JPS58170868A - Vane type pump - Google Patents
Vane type pumpInfo
- Publication number
- JPS58170868A JPS58170868A JP5107982A JP5107982A JPS58170868A JP S58170868 A JPS58170868 A JP S58170868A JP 5107982 A JP5107982 A JP 5107982A JP 5107982 A JP5107982 A JP 5107982A JP S58170868 A JPS58170868 A JP S58170868A
- Authority
- JP
- Japan
- Prior art keywords
- vane
- curve
- discharge
- cam ring
- cam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/30—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C2/34—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
- F04C2/344—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C2/3441—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
Abstract
Description
【発明の詳細な説明】 本発明はベーン型ポンプに関する。[Detailed description of the invention] The present invention relates to a vane type pump.
自動車用パワーステアリング*に用いられるベーン溜油
圧ポンプには吐出流量0変動を最小にすることが要求さ
れている。そのために1従来のベーン型油圧ポンプにお
いては吐出行程におけるカム内面形状がサイクロイド曲
線又は高次曲線で形成され、その前後の円弧曲線になだ
らかに接続するようになっている。即ち、第1図は圧力
平衡型ベーン型ポンプ、第2図は圧力非平衡型ベーン型
ポンプの横断両開をそれぞれ示し、1はカムリング、2
はロータ、3はロータ2にその直径方向に摺動自在に!
I持されるベーン、4は吸入口、5は吐出口でTo)、
If−夕2のあらゆる回転位においてもべ−73はカム
リングlのカム内面1′と摺接すゐ。ポンプの作用は、
ベー73が吸入口4を通過する吸入行程、吸入口4の終
端部と吐出口5の始端部とO関に形成される閉じ込み行
程、吐出口5を通過する吐出行程によりて行われる。閉
じ込み行程のカムリング内面はロータ20回転軸線と内
心の円弧、又はこの円弧を基11jKして僅かの予圧縮
作用を持九−を九−線が用いられ、この区間のべ−7の
単位角度当シの作動室容積変化は一定となっている。し
かしながら、その回転前方にある作動室では吐出行程の
カム内面形状に追従してリフトを減少するベーン(第1
図及び第2図において3aで示されゐ)のリフト部分容
積の変化によって吐出量は影響を受けることになる。図
に示すような構成のポンプ吐出量Q[#’/S)は、但
し、RTtIllじ込み行程の円弧半径〔鱗〕rr+
a−夕半径〔−〕
Rc:吐出行程のカム曲線の動径〔餌〕ω;ベーンの角
速度(rad/s)
B:ベーンの厚さ
W:カム及びベーンの軸方向の長さ〔簡〕となり、dR
c/dtを除き全て定数で表わせるが、d R(、’d
tはす力わちベーン3黛のリフト変化速度を表すもの
で、RCが前述のようにナイフロイド曲線或いは高次曲
線の場合には、ベーン31の位相によってその値は変化
し、その結果ポンプ吐出示すような構成のベーン型油圧
ポンプの成る1枚のベーン3mが吐出行程を瑚過すると
きのポンプ流量Qは、第4図のグラフの実#に示される
ように変動し、ベーン3が吐出口5を通過する角度ψを
1サイクルとして、べ一73の通過毎に変動のあるナイ
クルを続けることになる。Vane reservoir hydraulic pumps used in automobile power steering* are required to minimize zero variation in discharge flow rate. For this reason, in a conventional vane type hydraulic pump, the inner surface of the cam during the discharge stroke is formed into a cycloidal curve or a higher-order curve, which smoothly connects to the arcuate curves before and after the cycloidal curve. That is, Fig. 1 shows a pressure-balanced vane type pump, and Fig. 2 shows a pressure non-balanced vane type pump with both transverse openings.
is the rotor, and 3 is slidable in the diametrical direction of the rotor 2!
I hold the vane, 4 is the suction port, 5 is the discharge port (To),
At any rotational position of If-2, the support 73 comes into sliding contact with the cam inner surface 1' of the cam ring 1. The action of the pump is
A suction stroke in which the bay 73 passes through the suction port 4, a confinement stroke in which the valve 73 passes through the discharge port 5, and a confinement stroke is formed between the terminal end of the suction port 4 and the beginning end of the discharge port 5. The inner surface of the cam ring during the closing stroke has a slight precompression effect based on the circular arc between the rotor 20 rotational axis and the inner center, or based on this circular arc. The volume change of the working chamber in this case is constant. However, in the working chamber in front of the rotation, there is a vane (the first
The discharge rate will be affected by the change in the volume of the lift portion (indicated by 3a in FIG. 3 and FIG. 2). The pump discharge amount Q [#'/S) of the configuration shown in the figure is, however, the arc radius [scale] rr + of the RTtIll insertion stroke.
a-Evening radius [-] Rc: Radius of the cam curve in the discharge stroke [bait] ω; Angular velocity of the vane (rad/s) B: Thickness of the vane W: Axial length of the cam and vane [simplified] So, dR
All except c/dt can be expressed as constants, but d R(,'d
t represents the force, that is, the rate of change in lift of the vane 3. If RC is a kniferoid curve or a higher-order curve as described above, its value changes depending on the phase of the vane 31, and as a result, the pump The pump flow rate Q when one vane 3m of the vane type hydraulic pump having the configuration shown in FIG. The angle ψ of passing through the discharge port 5 is defined as one cycle, and the cycle continues with fluctuation every time the bead 73 passes.
本発明は上記問題点に鑑みなされたもので、吐出流量及
び圧力の変動の少いべ一/型ポンプを提供することを目
的とする。The present invention was made in view of the above-mentioned problems, and an object of the present invention is to provide a single-type pump with less variation in discharge flow rate and pressure.
以下本発明の実施例について詳細に説明する。Examples of the present invention will be described in detail below.
第5図は本発明によるベーン型ポンプの1実施例の断面
図を示し、同一部分には同一記号を付して示す。lはカ
ムリングで、その内面形状1′は本発明によってアルキ
メデス曲線に基いて形成される。FIG. 5 shows a sectional view of one embodiment of the vane type pump according to the present invention, and the same parts are designated with the same symbols. 1 is a cam ring, and its inner surface shape 1' is formed based on an Archimedean curve according to the present invention.
即ち、吸入口4及び吐出口5に重畳する部位のほとんど
がアルキメデス曲線に沿りて形成され、該部位の両端の
小範囲がその他の円弧部分に円滑に接続されるような高
次の移行曲線に沿りて形成される。一方、ベーン3#′
iロータ2を直径方向に貫通して延び、1枚のベーン3
a、3bの両端がカムリングlの対向する内面にそれぞ
れ常に摺接するように形成される。成るベーン3aと他
のベーン3bとが交差する部位においては、ぺ一73゜
3m、3bが相互に干渉しないように適切に形成される
。Il匍のことであゐが、吸入口4及び吐出口5はカム
リングlの側面を閉塞するサイドプレート(図示せず)
K設吋られる。That is, most of the parts that overlap the inlet 4 and the outlet 5 are formed along an Archimedean curve, and a high-order transition curve in which small ranges at both ends of the part are smoothly connected to other arcuate parts. formed along the On the other hand, vane 3#'
i Extending through the rotor 2 in the diametrical direction, one vane 3
Both ends of a and 3b are formed so that they are always in sliding contact with the opposing inner surfaces of the cam ring l. In the area where the vane 3a intersects with another vane 3b, the blades 73.3m and 3b are appropriately formed so as not to interfere with each other. The intake port 4 and the discharge port 5 are side plates (not shown) that close the sides of the cam ring 1.
K is installed.
ここで、カムリング1のカム内面1′を形成する曲線の
例を説明する。尚、各記号は上述の(1)式において用
いたものと同一であるが、−は吐出口5の終端を基点と
してw、5図において時計回シ方向の角度〔「ad〕と
し、Rはロータ2の中心を基点としたカムリング1のカ
ム内面までの長さ〔■〕とする。h及びkは連続曲線を
得るために適切に選択した宇数である。又、ψ/2はこ
こでは第6図に示されるように移行曲線の角度範囲とす
る。Here, an example of a curve forming the cam inner surface 1' of the cam ring 1 will be explained. In addition, each symbol is the same as that used in the above-mentioned formula (1), but - is w with the terminal end of the discharge port 5 as the base point, and in Fig. 5, the angle [ad] in the clockwise direction is indicated, and R is The length from the center of the rotor 2 to the inner surface of the cam of the cam ring 1 is [■]. h and k are numbers appropriately selected to obtain a continuous curve. Also, ψ/2 is The angle range of the transition curve is as shown in FIG.
(a) 小円弧部(O<0≦π/2)Rヰ’r
(2)(b) 吸入行程(π
/2〈−≦K)(b−1)移行曲線:サイクロイド曲線
半周期θ′ l
Re= r、 十h(j −]sin (2fθりf)
) (3)(但し、θ′=e−π/2)
(b−2) 主曲線:アルキメデス曲線R=rr十h
/2十区・#’ (4)(但し、F、=I−
π/2−ψ/2)
(b −3)移行曲線!ナイフロイド曲線半周期Re
r、 +x・(π/2−9)+
h (17?−B stn (2xθytp>>
(5)(但し、Q′−m−π+ψ)
(C) 閉じ込奉行s!(π〈θ≦3π/2)1−R
r (6)(d) 吐出
性I!(3π/2〈θ≦2π)(d−1)移行1ikl
l:ナイフロイド曲線半屑期11 = Rr−k(#’
/?−ユsin (2r#’/9’)) (7)K
(但し、#=#−3x/2)
(d−2)主1lklIXアルキメデス曲線1wBr
−1m12− K−11’ (8)(但し
、#’=$−3π/2−ψ/2)Cd−3) m1行曲
ill:?イクロイド曲線半周期R−Br−K(π/2
−ψ)−
1。(a) Small circular arc part (O<0≦π/2) Rヰ'r
(2) (b) Suction stroke (π
/2〈-≦K) (b-1) Transition curve: cycloid curve half period θ′ l Re= r, 10h(j −] sin (2fθrif)
) (3) (However, θ'=e-π/2) (b-2) Main curve: Archimedean curve R=rr1h
/20 wards・#' (4) (However, F, = I-
π/2−ψ/2) (b −3) Transition curve! Kniferoid curve half period Re
r, +x・(π/2-9)+h (17?-B stn (2xθytp>>
(5) (However, Q'-m-π+ψ) (C) Confinement magistrate s! (π〈θ≦3π/2)1−R
r (6) (d) Dischargeability I! (3π/2〈θ≦2π) (d-1) Transition 1ikl
l: kniferoid curve semi-waste period 11 = Rr-k(#'
/? - Yusin (2r#'/9')) (7) K (however, #=#-3x/2) (d-2) Main 1lklIX Archimedean curve 1wBr
-1m12- K-11' (8) (However, #'=$-3π/2-ψ/2)Cd-3) m1 row ill:? Ikroid curve half period R-Br-K (π/2
−ψ)−1.
h(#7ψ−stn (2r#2F) ) (9
)2π
(但し、#=#−2π+ψ)
上記諸式においては、
R(θ)十R(θ十K)=一定 (10)とな
るので、1枚のベー73m、3bをロータ2を貫通して
その両端をカム内面1′のそれぞれ対向する2位置に常
に摺接する構成を可能とするものである。h(#7ψ-stn (2r#2F)) (9
)2π (However, #=#-2π+ψ) In the above formulas, R(θ) + R (θ + K) = constant (10), so one bee 73m, 3b is passed through the rotor 2. This enables a structure in which both ends thereof are always in sliding contact with two opposing positions on the inner surface 1' of the cam.
第6図は第5図の構成によるベーン型ポンプの上記諸式
に基くR線図で、k及びhは移行曲線の両端がそれぞれ
円弧とアルキメデス曲線の傾きと同一〇接線を持つよう
表値となっている。又、ベーンのリフト速度を表す真曲
線、ベーンのリフト加速度を表すに曲線も同時に示され
、これらの曲線においても移行曲線と瞬接の他の曲線と
は円滑に連続する。Figure 6 is an R diagram based on the above formulas for the vane type pump with the configuration shown in Figure 5, where k and h are table values so that both ends of the transition curve have a circular arc and a tangent line that is the same as the slope of the Archimedean curve, respectively. It becomes. Further, a true curve representing the lift speed of the vane and a curve representing the lift acceleration of the vane are also shown at the same time, and in these curves as well, the transition curve and other curves of instantaneous contact are smoothly continuous.
上記構成のベーン型ポンプ0作用について説明する。The zero operation of the vane type pump having the above configuration will be explained.
ロータ2が第5図において時計回p方向に@転されると
、カムリング1の内面1′とロータ2の外面と2枚のベ
ーン3a、3bとで囲まれる作動室の容積は、吸入行程
て増加し、吸入口4より油を作動室内に流入させるC、
これが閉じ込み行程で閉鎖され、はぽ一定O容積で吐出
行程に運ばれ、作動室の客積が減少するので油は加圧さ
れながら吐出口5から吐出する。When the rotor 2 is rotated clockwise in the direction P in FIG. C, which causes oil to flow into the working chamber from the suction port 4;
This is closed in the confinement stroke and carried to the discharge stroke with a constant volume of 0. Since the volume of the working chamber is reduced, the oil is discharged from the discharge port 5 while being pressurized.
本実施例におけるぺ一73の吐出行程中のリフト変化速
度は第5図の血縮図に示すように一定であシ、前述した
(1)式のdRe/dtが一定となシ、ポンプ吐出量q
は一定となる。移行曲線ではdRe /d tは一定と
ならないが、吐出行程全域中に占める割合が小さいので
全体としての吐出流量の変動は小さくなシ、吐出圧力は
着しく安定する。In this embodiment, the rate of change in lift during the discharge stroke of the pump 73 is constant as shown in the blood contraction diagram in FIG. q
becomes constant. Although dRe/dt is not constant in the transition curve, since it occupies a small proportion of the entire discharge stroke, the overall fluctuation in the discharge flow rate is small and the discharge pressure is fairly stable.
一方、ベーンのリフト加速度はR線図から分るように急
激な変化を示すようKなるが、第5図に示す構成のベー
ン型ポンプにおいては、ペー/3m、3bがロータ内を
直径方向に貫通し、その両端が常にカム内面形状に追従
して摺接するので、加速度の変化ははとんどMl!とな
らないようにすることができゐ。On the other hand, as can be seen from the R diagram, the lift acceleration of the vane shows a sudden change at K, but in the vane type pump with the configuration shown in Fig. It penetrates through the cam, and both ends always follow the inner surface shape of the cam and slide into contact, so the change in acceleration is almost Ml! You can prevent this from happening.
又、上記実施例においてFi閉じ込み行程に円弧形状を
採用したが、本発明は、予圧縮作用を持たせたカム内面
形状とするとともできる。このためには、1腹当シ数μ
mから10数μm変化するアルキメデス曲線を用いて、
吐出行程又は吸入行程のアルキメデス曲線と次の条件を
満足する5次曲線を移行曲線によって接続することがで
きる。Furthermore, although in the above embodiments the Fi confinement stroke has an arcuate shape, the present invention can also adopt a cam inner surface shape that has a pre-compression effect. For this purpose, the number of per allowance μ
Using an Archimedes curve that changes from m to 10-odd μm,
The Archimedean curve of the discharge stroke or suction stroke can be connected by a transition curve to a quintic curve that satisfies the following conditions.
但し、α、β:接続位置の角度、
R,、R,:移行曲線の動径
Kl p Kl ”移行曲線の両端に接続するアルキメ
デス曲線の傾き。However, α, β: Angle of the connection position, R,, R,: Radius of the transition curve Kl p Kl ” The slope of the Archimedean curve connected to both ends of the transition curve.
以上説明したように、本発明によれば、吐出流量の変動
の原因と力る吐出行程中のベーンリフト速度を一定にし
て、吐出流量変動に起因する吐出圧力脈動を低減する効
果を有する。又、カムリング内面形状を回転対称に形成
すれば、ベーンをロータを貫通してその両端が同時にカ
ムリング内面に摺接するようにすることができ、ベーン
のりフト加速度変化をカムリング内面形状焚化に一層良
く追従させることができ作動の優れたベーン型ポンプを
得ることができる。As described above, according to the present invention, the vane lift speed during the discharge stroke, which is the cause of fluctuations in the discharge flow rate, is kept constant, thereby reducing discharge pressure pulsations caused by fluctuations in the discharge flow rate. In addition, if the cam ring inner surface shape is formed rotationally symmetrically, the vane can pass through the rotor and both ends of the vane can slide against the cam ring inner surface at the same time, allowing the vane drift acceleration to better follow the cam ring inner surface shape. A vane type pump with excellent operation can be obtained.
第1図及び第2図は一般に用いられるベーン型ポンプの
横断面図、第3図及び第4図は従来のベーン型ポンプの
吐出流量変動を説明するための断面図及びグラフ、第5
図は本発明を適用したベーン型ポンプの実施例の横断面
図、第6図は第5図のべ一/型ポンプのR線図、kIl
j図及びに線図であみ。
1・・・カムリング、2・・・ロータ、3・・・ベーン
、4・・・吸入口、5・・・吐出口っ
特許出願人
株式会社 日本自動車部品総合研究所
特許出願代理人
弁理士 青 本 朗
1Pi1士西舘和之
弁理土中山恭介
弁理士 山 口 昭 之
第2図
第3図
第4図FIGS. 1 and 2 are cross-sectional views of commonly used vane-type pumps, FIGS. 3 and 4 are cross-sectional views and graphs for explaining discharge flow rate fluctuations of conventional vane-type pumps, and FIG.
The figure is a cross-sectional view of an embodiment of a vane type pump to which the present invention is applied, and Figure 6 is an R diagram of the vane type pump shown in Figure 5.
Please refer to figure J and line diagram. 1...Cam ring, 2...Rotor, 3...Vane, 4...Intake port, 5...Discharge port Patent Applicant Co., Ltd. Japan Auto Parts Research Institute Patent Application Agent Blue Akira Yamaguchi Figure 2 Figure 3 Figure 4
Claims (1)
れたベーンの先端部がこれらを包囲するカムリングのカ
ム内面に摺接するベーン型ポンプにおいて、該カム内面
が吐出用−口部にほぼ重畳した部位においてアルキメデ
ス曲線に基いて形成され、吐出行程におけるベーンリフ
ト速度が一定となるよう構成し友ベーン型ポンプ。In a vane-type pump in which the tip of a vane supported by a rotatable rotor so as to be movable in the OX radial direction KWI slides on the inner surface of a cam of a cam ring surrounding these vanes, the inner surface of the cam almost overlaps with the discharge port. A double vane type pump that is formed based on the Archimedean curve in its parts and configured so that the vane lift speed during the discharge stroke is constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5107982A JPS58170868A (en) | 1982-03-31 | 1982-03-31 | Vane type pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5107982A JPS58170868A (en) | 1982-03-31 | 1982-03-31 | Vane type pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58170868A true JPS58170868A (en) | 1983-10-07 |
Family
ID=12876803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5107982A Pending JPS58170868A (en) | 1982-03-31 | 1982-03-31 | Vane type pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58170868A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60162089A (en) * | 1984-02-01 | 1985-08-23 | Toyoda Mach Works Ltd | Vane pump |
US4685626A (en) * | 1984-06-14 | 1987-08-11 | Les Innovations Mecaniques Alimentaires (S.A.R.L.) | Crushed carcase separation head and machine |
CN104279158A (en) * | 2013-07-09 | 2015-01-14 | 罗伯特·博世有限公司 | Impeller pump |
JP2018506669A (en) * | 2016-01-28 | 2018-03-08 | ミョンファ インダストリー カンパニー,リミテッド | Vane pump and profile determination method inside cam ring constituting the same |
CN109268225A (en) * | 2018-08-21 | 2019-01-25 | 北京理工大学 | No flow pulsation formula hydraulic radial pump |
-
1982
- 1982-03-31 JP JP5107982A patent/JPS58170868A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60162089A (en) * | 1984-02-01 | 1985-08-23 | Toyoda Mach Works Ltd | Vane pump |
JPH0444115B2 (en) * | 1984-02-01 | 1992-07-20 | Toyoda Machine Works Ltd | |
US4685626A (en) * | 1984-06-14 | 1987-08-11 | Les Innovations Mecaniques Alimentaires (S.A.R.L.) | Crushed carcase separation head and machine |
CN104279158A (en) * | 2013-07-09 | 2015-01-14 | 罗伯特·博世有限公司 | Impeller pump |
JP2018506669A (en) * | 2016-01-28 | 2018-03-08 | ミョンファ インダストリー カンパニー,リミテッド | Vane pump and profile determination method inside cam ring constituting the same |
EP3409945A4 (en) * | 2016-01-28 | 2019-07-03 | Myung HWA Ind. Co., Ltd. | Vane pump and method for determining profile inside cam ring constituting same |
CN109268225A (en) * | 2018-08-21 | 2019-01-25 | 北京理工大学 | No flow pulsation formula hydraulic radial pump |
CN109268225B (en) * | 2018-08-21 | 2019-12-31 | 北京理工大学 | No-flow pulse type radial hydraulic pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63289278A (en) | Positive displacement pump | |
KR970003263B1 (en) | Sealing structure for scroll type compressor | |
JPS58170868A (en) | Vane type pump | |
US4415319A (en) | Pump unit | |
JPS61268894A (en) | Vane type compressor | |
JPH01104991A (en) | Variable displacement gear pump | |
US5658138A (en) | Rotary pump having inner and outer components having abutments and recesses | |
JP2601258B2 (en) | Wing or roller type variable displacement pump | |
US2830543A (en) | Fluid pressure transducer for converting rotary force to fluid pressure, or vice-versa | |
WO2005005837A1 (en) | Vane pump | |
US4716726A (en) | Adjustable rotary vane pump | |
US4419059A (en) | Nonsymmetric bore contour for rotary compressor | |
JP3724924B2 (en) | Vane pump | |
US4890986A (en) | Variable capacity compressor | |
JPS58185992A (en) | Vane pump | |
JP2673431B2 (en) | Gas compressor | |
JPS5949385A (en) | Vane pump | |
JPH0141918Y2 (en) | ||
JPS63230979A (en) | Vane type compressor | |
JP3657784B2 (en) | Variable displacement pump | |
JPH02169883A (en) | Vane pump | |
JPS6132159Y2 (en) | ||
GB2102888A (en) | Rotary positive-displacement pumps | |
JPH0445677B2 (en) | ||
JPS603486A (en) | Vane motor or pump |