JPS63230979A - Vane type compressor - Google Patents

Vane type compressor

Info

Publication number
JPS63230979A
JPS63230979A JP6489687A JP6489687A JPS63230979A JP S63230979 A JPS63230979 A JP S63230979A JP 6489687 A JP6489687 A JP 6489687A JP 6489687 A JP6489687 A JP 6489687A JP S63230979 A JPS63230979 A JP S63230979A
Authority
JP
Japan
Prior art keywords
vane
rotor
cam ring
circumferential surface
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6489687A
Other languages
Japanese (ja)
Inventor
Nobufumi Nakajima
中島 信文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP6489687A priority Critical patent/JPS63230979A/en
Publication of JPS63230979A publication Critical patent/JPS63230979A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PURPOSE:To prevent the occurrence of chattering, by a method wherein the peripheral surface of the cam of a vane compressor is formed with a round part, an increase curve part, increasing a vane protrusion amount, a steady curve part, a decrease curve part, and a round part. CONSTITUTION:A pump housing 4 is formed with a cam ring 5, a front side block 6, and a rear side block 7. A cam peripheral surface 5a is formed with a round part A to seal a gap between the outer peripheral surface of a rotor 8 and the inner peripheral surface of the cam ring 5, an increase curve part B to increase a protrusion amount of a vane, a steady curve part C, a decrease curve part D, and a round part E. This constitution prevents the occurrence of chattering, reduces the occurrence of a fluctuation in torque, and besides provides a high delivery amount.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば車両用空調装置の冷媒圧縮機等として
用いられるベーン型圧縮機に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vane compressor used, for example, as a refrigerant compressor for a vehicle air conditioner.

(従来技術及びその問題点) 従来、内周面にカム周面を有すると共に両側をサイドブ
ロックにて閉塞したカムリングと、該カムリング内に回
転自在に配設されたロータと、該ロータのベーン溝に摺
動自在に嵌装された複数のベーンとを備え、前記サイド
ブロック、カムリング、ロータ及びベーンによって画成
される圧縮室の容積変動によって流体を圧縮するように
したベーン型圧縮機は公知である。
(Prior art and its problems) Conventionally, a cam ring has a cam peripheral surface on its inner peripheral surface and is closed on both sides with side blocks, a rotor rotatably disposed within the cam ring, and a vane groove of the rotor. A vane type compressor is known which is equipped with a plurality of vanes slidably fitted to the side block, the cam ring, the rotor, and the vane, and which compresses fluid by changing the volume of a compression chamber defined by the side block, cam ring, rotor, and vanes. be.

斯かるベーン型圧縮機におけるカム周面の曲線形状とし
ては従来、特開昭60−11601号公報に開示されて
いるように、只単にS in”α等の曲線である。この
ために、カム周面の短径部の真円部(ロータ外周面とカ
ムリング内周面との間をシールする部分)近傍において
、ベーンの先端がカムリングのカム周面から離れてチャ
タリングを起こし易い、これは、前記真円部直後のベー
ン飛出量の増加が大きくなるからであり、該ベーン飛出
量の増加を小さくすると吐出量が減少してしまうという
問題があった。
Conventionally, the curved shape of the cam peripheral surface in such a vane type compressor is simply a curve such as S in"α, as disclosed in Japanese Patent Application Laid-Open No. 60-11601. Near the true circle part of the short diameter part of the circumferential surface (the part that seals between the rotor outer circumferential surface and the cam ring inner circumferential surface), the tip of the vane tends to separate from the cam circumferential surface of the cam ring, causing chattering. This is because the increase in the vane protrusion amount immediately after the perfect circle portion becomes large, and if the increase in the vane protrusion amount is made small, there is a problem in that the discharge amount decreases.

(発明の目的) 本発明は上記事情に鑑みてなされたもので、チャタリン
グが起きることなく、トルク変動が小さく、しかも、大
きな吐出量が得られ、更に1機械損失トルクが減少する
ようにしたベーン型圧縮機を提供することを目的とする
(Object of the Invention) The present invention has been made in view of the above circumstances, and provides a vane that does not cause chattering, has small torque fluctuations, can obtain a large discharge amount, and further reduces 1 mechanical loss torque. The purpose is to provide a mold compressor.

(問題点を解決するための手段) 上述の問題点を解決するため本発明は、内周面にカム周
面を有すると共に両側をサイドブロックにて閉塞したカ
ムリングと、該カムリング内に回転自在に配設されたロ
ータと、該ロータのベーン溝に摺動自在に嵌装された複
数のベーンとを備え、前記サイドブロック、カムリング
、ロータ及びベーンによって画成される圧縮室の容積変
動によって流体を圧縮するようにしたベーン型圧縮機に
おいて、前記カム周面は、前記ロータ外周面とカムリン
グ内周面との間をシールする第1の真円部と。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a cam ring having a cam peripheral surface on its inner peripheral surface and closed on both sides with side blocks, and a rotatable cam ring inside the cam ring. A rotor is provided, and a plurality of vanes are slidably fitted into vane grooves of the rotor, and the fluid is pumped by changing the volume of a compression chamber defined by the side block, cam ring, rotor, and vanes. In the vane type compressor, the cam circumferential surface has a first perfect circular portion that seals between the rotor outer circumferential surface and the cam ring inner circumferential surface.

該第1の真円部と連続して設けられ且っベーン飛出量を
漸次増加せしめる増加曲線部と、該増加曲線部と連続し
て設けられ且つ前記ベーン飛出量を一定に保つ定常曲線
部と、該定常曲線部と連続して設けられ且つ前記ベーン
飛出量を漸次減少せしめる減少曲線部と、該減少曲線部
と連続して設けられ且つ前記ロータ外周面とカムリング
内周面との間をシールする第2の真円部とを具備する如
く。
an increasing curve section that is continuous with the first perfect circular section and gradually increases the vane protrusion amount; and a steady curve that is continuous with the increasing curve section and keeps the vane protrusion amount constant. a decreasing curved portion that is provided continuously with the steady curved portion and gradually reduces the amount of vane protrusion; and a decreasing curved portion that is provided continuously with the decreasing curved portion and is connected to the rotor outer circumferential surface and the cam ring inner circumferential surface. and a second perfectly circular portion for sealing the gap.

これら各部が数式によりそれぞれ得られた曲線形状で成
るものである。
Each of these parts has a curved shape obtained from a mathematical formula.

(作用) 真円部直前後のベーン飛出量が小さくなるので短径部で
のベーンのチャタリングが起きない。また、長径部に真
円部が形成されるので、ロータ径が同じでも吐出量が大
きくなる。
(Function) Since the amount of vane protrusion immediately before and after the perfect circle portion is reduced, chattering of the vane does not occur at the short diameter portion. Further, since a true circle portion is formed in the long diameter portion, the discharge amount becomes large even if the rotor diameter is the same.

(実施例) 以下、本発明の一実施例を図面に基づき説明する。第1
図は本発明のベーン型圧縮機の一部切欠側面図、第2図
は第1図の■−■線に沿う断面図である。両図中1はケ
ースで、これは一端面が開口する円形筒体2と、該筒体
2の一端面にその開口面を閉塞する如く取り付けたフロ
ントヘッド3とからなる。前記ケース1内にはポンプハ
ウジング4が収納しである。該ポンプハウジング4はカ
ムリング5と、該カムリング5の両側開口端に該開口端
を閉塞する如く装着したフロントサイドブロック6及び
リヤサイドブロック7とからなり、該カムリング5内に
はロータ8が回転軸9により回転自在に収納しである。
(Example) Hereinafter, one example of the present invention will be described based on the drawings. 1st
The figure is a partially cutaway side view of the vane type compressor of the present invention, and FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1. In both figures, reference numeral 1 denotes a case, which consists of a circular cylindrical body 2 with one end open, and a front head 3 attached to one end of the cylindrical body 2 so as to close the opening. A pump housing 4 is housed within the case 1. The pump housing 4 consists of a cam ring 5, and a front side block 6 and a rear side block 7 that are attached to both open ends of the cam ring 5 so as to close the open ends. It can be stored rotatably.

前記カムリング5は内周面にカム周面5aを有し、該カ
ムリング5の内周面と前記円形状のロータ8の外周面と
の間に、180°対称位置に空隙室10.10が画成さ
れている(複室式)。前記ロータ8には径方向に沿うベ
ーン溝11が周方向に等間隔を存して複数(例えば4個
)設けてあり、これらのベーン溝11内にベーン12が
放射方向に沿って出没自在に嵌装しである。従って1回
転軸9が駆動されるとロータ8が回転し、該ロータ8の
回転により発生する遠心力と、ベーン111の底部に作
用する潤滑油の背圧とにより、ベーン12は半径方向外
方に飛び出して、カム周面5aに摺接しながら回転する
The cam ring 5 has a cam circumferential surface 5a on its inner circumferential surface, and a gap chamber 10.10 is defined between the inner circumferential surface of the cam ring 5 and the outer circumferential surface of the circular rotor 8 at a 180° symmetrical position. (multi-room type). The rotor 8 is provided with a plurality (for example, four) of vane grooves 11 extending in the radial direction at equal intervals in the circumferential direction, and vanes 12 can freely move in and out of the vane grooves 11 in the radial direction. It is fitted. Therefore, when the shaft 9 is driven once, the rotor 8 rotates, and the centrifugal force generated by the rotation of the rotor 8 and the back pressure of the lubricating oil acting on the bottom of the vane 111 cause the vane 12 to move outward in the radial direction. It pops out and rotates while slidingly contacting the cam peripheral surface 5a.

そして、各ベーン12がカムリング5に形成された吸入
口13を通過する毎に、流体をフロントヘッド3に設け
られた流入口14がら空隙室10内へ吸入する。相隣る
ベーン12とカムリング5と両サイドブロック6.7と
で画成される空隙室10内部の空間(圧縮室)10aは
、その容積が、吸入行程では最小から最大に、圧縮行程
では最大から最小に変化し、吸入行程で吸入されて圧縮
行程で加圧された流体は、カムリング5に設けた吐出口
15から吐出弁16を押し開いて吐出され、このような
サイクルが繰り返されて、流体の圧縮が行なわれる。そ
して、圧縮された流体は、潤滑油分離装置17を通過す
る際に、混入されている潤滑油が分離されて、ケース1
とポンプハウジング4との間に形成されている吐出室1
8内に一旦吐出された後、筒体2に形成された流出口1
9より外部回路(図示省略)へ送出される。
Each time each vane 12 passes through the suction port 13 formed in the cam ring 5, fluid is sucked into the cavity 10 through the inlet port 14 provided in the front head 3. The space (compression chamber) 10a inside the void chamber 10 defined by the adjacent vanes 12, cam ring 5, and both side blocks 6.7 changes in volume from the minimum to the maximum during the suction stroke and to the maximum during the compression stroke. The fluid that has been sucked in during the suction stroke and pressurized during the compression stroke is discharged from the discharge port 15 provided in the cam ring 5 by pushing open the discharge valve 16, and this cycle is repeated. Compression of the fluid takes place. When the compressed fluid passes through the lubricating oil separator 17, the lubricating oil mixed in the fluid is separated and the case 1
and a discharge chamber 1 formed between the pump housing 4 and the pump housing 4.
Once discharged into 8, an outlet 1 formed in the cylinder 2
9 to an external circuit (not shown).

次に1本発明の特徴である前記カム周面5aの形状につ
いて説明する0本実施例では複室式であるから、吸入、
圧縮、吐出の1サイクルは172回転(180度)で完
了し、ロータ8の1回転で2サイクルが行なわれる。第
3図は本発明の一実施例を示すモデル計算値を適用した
0〜180度(172回転)間におけるベーン回転角θ
(度)とベーン飛出量X(m)との関係を、従来のベー
ン型圧縮機の場合と比較して示す線図で、該線図中実線
の形状は、本発明のカム周面5aの特徴を如実に表わし
ている。即ち、該カム周面5aの基本的な形状は、第4
図に示す如く、 1)ロータ8の外周面とカムリング5の内周面との間を
シールする第1真円部A 2)該第1真円部Aと連続して設けられ且つベーン飛出
量を漸次増加せしめる増加曲線部B3)該増加曲線部B
と連続して設けられ且つ前記ベーン飛出量を一定に保つ
定常曲線部C4)該定常曲線部Cと連続して設けられ且
つ前記ベーン飛出量を漸次減少せしめる減少曲線部5)
該減少曲線部りと連続して設けられ且つ前記ロータ8の
外周面とカムリング5の内周面との間をシールする第2
真円部E 以上の各部A−Eを具備する曲線形状であり、これら各
部A−Eを数式で表わすと次のようになる。まず、以下
の数式説明に使用する記号の定義について説明する。
Next, the shape of the cam peripheral surface 5a, which is a feature of the present invention, will be explained. Since this embodiment is a multi-chamber type, the suction,
One cycle of compression and discharge is completed in 172 rotations (180 degrees), and two cycles are performed in one rotation of the rotor 8. FIG. 3 shows the vane rotation angle θ between 0 and 180 degrees (172 rotations) using model calculation values showing one embodiment of the present invention.
(degrees) and the vane protrusion amount X (m) in comparison with that of a conventional vane type compressor. It clearly shows the characteristics of That is, the basic shape of the cam peripheral surface 5a is the fourth
As shown in the figure, 1) a first perfect circular part A that seals between the outer circumferential surface of the rotor 8 and the inner circumferential surface of the cam ring 5; 2) a first perfect circular part A that is provided continuously with the first perfect circular part A and from which the vane protrudes; Increasing curve part B3) The increasing curve part B where the amount is gradually increased
A steady curve part C4) is provided continuously with the steady curve part C and keeps the vane protrusion amount constant; a decreasing curve part 5 is provided continuously with the steady curve part C and gradually reduces the vane protrusion amount;
A second portion is provided continuously with the decreasing curved portion and seals between the outer circumferential surface of the rotor 8 and the inner circumferential surface of the cam ring 5.
Perfect circular part E It is a curved shape having the above-mentioned parts A-E, and these parts A-E can be expressed by the following formula. First, the definitions of symbols used in the explanation of the following mathematical formulas will be explained.

Ro:ロータ8の半径 H:ベーン12の最大飛出量 R(θ):ベーン12の飛出量+ロータ8の半径θ:ロ
ータ8の回転角 φ。:基準点(0” )から第1の真円部Aのロータ8
回転方向前側端までの角度 φ1:基準点(0°)から増加曲線部Bのロータ8回転
方向前側端までの角度 φ2:基準点(0°)から定常曲線部Cのロータ8回転
方向前側端までの角度 φ、:基準点(0°)から減少曲線部りのロータ8回転
方向前側端までの角度 1)第1の真円部Aの数式は R(θ)=R0 但し、o’<θ〈φ。
Ro: radius H of rotor 8: maximum protrusion amount R(θ) of vane 12: protrusion amount of vane 12+radius θ of rotor 8: rotation angle φ of rotor 8. : Rotor 8 from the reference point (0”) to the first perfect circle portion A
Angle φ1 from the reference point (0°) to the front end in the rotating direction of the rotor 8 in the increasing curve part B φ2: From the reference point (0°) to the front end in the rotating direction of the rotor 8 in the steady curve part C Angle φ: Angle from the reference point (0°) to the front end of the rotating direction of the rotor 8 on the decreasing curve part 1) The formula for the first perfect circular part A is R(θ)=R0 However, o'< θ〈φ.

但し、φ。くθ≦φ1 3)定常曲線部Cの数式は R(θ)=R0十H 但し、φ、〈θ〈φ2 但し、φ、くθ≦φ3 5)第2の真円部Eの数式は R(θ)=R0 但し、φ2くθ≦180゜ なお、φ、とφ2の最適な値を考慮すると、*、”ra
、−t−to’ 〜20’ 470’ 〜80’[α、
は吸入閉鎖角(第4図参照)であり、該α1があまり小
さいと吸入流体を円滑且つ良好に吸い込めないため、α
1勾60°が良い、、] φ2岬85’〜95″ (φ2をあまり大きくすると、圧縮行程が急激に行なわ
れる。) 上述の如くカム周面5aを形成したことにより、第3図
中破線で示す従来のカム周面に比して、同図中実線で示
す如く、ロータ8の回転角θが5゜〜67°位の範囲に
おけるベーン12の飛出量は小さく、また、ロータ8の
回転角θが67″〜109゜位の範囲におけるベーン1
2の飛出量は大きく、更に、ロータ8の回転角θが10
9”〜175@位の範囲におけるベーン12の飛出量は
再び小さくなる。即ち、カム周面5aの短径部でのベー
ン12の飛出量が、従来に比して小さくなる。また。
However, φ. θ≦φ1 3) The formula for the steady curve section C is R(θ)=R00H, where φ, 〈θ〈φ2 However, φ, θ≦φ3 5) The formula for the second perfect circle section E is R (θ)=R0 However, φ2 θ≦180° Furthermore, considering the optimal values of φ and φ2, *, “ra
, -t-to'~20'470'~80' [α,
is the suction closure angle (see Figure 4), and if α1 is too small, the suction fluid cannot be suctioned smoothly and well, so α
1 slope of 60° is good. ] φ2 cape 85' to 95'' (If φ2 is too large, the compression stroke will be performed rapidly.) By forming the cam peripheral surface 5a as described above, the broken line in FIG. As shown by the solid line in the figure, the amount of protrusion of the vane 12 is small in the range of rotation angle θ of about 5° to 67°, and Vane 1 in the range of rotation angle θ from 67″ to 109°
2 has a large protrusion amount, and furthermore, the rotation angle θ of the rotor 8 is 10
The amount of protrusion of the vane 12 in the range of about 9'' to 175@ becomes smaller again. That is, the amount of protrusion of the vane 12 at the short diameter portion of the cam peripheral surface 5a becomes smaller than before. Also.

ロータ8の回転角θに対するベーン12の加速度は、第
5図中実線で示す本発明のカム周面5aの方が、同図中
破線で示す従来のカム周面に比して。
The acceleration of the vane 12 with respect to the rotation angle θ of the rotor 8 is higher for the cam peripheral surface 5a of the present invention shown by the solid line in FIG. 5 than for the conventional cam peripheral surface shown by the broken line in the same figure.

小さく、特に、チャタリングの起き易い短径部の加速度
が従来に比して小さくなる。
In particular, the acceleration at the short diameter portion where chattering is likely to occur is smaller than in the past.

なお、上記実施例においては、180度対称位置に空隙
室10を設けた複室式に適用したが、これに限られるこ
となく、単室式にも′適用し得る。
In the above embodiment, the present invention is applied to a multi-chamber type in which the cavity chambers 10 are provided at 180-degree symmetrical positions, but the present invention is not limited to this, and can also be applied to a single-chamber type.

(発明の効果) 以上詳述した如く本発明のベーン型圧縮機は、そのカム
周面が、ロータ外周面とカムリング内周面との間をシー
ルする第1の真円部と、該第1の真円部と連続して設け
られ且つベーン飛出量を漸次増加せしめる増加曲線部と
、該増加曲線部と連続して設けられ且つ前記ベーン飛出
量を一定に保つ定常曲線部と、該定常曲線部と連続して
設けられ且つ前記ベーン飛出量を漸次減少せしめる減少
曲線部と、該減少曲線部と連続して設けられ且つ前記ロ
ータ外周面とカムリング内周面との間をシールする第2
の真円部とを具備する如く、これら各部が数式によりそ
れぞれ得られた曲線形状で成ることを特徴とするもので
ある。
(Effects of the Invention) As detailed above, the vane compressor of the present invention has a cam circumferential surface that includes a first true circular portion that seals between the rotor outer circumferential surface and the cam ring inner circumferential surface; an increasing curve part that is provided continuously with the perfect circular part and gradually increases the vane protrusion amount; a steady curve part that is provided continuous with the increasing curve part and keeps the vane protrusion amount constant; a decreasing curved portion that is provided continuously with the steady curved portion and gradually reduces the vane protrusion amount; and a decreasing curved portion that is provided continuously with the decreasing curved portion and seals between the rotor outer circumferential surface and the cam ring inner circumferential surface. Second
Each of these parts has a curved shape obtained by a mathematical formula, such as a perfectly circular part.

従って、チャタリングが起きることなく、トルク変動が
小さく、しかも、大きな吐出量が得られ、更に1機械損
失トルクが減少する。
Therefore, chattering does not occur, torque fluctuations are small, a large discharge amount can be obtained, and the mechanical loss torque is further reduced.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は本発明のベー
ン型圧縮機の一部切欠側面図、第2図は第1図のn−n
線に沿う断面図、第3図は本発明のベーン型圧縮機のロ
ータ回転角とベーン飛出量との関係を、従来のベーン型
圧縮機と比較して示す線図、第4図は本発明のベーン型
圧縮機におけるカム周面の形状を示す図、第5図は本発
明のベーン型圧縮機のロータ回転角とベーンの加速度定
数との関係を、従来のベーン型圧縮機と比較して示す線
図である。 5・・・カムリング、5a・・・カム周面、6・・・フ
ロントサイドブロック、7・・・リヤサイドブロック、
8・・・ロータ、11・・・ベーン溝、12・・・ベー
ン、A・・・第1の真円部、B・・・増加曲線部、C・
・・定常曲線部、D・・・減少曲線部、E・・・第2の
真円部。
The drawings show one embodiment of the present invention; FIG. 1 is a partially cutaway side view of a vane compressor of the present invention, and FIG.
3 is a diagram showing the relationship between the rotor rotation angle and the amount of vane protrusion of the vane type compressor of the present invention in comparison with a conventional vane type compressor, and FIG. 4 is a sectional view taken along the line. FIG. 5 is a diagram showing the shape of the cam peripheral surface in the vane type compressor of the present invention, and compares the relationship between the rotor rotation angle and the acceleration constant of the vane of the vane type compressor of the present invention with that of a conventional vane type compressor. FIG. 5... Cam ring, 5a... Cam circumferential surface, 6... Front side block, 7... Rear side block,
8... Rotor, 11... Vane groove, 12... Vane, A... First perfect circular part, B... Increasing curved part, C...
... Steady curve part, D... Decreasing curve part, E... Second perfect circle part.

Claims (1)

【特許請求の範囲】 1.内周面にカム周面を有すると共に両側をサイドブロ
ックにて閉塞したカムリングと、該カムリング内に回転
自在に配設されたロータと、該ロータのベーン溝に摺動
自在に嵌装された複数のベーンとを備え、前記サイドブ
ロック、カムリング、ロータ及びベーンによって画成さ
れる圧縮室の容積変動によって流体を圧縮するようにし
たベーン型圧縮機において、前記カム周面は、前記ロー
タ外周面とカムリング内周面との間をシールする第1の
真円部と、該第1の真円部と連続して設けられ且つベー
ン飛出量を漸次増加せしめる増加曲線部と、該増加曲線
部と連続して設けられ且つ前記ベーン飛出量を一定に保
つ定常曲線部と、該定常曲線部と連続して設けられ且つ
前記ベーン飛出量を漸次減少せしめる減少曲線部と、該
減少曲線部と連続して設けられ且つ前記ロータ外周面と
カムリング内周面との間をシールする第2の真円部とを
具備する如く、これら各部が数式によりそれぞれ得られ
た曲線形状で成ることを特徴とするベーン型圧縮機。 2.前記各部の数式は、 (1)第1の真円部がR(θ)=R_0 但し、0°<θ<φ_0 (2)増加曲線部がR(θ)=R_0+Hsin5/2
[90/(φ_1−φ_2)(θ−φ_0)]但し、φ
_0<θ≦φ_1 (3)定常曲線部がR(θ)=R_0+H 但し、φ_1<θ<φ_2 (4)減少曲線部がR(θ)=R_0+H−Hsin5
/2[90/(φ_3−φ_2)(θ−φ_2)]但し
、φ_2<θ≦φ_3 (5)第2の真円部がR(θ)=R_0 但し、φ_3<θ≦180° であることを特徴とする特許請求の範囲第1項記載のベ
ーン型圧縮機。 但し、R_0:ロータの半径 H:ベーン最大飛出量 R(θ):ベーン飛出量+ロータの半径 θ:ロータ回転角 φ_0:基準点(0°)から第1の真円部のロータ回転
方向前側端までの角度 φ_1:基準点(0°)から増加曲線部のロータ回転方
向前側端までの角度 φ_2:基準点(0°)から定常曲線部のロータ回転方
向前側端までの角度 φ_3:基準点(0°)から減少曲線部のロータ回転方
向前側端までの角度
[Claims] 1. A cam ring having a cam peripheral surface on its inner peripheral surface and closed with side blocks on both sides, a rotor rotatably disposed within the cam ring, and a plurality of rotors slidably fitted in vane grooves of the rotor. In the vane type compressor, the cam circumferential surface is in contact with the rotor outer circumferential surface, and the fluid is compressed by a change in the volume of a compression chamber defined by the side block, cam ring, rotor, and vane. a first perfect circular part that seals between the inner circumferential surface of the cam ring; an increasing curved part that is provided continuously with the first perfect circular part and gradually increases the amount of protrusion of the vane; and the increasing curved part a steady curve section that is provided continuously and keeps the vane protrusion amount constant; a decreasing curve section that is provided continuously with the steady curve section and gradually reduces the vane protrusion amount; and the decreasing curve section. A second perfect circular part is provided continuously and seals between the rotor outer circumferential surface and the cam ring inner circumferential surface, and each of these parts has a curved shape obtained by a mathematical formula. vane type compressor. 2. The formula for each part is as follows: (1) The first perfect circle part is R(θ)=R_0 However, 0°<θ<φ_0 (2) The increasing curve part is R(θ)=R_0+Hsin5/2
[90/(φ_1-φ_2)(θ-φ_0)] However, φ
_0<θ≦φ_1 (3) The steady curve part is R(θ)=R_0+H However, φ_1<θ<φ_2 (4) The decreasing curve part is R(θ)=R_0+H−Hsin5
/2[90/(φ_3-φ_2)(θ-φ_2)] However, φ_2<θ≦φ_3 (5) The second perfect circular part is R(θ)=R_0 However, φ_3<θ≦180° A vane type compressor according to claim 1, characterized in that: However, R_0: Rotor radius H: Maximum vane protrusion amount R (θ): Vane protrusion amount + rotor radius θ: Rotor rotation angle φ_0: Rotor rotation from the reference point (0°) to the first perfect circle part Angle φ_1 from the reference point (0°) to the front end in the rotor rotational direction of the increasing curved section φ_2: Angle φ_3 from the reference point (0°) to the front end in the rotor rotational direction of the steady curved section: Angle from the reference point (0°) to the front end of the decreasing curve in the rotor rotation direction
JP6489687A 1987-03-19 1987-03-19 Vane type compressor Pending JPS63230979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6489687A JPS63230979A (en) 1987-03-19 1987-03-19 Vane type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6489687A JPS63230979A (en) 1987-03-19 1987-03-19 Vane type compressor

Publications (1)

Publication Number Publication Date
JPS63230979A true JPS63230979A (en) 1988-09-27

Family

ID=13271296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6489687A Pending JPS63230979A (en) 1987-03-19 1987-03-19 Vane type compressor

Country Status (1)

Country Link
JP (1) JPS63230979A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250280A (en) * 2002-01-07 2002-09-06 Seiko Instruments Inc Gas compressor
JP2008150981A (en) * 2006-12-15 2008-07-03 Calsonic Kansei Corp Vane rotary compressor
JP2008150982A (en) * 2006-12-15 2008-07-03 Calsonic Kansei Corp Vane rotary compressor
WO2018179701A1 (en) * 2017-03-27 2018-10-04 カルソニックカンセイ株式会社 Gas compressor
JP2018162782A (en) * 2017-03-27 2018-10-18 カルソニックカンセイ株式会社 Gas compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810190A (en) * 1981-07-13 1983-01-20 Diesel Kiki Co Ltd Vane type compressor
JPS63170579A (en) * 1987-01-09 1988-07-14 Diesel Kiki Co Ltd Vane type compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810190A (en) * 1981-07-13 1983-01-20 Diesel Kiki Co Ltd Vane type compressor
JPS63170579A (en) * 1987-01-09 1988-07-14 Diesel Kiki Co Ltd Vane type compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250280A (en) * 2002-01-07 2002-09-06 Seiko Instruments Inc Gas compressor
JP2008150981A (en) * 2006-12-15 2008-07-03 Calsonic Kansei Corp Vane rotary compressor
JP2008150982A (en) * 2006-12-15 2008-07-03 Calsonic Kansei Corp Vane rotary compressor
WO2018179701A1 (en) * 2017-03-27 2018-10-04 カルソニックカンセイ株式会社 Gas compressor
JP2018162782A (en) * 2017-03-27 2018-10-18 カルソニックカンセイ株式会社 Gas compressor

Similar Documents

Publication Publication Date Title
JPH0456155B2 (en)
US4480973A (en) Vane compressor provided with endless camming surface minimizing torque fluctuations
JPH01271680A (en) Scroll compressor
US10036387B2 (en) Port plate of a flat sided liquid ring pump having a gas scavenge passage therein
US4501537A (en) Vane compressor having an endless camming surface minimizing torque fluctuations
AU615361B2 (en) Scroll member for scroll type fluid displacement apparatus
KR890000130B1 (en) Scroll fluid apparatus handling compressible fluid
US6203301B1 (en) Fluid pump
JPS61268894A (en) Vane type compressor
JPS63230979A (en) Vane type compressor
JPS6332992B2 (en)
US4859154A (en) Variable-delivery vane-type rotary compressor
JPH0744786Y2 (en) Variable capacity vane rotary compressor
JP2582863Y2 (en) Vane pump
JPS62107286A (en) Vane type compressor
JP3388798B2 (en) Fluid compressor
KR100195166B1 (en) Scroll compressor
JPS629756B2 (en)
JPH06147137A (en) Vane type fluid machine
JPS61201896A (en) Rotary compressor
JPH0320556Y2 (en)
WO1995031645A1 (en) Vane pump
JPH05272476A (en) Fluid compressor
JPH02163487A (en) Rotary compressor
JPH0674165A (en) Fluid compressor