉内温度かを5
0℃になったとき、CO2およびH2Oの供給を中由I
−1再び空気をQ、/ m殉rの流量で供給して酸化反
応を行ない、炉内温度を9SO℃まで上昇させ、−)(
・で上記と同様にC02およびH,Oを供給してガス化
を行なった。CH, θ/%, C0, 22%. Check the furnace temperature 5
When the temperature reached 0℃, the supply of CO2 and H2O was
-1 Air is supplied again at a flow rate of Q,/m to carry out the oxidation reaction, and the temperature inside the furnace is raised to 9SO℃, -) (
- Gasification was performed by supplying C02, H, and O in the same manner as above.
第7図、第2図および第3図は本発明方法で111いら
れる触媒の活性を示すための、温度と転化率の関係を示
すグラフである。
特許用#ji人 玉 井 十 勝第 1 図
第、2 図FIGS. 7, 2, and 3 are graphs showing the relationship between temperature and conversion rate to show the activity of the catalyst used in the method of the present invention. #ji person for patent Tokachi Tamai Figures 1 and 2
Claims (1)
炭素および/または水蒸気と高温において反応せしめて
ガス化することを特徴とする石炭類の接触ガス化方法。/ A method for catalytic gasification of coal, which comprises reacting coal or carbide with carbon dioxide and/or water vapor at high temperature in the presence of lead or tin to gasify it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57052307A JPS58171480A (en) | 1982-04-01 | 1982-04-01 | Catalytic gasification of coal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57052307A JPS58171480A (en) | 1982-04-01 | 1982-04-01 | Catalytic gasification of coal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58171480A true JPS58171480A (en) | 1983-10-08 |
JPH0416513B2 JPH0416513B2 (en) | 1992-03-24 |
Family
ID=12911125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57052307A Granted JPS58171480A (en) | 1982-04-01 | 1982-04-01 | Catalytic gasification of coal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58171480A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2485875A (en) * | 1945-01-25 | 1949-10-25 | Socony Vacuum Oil Co Inc | Production of synthesis gas |
JPS493803A (en) * | 1972-05-02 | 1974-01-14 | ||
JPS52903A (en) * | 1975-06-18 | 1977-01-06 | Battelle Memorial Institute | Fuel conversion process |
JPS5443205A (en) * | 1977-09-13 | 1979-04-05 | Mitsui Eng & Shipbuild Co Ltd | Liquefaction of hydrocarbons |
JPS5562995A (en) * | 1978-11-02 | 1980-05-12 | Metallgesellschaft Ag | Gasification of granular fuel |
-
1982
- 1982-04-01 JP JP57052307A patent/JPS58171480A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2485875A (en) * | 1945-01-25 | 1949-10-25 | Socony Vacuum Oil Co Inc | Production of synthesis gas |
JPS493803A (en) * | 1972-05-02 | 1974-01-14 | ||
JPS52903A (en) * | 1975-06-18 | 1977-01-06 | Battelle Memorial Institute | Fuel conversion process |
JPS5443205A (en) * | 1977-09-13 | 1979-04-05 | Mitsui Eng & Shipbuild Co Ltd | Liquefaction of hydrocarbons |
JPS5562995A (en) * | 1978-11-02 | 1980-05-12 | Metallgesellschaft Ag | Gasification of granular fuel |
Also Published As
Publication number | Publication date |
---|---|
JPH0416513B2 (en) | 1992-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Walker Jr et al. | Catalysis of gasification of coal-derived cokes and chars | |
US4558027A (en) | Catalysts for carbon and coal gasification | |
US4060397A (en) | Two stage partial combustion process for solid carbonaceous fuels | |
US3950267A (en) | Process for producing activated carbon | |
US1964744A (en) | Process of making carbon black | |
US20060032139A1 (en) | Method for gasifying biomass and catalyst used for said method | |
Hüttinger et al. | Influence of the catalyst precursor anion in catalysis of water vapour gasification of carbon by potassium: 1. Activation of the catalyst precursors | |
CN101445750A (en) | Method for catalyzing and gasifying carbon-based compounds by using alkali molten salt and device thereof | |
JP2018538502A (en) | Industrial furnace integrated with biomass gasification system | |
CN108946661B (en) | Method and system for preparing hydrogen through biomass gasification | |
JPH0454601B2 (en) | ||
WO2017086070A1 (en) | Method for gasifying carbonaceous fuel, method for operating iron mill, and method for producing gasified gas | |
US1917685A (en) | Recovery of sulphur | |
JP2017071692A (en) | Gasification method of carbonaceous fuel, operation method of iron mill and manufacturing method of gasified gas | |
CN106006555A (en) | System and method for preparing hydrogen-rich gas and calcium carbide | |
CN105964242B (en) | A kind of coal gasification catalyst and its preparation method and application | |
JPS58171480A (en) | Catalytic gasification of coal | |
JP5697355B2 (en) | Method for producing reduced iron | |
JPS6324979B2 (en) | ||
JP3975271B2 (en) | Biomass gasification method and catalyst used therefor | |
CN109439369B (en) | Coal-based chemical chain gasification method | |
CN106276903A (en) | A kind of system and method preparing hydrogen-rich gas and carbide | |
US3168386A (en) | Catalyzed gasification of hydrocarbons to hydrogen and carbon monoxide | |
CN205933212U (en) | System for preparation hydrogen -rich gas and carbide | |
JPS58171537A (en) | Method for refining tin and lead in combination with catalytic gasifying method for coal or the like |