JPS58170936A - Nonlinear air-spring - Google Patents

Nonlinear air-spring

Info

Publication number
JPS58170936A
JPS58170936A JP5116982A JP5116982A JPS58170936A JP S58170936 A JPS58170936 A JP S58170936A JP 5116982 A JP5116982 A JP 5116982A JP 5116982 A JP5116982 A JP 5116982A JP S58170936 A JPS58170936 A JP S58170936A
Authority
JP
Japan
Prior art keywords
air
spring
air chamber
volume
face plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5116982A
Other languages
Japanese (ja)
Inventor
Takao Yokoyama
横山 恭男
Kunio Koizumi
小泉 邦雄
Kazuhiko Matsubara
一彦 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAZAWASHI
Original Assignee
KANAZAWASHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAZAWASHI filed Critical KANAZAWASHI
Priority to JP5116982A priority Critical patent/JPS58170936A/en
Publication of JPS58170936A publication Critical patent/JPS58170936A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • F16F9/04Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall
    • F16F9/049Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall multi-chamber units

Abstract

PURPOSE:To obtain optional nonlinear characteristic of an air spring in such a way that the volume of the air-spring and the contitution of air quantitly are changed by the displacement and speed of the spring respectively. CONSTITUTION:A grooved shaft 3 is fixed to a face plate 2 on one side of an air chamber 1, while a face plate 4 on the other side is connected to a conduit 6 which links an air chamber 5 to itself and additionally serves for a guide to the grooved shaft 3. When the face plate 2 is displaced in the direction of X>O, and the groove end 7 arrives at the face place 4, the air chamber 1 is cut off from the air chamber 5 because the conduit is obturated. Thus, each spring rigity due to the air in the air chamber 1 and the air in the air chamber 5 becomes larger than that when both chambers are connected together, because the volume is divided into two. In consequence, optional nonlinearity can be obtained by combining the length of the groove, the sectional area of the shaft, and the volume of the air chambers in various ways.

Description

【発明の詳細な説明】 この発明は、ばねの変位と速度によって空気ばねの体積
および空気量の構成を変えて任意の非線形性を持つよう
にした9気はねに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nine-air spring that has arbitrary nonlinearity by changing the configuration of the volume and air amount of the air spring depending on the displacement and speed of the spring.

従来、空気ばねのばね特性に非線形性を与えるには、ダ
イアプラム形においては、ダイアプラム接触面の形状を
変化させることによっており、ベローズ形では有効な方
法がない。また前者においても圧縮側と伸張側でばね特
性の大きく異なる非対称性を持たせることは困難であっ
た。
Conventionally, nonlinearity has been imparted to the spring characteristics of air springs by changing the shape of the diaphragm contact surface for diaphragm type air springs, but there is no effective method for bellows type springs. Also, in the former case, it was difficult to create an asymmetry in which the spring characteristics differ greatly between the compression side and the expansion side.

この発明は、圧縮側と伸張側ではね特性が大きく異ガる
強い非対称性を持った空気ばねを得ることおよび速度に
よってばね特性を変化させることを、空気を外部に排出
したシ吸入したシせずに行うとと吃に、ばね特性全体を
調節できるようにすることを目的としておシ、ピストン
ロッドをハンマにして空気シリンダ式箔打機械その他に
そのまま用いることができる。
This invention aims to obtain an air spring with a strong asymmetry in which the spring characteristics are greatly different between the compression side and the expansion side, and to change the spring characteristics depending on the speed. In order to be able to adjust the overall spring characteristics, the piston rod can be used as a hammer and used directly in air cylinder type foil stamping machines and other machines.

この発明を図面にもとついて説明すると、第1図におい
て空気室(1)の一方の面板(2)に溝付軸(3)を固
定する。他方の面板(4)は溝付軸(3)の案内を兼ね
て空気室(5)を連結する導通管(6)に接続されてい
る。面板(2)がX>O方向に変位し、溝端(7)が面
板(4)に達したとき、導通管がふさがれて空気室(1
)と空気室(5)が遮断される。これによって空気室(
1)内の空気と空気室(5)内の空気による各々のばね
こわさけ、体積が2分されるた杓、導通していたときの
ばねこわさに比べて大きくなる。そして、これらは並列
ばねを構成するため、全体のばねこわさが一層増大する
とともに、ハードげねの性質を示す、逆に面板(2)が
X<O方向に変位し、溝端(7)が面板(4)よりも内
偶に入ると、壽を通して空気室(1)と空気!(5)が
導通管(6)を通して接続され、体積が一体となるので
、ばねこわさが減少する。そしてソフトげねの性質を示
す。このよう力ばねこわさの切や換わりは溝端(7)の
位置によるので、溝を長くすれば第2図に示すように切
υ換わりAtOから0.に、短くすれはOl に移動さ
せることができる。
The present invention will be explained based on the drawings. In FIG. 1, a grooved shaft (3) is fixed to one face plate (2) of an air chamber (1). The other face plate (4) serves as a guide for the grooved shaft (3) and is connected to a conductive pipe (6) that connects the air chamber (5). When the face plate (2) is displaced in the X>O direction and the groove end (7) reaches the face plate (4), the conduction pipe is blocked and the air chamber (1
) and the air chamber (5) are cut off. This allows the air chamber (
1) The stiffness of each spring due to the air inside the air chamber (5) and the air inside the air chamber (5) is larger than the stiffness when the volume is divided into two, compared to when the spring is electrically conductive. Since these constitute parallel springs, the overall spring stiffness further increases and exhibits the properties of a hard spring.Conversely, the face plate (2) is displaced in the X<O direction, and the groove end (7) is When entering the inner figure from (4), the air chamber (1) and air! (5) are connected through the conduit tube (6) and the volume is unified, so the spring stiffness is reduced. And shows the properties of soft bones. The change in stiffness of the force spring depends on the position of the groove end (7), so if the groove is made longer, the stiffness changes from AtO to 0 as shown in Figure 2. In other words, a short slip can be moved to Ol.

また溝付軸の断面積Aを変えることによってもX〉0@
のばねこわさを変化させることができ、導通管内の排除
体積大Xが空気室(5)の体積に対して大きくなると、
X〉Oaのばねこわさを一層大きくできるので、溝の長
さ、軸の断面積および空気室の体積を組み合わせて、任
意の非線形性を得ることができる。
Also, by changing the cross-sectional area A of the grooved shaft,
The stiffness of the spring can be changed, and when the excluded volume X in the conduction pipe becomes larger than the volume of the air chamber (5),
Since the spring stiffness of X〉Oa can be further increased, arbitrary nonlinearity can be obtained by combining the length of the groove, the cross-sectional area of the shaft, and the volume of the air chamber.

@3図はベローズ形空気ばねに遮断弁と弁座を内蔵させ
る場合の実施態様を示す吃ので、空気室01)と空気室
09の間に弁座α◆を設け、一方、面板α→に速断弁へ
1を固定する。面板(1aがX>O方向に変位すると、
a図の場合は、遮断弁0が弁座α4に@着して空気室(
ロ)はばねとしての効果を失い、空気室(lGだけが有
効になる。b図の場合は、遮断弁a3が弁座a4から離
れ、空気室(至)が接続されて一体となる。xく0方向
の変位ではこれが逆になり、はね特性は第4図に示すよ
うに色囲の場合は実線、b図の場合は破線のようになる
。第2図の場合と同様、速断弁α]の固定高さを変える
ことにより、切り換わシ点の移動が可能である。
@Figure 3 shows an embodiment in which a shutoff valve and a valve seat are built into a bellows type air spring, so a valve seat α◆ is provided between the air chamber 01) and the air chamber 09, while the face plate α→ Fix 1 to the quick-release valve. When the face plate (1a is displaced in the X>O direction,
In the case of figure a, the shutoff valve 0 is placed on the valve seat α4 and the air chamber (
b) loses its effect as a spring, and only the air chamber (lG) becomes effective. In the case of figure b, the shutoff valve a3 is separated from the valve seat a4, and the air chambers (to) are connected and integrated. x This is reversed for displacement in the zero direction, and the splash characteristics are as shown in Figure 4, with solid lines in the case of colored circles and broken lines in Figure b.Similar to the case of Figure 2, the quick-acting valve By changing the fixed height of α], the switching point can be moved.

第5図は戻し管をシリンダに取り付ける場合の実施態様
を示すもので、シリンダQ])の2個所に孔をあけ、戻
し管(イ)を取り付ける。ピストン(ハ)がX〉0方向
に変位し、戻し管(イ)の一方の孔(ハ)をふさいだと
き、ピストン翰によってシリンダQl)内の空気室が(
ト)と(イ)に2分されて並列ばねを構成し、ばねこわ
さが増大する。逆にピストン(ハ)がX〈0方向に変位
し、孔(ハ)を通過すると、戻し管翰を通して、2分さ
れていた空気室輸と勿が接続され、空気が翰から翰に戻
されるので、ばねこわさが小さくなる。ピストン(ハ)
の運動速度が小さければ、ばねこわさはOとかり、速度
が上昇するにしたがって戻し管内の流れ抵抗の増大によ
ってばねこわさ本上昇する。この切り換わ9は孔(ハ)
の位置によるので、位置を他方の孔四の位置から遠ざけ
て設置すると、第6図に示すように切り換わり点をPか
らP、に移動させ、かつ空気室−のばねこわさを太きく
し、近づけて設置するとPからP、に移動させ、かつ空
気室に)のばねこわさを小さくすることができる。
FIG. 5 shows an embodiment in which a return pipe is attached to a cylinder. Holes are made at two locations in the cylinder Q]) and the return pipe (A) is attached. When the piston (c) is displaced in the X>0 direction and blocks one hole (c) of the return pipe (a), the air chamber in the cylinder Ql) is
It is divided into two parts (g) and (a) to form a parallel spring, increasing the stiffness of the spring. On the other hand, when the piston (C) is displaced in the X<0 direction and passes through the hole (C), the air chamber, which was divided into two, is connected to the air chamber through the return pipe, and the air is returned from the pipe to the pipe. Therefore, the spring stiffness is reduced. Piston (c)
If the velocity of motion of This switch 9 is a hole (c)
Since it depends on the position of the other hole 4, if it is installed far away from the other hole 4, the switching point will be moved from P to P as shown in Figure 6, and the stiffness of the spring of the air chamber will be thickened and it will be moved closer. When installed in the air chamber, it is possible to move from P to P and reduce the stiffness of the spring in the air chamber.

tK1図、第3図およびwIJ5図の実施態様と本複合
させることにより、さらに複雑なばね特性を持たせるこ
とができる。
By combining this with the embodiments shown in Figure tK1, Figure 3, and Figure wIJ5, it is possible to provide even more complex spring characteristics.

その1例を第7図に示す。シリンダ(31)の直径の異
なる2個所に孔をあけ、戻し管(32)f取り付ける。
An example is shown in FIG. Drill holes in two different diameters of the cylinder (31) and attach the return pipe (32) f.

、ピスト:/ (33)と(33&)がX>O方向に変
位し、戻し管(82)の両方の孔を同時に通過したとき
、戻し管(32)によって空気室(34)と(34a)
が接続される。ピストン(33m)が空ヤ室(34m)
で排除し死体9は空気室(34)に戻されるのでピスト
ン(33a)の作用は無効となり、この部分Fi空気室
(34)と(341!L)の体積を持つピストン(33
)の空気ばねと々る。これと空気室(34b)の空気ば
ねが並列ばねを構成する。このとき空気室(35)の体
積に比べ空気室(34)と(34a)の体積を十分大き
くすれば、はとんど空気室(34b)のみの空気はねと
みなせるように力る。
, piston:/ When (33) and (33&) are displaced in the X>O direction and pass through both holes of the return pipe (82) at the same time, the air chambers (34) and (34a) are opened by the return pipe (32).
is connected. Piston (33m) is empty chamber (34m)
Since the corpse 9 is returned to the air chamber (34), the action of the piston (33a) becomes invalid, and this part Fi air chamber (34) and the piston (33) with a volume of (341!L) are removed.
)'s air spring. This and the air spring in the air chamber (34b) constitute a parallel spring. At this time, if the volumes of the air chambers (34) and (34a) are made sufficiently larger than the volume of the air chamber (35), the air will be forced so that only the air chamber (34b) can be regarded as an air splash.

逆にヒストン(33)と(33m)がX<O方向に変位
して再び両方の孔を通過したときは、戻し管によって空
気室(34&)と(34b)が接続され、この部分は空
気室(3ha)と(34b)の体積を持つピストン(3
3m)の空気ばねとなる。これと空気(34)の空気ば
ねとで並列はねを構成するが、この場合49気室(34
)の体積に比べ空気室(s4m)と(34b)の体積が
十分太きければ、はとんど空気室(34)による空気ば
ねとなる。したがって空気室(34)と(34b)の体
積の比が大きいほど非対称性の強い非線形ばねが得られ
る。
Conversely, when histones (33) and (33m) are displaced in the X<O direction and pass through both holes again, the air chambers (34 &) and (34b) are connected by the return pipe, and this part becomes an air chamber. A piston (3 ha) with a volume of (34 b)
3m) air spring. This and the air spring (34) form a parallel spring, but in this case, 49 air chambers (34)
) If the volumes of the air chambers (s4m) and (34b) are sufficiently large compared to the volume of the air chambers (34), the air springs will mostly be formed by the air chambers (34). Therefore, the larger the ratio of the volumes of the air chambers (34) and (34b), the more asymmetrical a nonlinear spring can be obtained.

第8図はタンクと絞υ弁を含む戻し管の実施態様を示す
本のである。タンク(41)は所要のばねこわさを得る
ための体積の調節をするものであり、絞り弁(42)は
ピストン(43)の運動速度によるばねこわさの変化を
調節するものである。1図はシリンダ(44)に2個所
孔をあけ、該シリンダ(44)の外部に戻し9 (45
)を配管し、その途中にタンク(41)と絞り弁(42
)を取り付けた場合である。
FIG. 8 is a book showing an embodiment of a return pipe including a tank and a restrictor valve. The tank (41) is used to adjust the volume to obtain the required spring stiffness, and the throttle valve (42) is used to adjust the change in spring stiffness depending on the movement speed of the piston (43). In Figure 1, two holes are made in the cylinder (44) and the holes are returned to the outside of the cylinder (44) 9 (45
), and a tank (41) and a throttle valve (42) are installed in the middle of the pipe.
) is installed.

b図はシリンダ(44a)の壁間に設けた空洞によって
戻し管(a5m)とタンク(41a)を構成するととも
に、絞り弁(4h)を組み込んだ場合である。0図はタ
ンクと絞り弁を省略し、シリンダ(44b)の内壁に溝
(45b)を設け、戻し管の作用をさせる場合である。
Figure b shows a case in which a return pipe (a5m) and a tank (41a) are constructed by a cavity provided between the walls of the cylinder (44a), and a throttle valve (4h) is also incorporated. Figure 0 shows a case in which the tank and throttle valve are omitted, and a groove (45b) is provided in the inner wall of the cylinder (44b) to function as a return pipe.

この発明は以上説明したように、ばねの変位と速度を利
用して空気げねの構成を変えることによって、特に強い
非対称性を持った非線形げねを得る効果がある。
As explained above, the present invention has the effect of obtaining a nonlinear generator with particularly strong asymmetry by changing the configuration of the air generator using the displacement and speed of the spring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溝付軸による実施態様の縦断面図、第2図はそ
の場合のばね特性、第3図Fi連断弁による実M態樟の
縦断面図、第4図はその場合のはね特性、第5図は戻[
7管による実施態様の縦断面図、第6図はその場合のぼ
れ特性、第7図は2つのピストンを持つ場合の戻し管に
よる実施態様の縦断面図、第8図はタンクと絞り弁を含
む戻し管による実施態様の縦断面図を示したもので、(
1)(5)、αυ(2)、(ハ)匈及び(34) (3
4a) (34b)は空気室。 特許出願人  金    沢    市発  明  者
   横   山   恭   男同        
 小   泉   邦   雄第1図 第3図 第5図 第2図 第4図 第6図
Fig. 1 is a longitudinal cross-sectional view of an embodiment using a grooved shaft, Fig. 2 is a spring characteristic in that case, Fig. 3 is a longitudinal cross-sectional view of an actual M-mode camphor with an Fi connection valve, and Fig. 4 is a longitudinal cross-sectional view of an embodiment using a grooved shaft. The characteristic, Figure 5 is back [
A longitudinal section of the embodiment with seven pipes, FIG. 6 shows the runout characteristics in that case, FIG. 7 shows a longitudinal section of the embodiment with return pipes in the case of two pistons, and FIG. 8 includes the tank and throttle valve. A vertical cross-sectional view of an embodiment with a return pipe is shown (
1) (5), αυ (2), (c) Xiong and (34) (3
4a) (34b) is an air chamber. Patent applicant: Kanazawa City Inventor: Takashi Yokoyama
Kunio KoizumiFigure 1Figure 3Figure 5Figure 2Figure 4Figure 6

Claims (1)

【特許請求の範囲】[Claims] ばねの変位に依存して、分銅空気室の接続を切シ換える
ことにょシ、空気ばねとしての体積の構成を変えたり、
分割空気室間を流れる空気を絞ることによって、ばねの
速度に依存して空気量の構成を変えてばねこわさを変化
させ、肉刺9気を外部に吸排気することなくばね特性に
非線形性を持たせることを特徴とする非線形空気ばね。
Depending on the displacement of the spring, the connection of the weight air chamber can be switched, the volume configuration as an air spring can be changed,
By restricting the air flowing between the divided air chambers, the stiffness of the spring can be changed by changing the composition of the air amount depending on the speed of the spring, and non-linearity can be achieved in the spring characteristics without drawing or exhausting the air to the outside. A nonlinear air spring characterized by
JP5116982A 1982-03-31 1982-03-31 Nonlinear air-spring Pending JPS58170936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5116982A JPS58170936A (en) 1982-03-31 1982-03-31 Nonlinear air-spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5116982A JPS58170936A (en) 1982-03-31 1982-03-31 Nonlinear air-spring

Publications (1)

Publication Number Publication Date
JPS58170936A true JPS58170936A (en) 1983-10-07

Family

ID=12879317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5116982A Pending JPS58170936A (en) 1982-03-31 1982-03-31 Nonlinear air-spring

Country Status (1)

Country Link
JP (1) JPS58170936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169923A (en) * 2002-11-21 2004-06-17 Oehlins Racing Ab Pneumatic spring damper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169923A (en) * 2002-11-21 2004-06-17 Oehlins Racing Ab Pneumatic spring damper
JP4557531B2 (en) * 2002-11-21 2010-10-06 オーリンス レーシング アクティエ ボラーグ Gas spring type shock absorber

Similar Documents

Publication Publication Date Title
KR870003151A (en) Silica Reinforced Fillers of Elastomers
JPH01188733A (en) Fluid-pneumatic pressure impact-vibration damper
GB2108061A (en) Motorcycle front suspensions
JPH03125046A (en) Hydraulic cushion type cylindrical rubber seat
JP2001208123A (en) Hydraulic buffer
CN100542878C (en) Vehicle suspension systems
JPS58170936A (en) Nonlinear air-spring
KR20020049528A (en) Shock absorber
JPH03199735A (en) Vibro-isolating device
KR960032032A (en) Full Circle Vibration Attenuation Piece
JPH029343U (en)
JPH02114506U (en)
SU1516658A2 (en) Damper
JPS6173941U (en)
SU1377480A1 (en) Pneumatic cushion
JPS63142437U (en)
JP2854874B2 (en) Inverted front fork
JPH0224983Y2 (en)
SU657197A1 (en) Hydropneumatic vibration-damping device
JPH11257406A (en) Damper for railway rolling stock
JPS63109053U (en)
JPH0118472Y2 (en)
JPS62233536A (en) Hydraulic shock absorber
JPH0412264Y2 (en)
JPH041756U (en)