WO2005005837A1 - Vane pump - Google Patents
Vane pump Download PDFInfo
- Publication number
- WO2005005837A1 WO2005005837A1 PCT/JP2003/008724 JP0308724W WO2005005837A1 WO 2005005837 A1 WO2005005837 A1 WO 2005005837A1 JP 0308724 W JP0308724 W JP 0308724W WO 2005005837 A1 WO2005005837 A1 WO 2005005837A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vane
- rotor
- cam ring
- pump
- whisker
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/10—Outer members for co-operation with rotary pistons; Casings
- F01C21/104—Stators; Members defining the outer boundaries of the working chamber
- F01C21/108—Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
- F01C21/0809—Construction of vanes or vane holders
- F01C21/0818—Vane tracking; control therefor
- F01C21/0854—Vane tracking; control therefor by fluid means
- F01C21/0863—Vane tracking; control therefor by fluid means the fluid being the working fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C18/3446—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
Definitions
- the present invention relates to a vane pump used as a hydraulic power supply of power steering of a vehicle or the like.
- a pump rotor includes a force mulling, a side plate is accommodated on the side of the cam ring, and a vane rotor forming a pressure chamber between the cam ring and the cam ring. It is provided rotatably.
- a plurality of slots are formed along the radial direction at substantially equally spaced positions in the circumferential direction, and in each of the slots, the vanes are respectively at the inner periphery of the cam ring. It is held freely in the surface direction.
- the side plate has a discharge port formed on one end face on the side of the vane loop, and a whisker groove whose base end opens to the hole edge of the discharge port is in the direction opposite to the rotation direction of the vane rotor.
- the whisker-like groove is formed to have a curve whose opening area changes smoothly as it goes to the discharge port.
- the vane loop is connected to one end of a drive shaft threaded into the pump housing.
- the drive shaft is adapted to transmit rotational force from the crankshaft of the engine via a driven pulley mounted on the other end side by a timing belt.
- a so-called whisker-like groove is formed to prevent the high pressure of the discharge port from rapidly flowing into the pump chamber, and the whisker-like groove smoothly rises to operate. Control is performed so that fluid pressure does not change rapidly at the discharge port, and hydraulic pressure pulsations are reduced.
- each whisker groove formed in the side plate is formed by a curve which smoothly changes toward the discharge port, It is directed radially outward of the side.
- the present invention has been made in view of the above-mentioned conventional technical problems, and the invention according to claim 1 comprises: a cam ring housed and disposed in a pump housing; and a cam ring disposed on a side of the cam ring A side plate having a discharge port formed therein; and the cam ring A rotor rotatably accommodated in the interior and rotationally driven by the drive shaft, and a plurality of slots formed along the radial direction at the outer peripheral portion of the rotor are retractable in the direction of the inner peripheral surface of the cam ring
- a vane pump comprising: a vane held; and a whisker groove cut out substantially along a circumferential direction on an inner surface of the side plate on the rotor side, the whisker groove communicating with the discharge port.
- the end of the whisker is a rotation locus passing through the base of the whisker of each vane. It is characterized in that it is formed to be more inward than it is.
- the extension line of the tip of the whisker groove is oriented substantially toward the base of the radial length of the side surface of the vane which is rotationally moved near the whisker groove as the rotor rotates. It is characterized by
- the invention according to claim 3 is characterized in that the tip end portion of the whisker groove is formed to extend in the direction of the vane rotationally moved in the vicinity of the whisker groove along with the rotation of the spout. Therefore, according to the present invention, by forming the tip end of the whisker groove, the directivity of the side surface of the adjacent vane in the radial direction toward the inner end becomes stronger, and a high pressure working fluid can be obtained. It becomes possible to guide more reliably toward the inner end of one side.
- FIG. 1 is a longitudinal sectional view showing a vane pump according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view taken along line A-A of FIG. 1 of FIG.
- FIG. 3 is a front view of a belt loop and a cam ring provided in the present embodiment.
- FIG. 4 is a cross-sectional view taken along the line B-B in FIG.
- FIG. 5 is a front view of the side plate viewed from the direction of arrows C and C in FIG.
- FIG. 6 is a longitudinal sectional view of a whisker groove.
- FIG. 7 is a D arrow view of FIG. 6 showing a whisker groove.
- FIG. 8 is a rear view of the side plate.
- FIG. 9 is a cross-sectional view taken along line E-E of FIG.
- FIG. 10 is a longitudinal sectional view of a vane pump showing another example.
- FIG. 11 is a front view of the rear plate viewed from the arrow F-F direction of FIG.
- FIG. 12 is a cross-sectional view taken along line G-G of FIG.
- FIG. 13 is an enlarged view of arrow H in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
- This vane pump is applied to a pump as a supply source for supplying hydraulic pressure to hydraulic equipment such as a power steering device of a vehicle, as in the prior art, and as shown in FIG. It is mainly composed of a fixed pump housing 1, a pump body 2 disposed in the pump housing 1, and a drive shaft 3 having one end portion passing through the inside of the pump housing 1.
- the pump housing 1 as shown in FIGS. 1 and 2, comprises a block-shaped pump body 6 having a suction passage 4 and a discharge passage 5, and a pump cover 7 connected to the pump body 6.
- a space for accommodating the pump body 2 is provided between the pump body 6 and the pump cover 7.
- the pump body 2 includes a cam ring 8 housed and disposed inside the pump cover 7, a vane rotor 9 rotatably provided inside the cam ring 8, and the cam ring 8. And a pair of side plates 1 0 and 1 1 arranged on both sides of
- the drive shaft 3 has a driven pulley 19 for driving transmission attached to the other end projecting from the pump body 6, and the power of the engine is transmitted through a belt (not shown) wound around the driven pulley 19. It is supposed to be
- the cam ring 8 is provided with pump housings by locating pins 1 3 and 1 3 fitted in a pair of small semicircular pin receiving grooves 8b and 8c formed at approximately 180 positions on the outer peripheral surface. Positioning in the circumferential direction is made at 1, and the inner peripheral surface 8a is formed in a substantially elliptical shape.
- the vane rotor 9 is integrally formed of a sintered alloy into a substantially disc shape, and a substantially annular pump chamber 14 is separated between the outer circumferential surface and the inner circumferential surface 8 a of the cam ring 8. .
- a serration hole 9a through which the tip 3a of the drive shaft 3 penetrating the side plates 10, 11 is serrated is formed, and an outer peripheral portion is formed.
- 1: 0 Slots 15 are radially formed at equally spaced positions in the circumferential direction. :
- each slot 15 is provided with a thin plate-like vane 16 inside.
- a back pressure chamber 15a is formed at the bottom, in which the vanes 16 are made to slide toward the inner peripheral surface 8a of the cam ring 8 from the open end of the slot 15 while being held slidably in the direction. It is done.
- this vane opening 9 is cut out at a portion other than the slot forming portion 17 where the respective slots 15 on the outer peripheral surface are formed.
- An arc-shaped lightening portion 18 is formed.
- the respective slot forming portions 17 are respectively formed in a convex shape by the presence of the respective thin portions 18 and the slots 15 are respectively formed at substantially central positions in the circumferential direction.
- the side plate 10 on one side is in pressure contact with the end face of the pump body 6, and as shown in FIG. 1, FIG. 2, FIG. 5 and FIG.
- a pair of radial left and right suction boats 20, 20 connected to the suction passage 4 provided in the pump body 6 is formed on the side, and the suction boats 20, 20,
- a pair of first and second discharge ports 21 and 34 are formed at positions in a direction crossing with 20.
- third discharge ports 35 are formed at symmetrical positions sandwiching the cam ring 8 with respect to the first discharge port 21 in the side break 11 on the other side, and the first discharge port 35 is formed. 21 and the third discharge boat 35 communicate with each other in a pressure chamber 22 described later.
- an opening 21a having a small opening area of the first discharge port 21 is formed on the side of the side plate 10 opposite to the cam ring 8.
- the second discharge port 34 has an opening area larger than that of the discharge port on the side opposite to the arc-shaped discharge port on the cam ring 8 side.
- the small opening 3 4 a is formed in a substantially fan shape from the fluid inlet to the outlet, and the opening area thereof is the opening 2 1 a of the first discharge port 21 and the third discharge point
- the opening area is smaller than the opening area of 35, but larger than that of the conventional opening.
- the bridge 3 6 is erected, and on the outlet side of the bridge 36, a notch 37 for guiding the flow of the working fluid is formed over the entire length of the bridge 36.
- the side plate 10 may have a pair of whiskers 21 b and 34 b in the direction opposite to the rotational direction of the respective ones of the discharge ports 21 and 34 on the same side. Grooves 40, 40 are formed.
- the respective whisker grooves 40, 40 are reverse to the rotating direction of the vane rotor 9 from the holes 21b, 34b of the respective discharge ports 21 and 34. It extends in a substantially arc shape in the direction, and is formed to be tapered from the proximal end 40 a to the distal end 40 b, and has a depth as shown in the vertical cross section of FIG. It is gradually shallower from the deepest proximal end 40 a to the distal end 40 b and is formed so as to rise slightly at the distal end 40 b.
- the bottom portion 40 c is formed in an acute angle shape and formed substantially in a V shape.
- the distal end portion 40b is formed to be directed inward relative to the rotation locus line (shown by an alternate long and short dash line X) of each vane 16 passing substantially the center of the proximal end portion 40a.
- the tip portion 4 O b has a substantially central position of the radial length of the vane 16 whose extension line (P line) is rotationally moved to the vicinity of the winding groove 40 with the rotation of the vane rotor 9. It is formed more towards the base than it is.
- the tip 4 O b is longer than the conventional whiskers and is formed to extend, and the length thereof is at most the circumferential length between a pair of adjacent vanes 1 6 and 16. While being set to less than half of, it is further formed in a gradually tapered shape.
- the pressure chamber 22 is connected in parallel to the discharge passage 5 provided in the pump body 6 and the drain passage 24 formed on the opposite side of the discharge passage 5 in the radial direction.
- a variable throttling mechanism 25 is provided in the discharge passage 5, while a drain valve 26 responsive to the pressure difference across the variable throttling mechanism 25 is provided at the upstream end of the drain passage 24. It is broken.
- variable throttling mechanism 25 is housed in a spool housing hole 27 formed on the end face of the pump body 6 on the pressure chamber 22 side, and is accommodated in the spool housing hole 27 so as to be able to move back and forth.
- a spool 28 for changing the opening area of the discharge passage 5 and a spring 29 for biasing the spool 28 toward the pressure chamber 22 are provided.
- the variable throttling mechanism 25 is operated by the balance between the hydraulic pressure of the pressure chamber 2 2 acting on one end of the spool 2 8 and the spring force of the spring 2 9.
- the opening area of the discharge passage 5 is set to be the largest at the initial position in which it abuts.
- the second discharge port 34 opens at a position facing the end face of the spool 28 in the side plate 10.
- the drain valve 26 has a spool housing hole 30 formed in the end face of the pump body 6 on the pressure chamber 22 side, a spool 31 housed in the spool housing hole 30 so as to be able to advance and retract, A spring 32 that biases the spool 3 1 to the pressure chamber 2 2 side, and a slip. When the groove 31 retracts, it is opened to the pressure chamber 22 according to the amount of retraction, and a drain port 33 constituting the open end of the drain passage 24 is provided.
- the pressure on the downstream side of the variable throttling mechanism 25 is introduced via the pressure introducing passage 23 to the bottom portion 3 0 a side of the spool accommodation hole 30. Since one end of the spool 31 faces the pressure chamber 22 side, the pressure before and after the variable throttle mechanism 25 acts on the front of the spool 31 so that the drain valve 26 has its front and rear sides. In accordance with the differential pressure of the valve, the discharge flow rate from the drain port 33 to the drain passage 24 is controlled to be increased or decreased. .
- the spool 31 of the drain valve 26 responds to the differential pressure before and after that. Since the drain port 33 is opened and the hydraulic fluid is drained from the drain passage 24, the increase in the supply flow rate of the discharge passage 5 is suppressed. .
- each discharge port is The high-pressure working fluid flowing back from the inside of the whiskers from the toe 2 1, 3 4 is the tip 4 0 b, 4 0 b of the whisker 4 0, 40, that is, the tip 4 0 b, 4 directed inward. It abuts on the radially inner end 16 a side of one side of the next side of the next adjacent 1 s 1 from 0 b or on the base side of the inner end 16 a.
- the radially inner end portion 1 6 a of one side surface of the adjacent vane 1 6 can be obtained.
- the directivity becomes stronger, and it becomes possible to more reliably formulate a high pressure working fluid in the direction of the inner end 16 a of one side.
- the extension of the whisker grooves 40 can reduce the change in the discharge hydraulic pressure when the steering wheel is not largely rotated, for example, when the vehicle is traveling straight. That is, when the steering wheel is not largely rotated, the pressure difference between the discharge ports 21 and 34 and the pump chamber between the pair of vanes 16 and 16 rotationally moved in the vicinity is small. .
- the first and second discharge ports 21 and 34 are formed by the whisker grooves 40 and 40 into which the pump chamber which has been rotationally moved near the discharge ports 21 and 32 along with the rotation of the vane rotor 9 is extended.
- the communication time with the ports 2 and 3 4 becomes long. Therefore, since the movement time of the hydraulic pressure in the discharge ports 21 and 32 to the pump chamber becomes long, the change in hydraulic pressure of the working fluid in the discharge ports 21 and 32 becomes small.
- the opening 3 4 a of the second discharge port 34 is formed relatively large, and the opening area is set larger than that of the conventional one. The eccentric movement to the upper side (the first discharge point 21 side) in Fig. 1 of the course 9 is prevented.
- the first discharge port 21 side has a large opening area together with the third discharge port 35, while the second discharge port 34 side has a single point.
- the hydraulic pressure passing through the second discharge port 34 is greater than the hydraulic pressure passing through the first and third discharge ports 21 and 35.
- the vane rotor 9 is pushed upward to the first and third discharge ports 21 and 35, that is, in FIG. 1, by the oil pressure on the high pressure second discharge port 34 side during operation of the pump. And it moves eccentrically. Therefore, since the tip of each vane 16 in the vicinity thereof is in sliding contact with the inner peripheral surface of the cam ring 8 with a strong force, the frictional resistance may be increased and the pump efficiency may be reduced.
- the opening area of the opening 3 4 a of the second discharge port 34 is set large as in the present embodiment, the discharge pressure on the side of the first discharge port 21 is almost uniformly balanced.
- the occurrence of the eccentric motion of the vane rotor 9 can be suppressed.
- the rigidity around the second discharge port 34 can be secured by bridging the bridge 36 at the maximum widening position of the opening 3 4 a of the second discharge port 34.
- the diaphragm effect is exhibited by the bridge 36, and the control accuracy of the pie mouth pressure by the variable diaphragm mechanism 25 can be increased.
- a notch 3 7 for guiding the flow of the working fluid is formed on the outlet side of the bridge 36 over the entire length of the bridge 36, the working fluid to the discharge passage 5 is cut by the notch 3 7. It is possible to properly control the flow direction (arrow in FIG. 1) of the valve, and as a result, high control accuracy of the variable throttle mechanism 25 can be obtained.
- FIGS. 10 to 13 show another embodiment, in which the structure of the pump housing is different from that of the previous one in the structure of the vane pump, but the other basic structure is the same. That is, the pump housing 50 is closed by a rear plate 51 which is a plate member whose rear end opening is fixed to the pump housing 50 by a pole, and the inside of the pump housing 50 has the cam ring 52. And a vane rotor 53 formed of a sintered alloy material rotatably provided at an inner portion of the cam ring 52 is accommodated and disposed, and a side plate 54 at one side is disposed at one side of the cam ring 52. ing.
- the drive shaft 55 passing through the pump housing 50 has a tip end portion 5 5 a bearing in a bearing hole 5 1 b formed substantially at the center of the rear plate 51, and the tip end portion 5 5 A portion closer to a is serration-bonded to the center hole 53a in the center of the vane rotor 53, while the proximal end is rotatably supported by a pole bearing 56.
- vanes are radially provided in a plurality of slots of the vane rotor 53, and the pump chamber formed between the vanes is rotated by the vane rotor 53.
- the suction section is formed in the portion where the volume is changed and the volume is increased by this change, and the discharge section is formed in the portion where the volume is decreased.
- the pump chamber is in communication with the high pressure chamber 58 formed in the internal recess of the pump housing 50 by the communication hole 57 of the side plate.
- the suction port 59 provided in the pump housing 50 has a pair of left and right suction ports 60, 60 formed in the rear plate 51, and an internal low pressure passage 61. It communicates with the pump chamber via
- a flow rate control valve 62 is provided between a high pressure passage (not shown) in communication with the high pressure chamber 58 and the low pressure passage 61.
- the high pressure chamber 58 is provided with the flow control valve 62. Led to The surplus of the discharged oil is returned to the low pressure passage 61 to control the working fluid discharged from the discharge hole outside the figure to a constant amount.
- the rear plate 51 is integrally formed of an aluminum alloy material, and as shown in FIGS. 10 to 12, the inner end surface 51 a is moved along with the rotation of the vane rotor 53. As shown in FIG. 1, the inner end face 5 1 a is in sliding contact with at least one side face 5 3 b of the inner rotor 5 3. As also shown in 3, the minute oil reservoirs 63 are formed innumerably.
- the oil reservoir portion 63 is innumerably formed by intersection grooves of linear notches 64 formed in random directions on the surface of the inner end surface 51a by so-called lapping.
- the size is very small, about 0.3 a, or slightly smaller.
- an oil film is formed between the inner end surface 5 1 a and the side surface 5 3 b of the vane rotor 5 3 by the lubricating oil accumulated in the innumerable oil reservoirs 63,
- the lubricating performance between both members 5 1 a and 5 3 b is enhanced, and the occurrence of the wear of the inner end surface 5 1 a of the rear plate 51 having hardness lower than that of the vane rod 53 can be sufficiently prevented.
- the oil reservoir 63 is formed by lapping, the forming operation is simple and micro-processing is possible.
- oil reservoir 63 is extremely small as described above, the sealability with pump housing 50 is reduced even if it is formed on the entire surface of inner end face 51a. There is nothing to do.
- the pump has a cam ring housed in a housing.
- a side plate disposed on the side of the cam ring; A pair of discharge ports that are formed at target positions in the substantially radial direction of the side plate;
- a rotor rotatably accommodated in the cam ring and rotationally driven by a drive shaft
- a vane pump comprising: a vane rotatably held in the direction of the inner circumferential surface of the cam ring in a plurality of slots formed along the radial direction on the outer circumferential portion of the rotor.
- a third discharge port is formed on the opposite side of the one first discharge port across the cam ring, and the first and third discharge ports are formed between the pump housing and the cam ring.
- the opening area of the other second discharge port is formed large so as to be close to the total opening area of the first and third discharge ports, while being formed in two systems communicating with the pressure chamber. Vane pump.
- the opening area of the opening of the second discharge port is set large, the discharge pressure on the side of the first discharge port is almost evenly balanced, so that the eccentricity of the low temperature can be reduced. The occurrence can be suppressed. As a result, it is possible to reduce the occurrence of a large local sliding friction resistance of each vane on the inner circumferential surface of the cam ring. Therefore, it is possible to prevent a decrease in pump efficiency.
- the opening shape of the opening of the second discharge port is expanded in a substantially fan-like shape, good flowability of the working fluid in the direction of the variable throttle mechanism can be obtained, and the discharge pressure Can be effectively reduced.
- the bridge is installed at the maximum widening position of the opening of the second discharge port, and a notch for guiding the flow of the working fluid is formed on the outlet side of the bridge over the entire length of the bridge.
- the bridge is installed at the widest position of the opening of the second discharge port.
- the notch for guiding the flow of the working fluid is formed over the entire length of the ridge, the notch enables the flow direction of the working fluid to the discharge passage to be properly controlled, and as a result, High control accuracy of the variable aperture mechanism can be obtained.
- a rotor rotatably accommodated in the cam ring and having one side in sliding contact with the inner end face of the plate member when rotated by a drive shaft;
- a vane pump held in a plurality of slots formed in a radial direction on an outer peripheral portion of the rotor in a manner such that the vanes can be retracted toward the inner peripheral surface of the cam ring;
- a minute oil reservoir is formed on at least one of the inner end surface of the plate member and one side surface of the rotor.
- the lubricating oil accumulated in the minute oil reservoir portion always forms an oil film between the inner end surface and the side surface of the mouth, so that the lubricating performance between the both is high. As a result, the occurrence of sliding wear between the rotor and the rear plate can be sufficiently prevented.
- the present invention is not limited to the configuration of each of the above embodiments, and, for example, the oil reservoir It is also possible to apply the ridge portion to the first embodiment, and in this case, it is formed on the opposing surface of both side plates 10 1 and 11, that is, the opposing surface in sliding contact with both sides of the vane rotor Alternatively, it may be formed on both sides of the vane rotor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
Abstract
A vane pump has a side plate provided at the side of a cam ring and having discharge ports (21, 34) opened in it; a rotor rotatably received in the cam ring and rotated by a drive shaft; and vanes projectably held, in a circumferential direction of the cam ring, in slots formed in radial directions in the outer periphery of the rotor. Fine grooves (40, 40) communicating with the discharge ports are formed in the inside face sliding on the rotor of the side plate, and the fine grooves are formed so as to start from the discharge ports and to be gradually reduced in width in a opposite direction to the rotational direction of the rotor. Tip portions (40b, 40b) of the fine grooves are formed so that they are directed toward more inward than a rotational locus line (X) of each of the vanes which locus line passes through base end portions (40a, 40a) of the fine grooves.
Description
ベーンポンプ Vane pump
技術分野 Technical field
本発明は、 車両のパワーステアリングの油圧供給源等に用いられるベーンポン プに関する。 背景技術 The present invention relates to a vane pump used as a hydraulic power supply of power steering of a vehicle or the like. Background art
この種の車両に用いられベーンポンプとしては、 従来から種々提供されている が、 その 1つとして日本国特許庁発行の特開平 1 0— 8 9 2 6 6号公報に記載さ れたものが知られている。 Various types of vane pumps used in vehicles of this type have been conventionally provided, and one of them is known from Japanese Patent Application Laid-Open No. 10-8626 issued by the Japan Patent Office. It is done.
このべーンポンプは、 ポンプハゥジングの内部に力ムリングと、 該カムリング の側部にサイドブレートがそれぞれ収容されていると共に、前記カムリング内に、 該カムリングとの間に圧力室を形成するべーンロータが回転自在に設けられてい る。 In this vane pump, a pump rotor includes a force mulling, a side plate is accommodated on the side of the cam ring, and a vane rotor forming a pressure chamber between the cam ring and the cam ring. It is provided rotatably.
このべーンロータの外周部には、 円周方向のほぼ等間隔位置に放射方向に沿つ て複数のスロットが形成されており、 この各スロットの内部には、, それぞれベー ンがカムリングの内周面方向へ出没自在に保持されている。 On the outer periphery of the vane rotor, a plurality of slots are formed along the radial direction at substantially equally spaced positions in the circumferential direction, and in each of the slots, the vanes are respectively at the inner periphery of the cam ring. It is held freely in the surface direction.
また、 前記サイドプレートは、 ベ一ンロ一夕側の一端面に吐出ポートが形成さ れていると共に、 基端部が吐出ポートの孔縁に開口するひげ溝がベーンロータの 回転方向と反対方向に延設されており、 前記ひげ溝は、 開口面積が吐出ポートに 向かうにしたがつて滑らかに変化する曲線で形成されている。 Further, the side plate has a discharge port formed on one end face on the side of the vane loop, and a whisker groove whose base end opens to the hole edge of the discharge port is in the direction opposite to the rotation direction of the vane rotor. The whisker-like groove is formed to have a curve whose opening area changes smoothly as it goes to the discharge port.
前記べ一ンロ一夕は、 ポンプハウジング内に揷通された駆動軸の一端部に連結 されている。 この駆動軸は、 他端部側に取り付けられたドリブンプーリを介して 機関のクランクシャフトからタイミングベルトによって回転力が伝達されるよう になっている。'
そして、 前記駆動軸の回転駆動に伴いべ一ンロータが回転すると、 各べーンは 背圧室の圧力によりスロットから突出しつつ各べ一ン先端部がカムリングの内周 面に摺接しながら回転する。 これによつて、 ポンプハウジング内に形成されてい る吸入ポー卜から各べ一ン間のポンプ室内に流入した作動流体が各べ一ンによつ て圧縮されながら吐出ポートに吐出されてポンプ作用が行われるようになつてい る。 The vane loop is connected to one end of a drive shaft threaded into the pump housing. The drive shaft is adapted to transmit rotational force from the crankshaft of the engine via a driven pulley mounted on the other end side by a timing belt. ' Then, when the vane rotor rotates with the rotational drive of the drive shaft, each vane is protruded from the slot due to the pressure of the back pressure chamber, and the tip end of each vane rotates while being in sliding contact with the inner circumferential surface of the cam ring. . As a result, the working fluid flowing into the pump chamber between the vanes from the suction port formed in the pump housing is compressed by the vanes and discharged to the discharge port for pumping action. Is to be implemented.
また、 前記ポンプ室が吐出ポートに連通する際に、 吐出ポートの高圧が急激に ポンプ室へ流入するのを防止するために、 いわゆるひげ溝を形成し、 このひげ溝 によって滑らかに上昇させて作動流体の圧力が吐出ポートで急激に変ィ匕しないよ うに制御して、 油圧脈動を低減させるようになつている。 Also, when the pump chamber communicates with the discharge port, a so-called whisker-like groove is formed to prevent the high pressure of the discharge port from rapidly flowing into the pump chamber, and the whisker-like groove smoothly rises to operate. Control is performed so that fluid pressure does not change rapidly at the discharge port, and hydraulic pressure pulsations are reduced.
しかしながら、 前記従来のベーンポンプにあっては、 サイドプレートに形成さ れた各ひげ溝が、 吐出ポートに向かうにしたがって滑らかに変化する曲線で形成 されているものの、 先端部が回転移動したベーンのー側面の径方向外側に指向し ている。 However, in the above-described conventional vane pump, although each whisker groove formed in the side plate is formed by a curve which smoothly changes toward the discharge port, It is directed radially outward of the side.
このため、 前記べ一ンロータの回転に伴い 1つのべ一ンがひげ溝の先端部に回 転移動して吐出ポート内が高圧になった際に、 この高圧の作動流体がひげ溝内を 逆流して先端部から隣接する次のベーンのー側面の径方向の外端部付近に突き当 たる。 したがって、 このべーンに回転方向と反対方向の負荷が作用して、. ベーン ロータに逆転方向の抵抗負荷が掛つてしまう。 この結果、 ポンプ効率が低下する おそれがある。 Therefore, when one vane is rotationally moved to the tip of the whisker groove with the rotation of the vane rotor and the pressure in the discharge port becomes high, the high pressure working fluid flows back in the whisker groove. Then, it abuts from the tip to the vicinity of the radial outer end of the next side of the adjacent vane. Therefore, a load in the direction opposite to the rotational direction acts on this vane, and a resistance load in the reverse direction is applied to the vane rotor. As a result, the pump efficiency may be reduced.
また、 前記べーンの回転方向と反対方向の負荷によって前記べ一ンロータのス ロットに過大な応力がかかり、 該スロットが変形するおそれがあつた。 In addition, due to the load in the direction opposite to the direction of rotation of the vane, an excessive stress is applied to the slot of the vane rotor, and the slot may be deformed.
発明の開示 Disclosure of the invention
本発明は前記従来の技術的課題に鑑みて案出されたもので、 請求項 1に記載の 発明は、 ポンプ八ウジング内に収容配置されたカムリングと、 該カムリングの側 部に配置されて、 吐出ポートが開口形成されたサイドプレートと、 該カムリング
内に回転自在に収容され、 駆動軸によって回転駆動されるロータと、 該ロ一夕の 外周部に放射方向に沿って形成された複数のスロット内に前記カムリングの内周 面方向へ出没自在に保持されたべ一ンと、 前記サイドプレートの前記ロータ側の 内側面にほぼ円周方向に沿って切欠形成されて、 前記吐出ポートと連通するひげ 溝とを備えたベーンポンプにおいて、 前記ひげ溝を前記吐出ポー卜から前記ロー 夕の回転方向と反対方向に沿つて漸次先細り状に形成すると共に、 該ひげ溝の先 端部を、 前記各べーンのひげ溝の基端部を通る回転軌跡線よりも内方へ指向して 形成したことを特徴としている。 The present invention has been made in view of the above-mentioned conventional technical problems, and the invention according to claim 1 comprises: a cam ring housed and disposed in a pump housing; and a cam ring disposed on a side of the cam ring A side plate having a discharge port formed therein; and the cam ring A rotor rotatably accommodated in the interior and rotationally driven by the drive shaft, and a plurality of slots formed along the radial direction at the outer peripheral portion of the rotor are retractable in the direction of the inner peripheral surface of the cam ring A vane pump comprising: a vane held; and a whisker groove cut out substantially along a circumferential direction on an inner surface of the side plate on the rotor side, the whisker groove communicating with the discharge port. From the discharge port, along the direction opposite to the direction of rotation of the rotor, it is formed to be gradually tapered, and the end of the whisker is a rotation locus passing through the base of the whisker of each vane. It is characterized in that it is formed to be more inward than it is.
この発明によれば、 ベ一ンロ一夕の回転に伴い 1つのべーンがひげ溝の先端部 を通過した際に、 吐出ポートからひげ溝内を逆流した高圧な作動流体は、 ひげ溝 の先端部、 つまり内方へ指向した先端部から隣接する次のベ一ンのー側面の径方 向内端部側に突き当たる。 このため、 かかるべーンに対する回転方向と反対方向 への負荷 (モーメント) 力十分に小さくなり、 ベーンロータへの逆転方向への力 も大幅に低減する。 この結果、 ポンプ効率の低下を抑制することが可能になる。 請求項 2の発明は、 前記ひげ溝の先端部の延長線を、 前記ロータの回転に伴い ひげ溝付近に回転移動したベ一ンのー側面の径方向長さのほぼ基部寄りに指向さ せたことを特徴としている。 According to the present invention, when one vane passes through the end of the beard groove with the rotation of the vane loop, the high-pressure working fluid, which flows back from the discharge port into the inside of the beard groove, is a part of the beard groove. The tip end, that is, from the tip directed inward, abuts on the radially inner end side of the side face of the next vane adjacent to the tip end. For this reason, the load (moment) force in the direction opposite to the rotational direction with respect to the vane is sufficiently reduced, and the force in the reverse direction to the vane rotor is also significantly reduced. As a result, it is possible to suppress a decrease in pump efficiency. According to the invention of claim 2, the extension line of the tip of the whisker groove is oriented substantially toward the base of the radial length of the side surface of the vane which is rotationally moved near the whisker groove as the rotor rotates. It is characterized by
この発明によれば、 前述のように、 吐出ポートからひげ溝を逆流した作動流伴 が隣接するべ一ンのー側面内端部のさらに基部側に突き当たるようにしたため、 ベ一ンに対する反対方向の負荷をより低減させることが可能になる。 According to the present invention, as described above, since the working flow backflowing the whisker from the discharge port is made to abut the base side of the inner end of the side of the adjacent vane, the opposite direction to the vane It is possible to further reduce the load on
請求項 3に記載の発明は、.前記ひげ溝の先端部を、 前記口一夕の回転に伴いひ げ溝付近に回転移動したベーン方向へ延長形成したことを特徴としている。 したがって、 この発明によれば、 ひげ溝の先端部を延長形成することにより、 隣接するべ一ンのー側面の径方向の内端部方向への指向性が強くなり、 高圧な作 動流体を一側面の内端部方向へより確実に案内することが可能になる。 The invention according to claim 3 is characterized in that the tip end portion of the whisker groove is formed to extend in the direction of the vane rotationally moved in the vicinity of the whisker groove along with the rotation of the spout. Therefore, according to the present invention, by forming the tip end of the whisker groove, the directivity of the side surface of the adjacent vane in the radial direction toward the inner end becomes stronger, and a high pressure working fluid can be obtained. It becomes possible to guide more reliably toward the inner end of one side.
また、 ひげ溝の延長化によって、 例えば、 特に車両の直進運転時などにおいて Also, due to the extension of the whiskers, for example, especially when driving straight ahead of the vehicle
-ルを大きく回転操作しない場合の吐出油圧の変化を小さくす
ることができる。 すなわち、 ステアリングホイールを大きく回転操作しない場合 には、 吐出ポートとその近傍に回転移動した一対のベ一ン間のポンプ室との差圧 が小さくなつている。 そして、 ロータの回転に伴い吐出ポート付近に回転移動し た前記ポンプ室が延長されたひげ溝によって吐出ポートとの連通開始点が早くな り、 ベ一ンの回転速度に対して前記ポンプ室と吐出ポートとの連通時間が長くな る。 したがって、 吐出ポート内の作動流体のポンプ室への移動時間が長くなるの で、 吐出ポート内での作動流体の圧力 (油圧) 変化が小さくなる。 -Reduce the change in discharge hydraulic pressure when not rotating Can be That is, when the steering wheel is not largely rotated, the differential pressure between the discharge port and the pump chamber between the pair of vanes rotationally moved in the vicinity is small. The start point of communication with the discharge port is quickened by the whisker groove in which the pump chamber which is rotationally moved near the discharge port with the rotation of the rotor is extended, and the pump chamber and the pump chamber are rotated. The communication time with the discharge port becomes longer. Therefore, since the transfer time of the working fluid in the discharge port to the pump chamber becomes longer, the change in pressure (hydraulic pressure) of the working fluid in the discharge port becomes smaller.
この結果、 かかるステアリングホイールの僅かな回転操作時にも、 吐出ポート 内の油圧の脈動を低減させることが可能になる。 図面の簡単な説明 As a result, even when the steering wheel is slightly rotated, it is possible to reduce the pulsation of the hydraulic pressure in the discharge port. Brief description of the drawings
図 1は本発明の一実施形態に係るベーンポンプを示す縦断面図である。 FIG. 1 is a longitudinal sectional view showing a vane pump according to an embodiment of the present invention.
図 2は図 1の図 1の A— A線断面図である。 FIG. 2 is a cross-sectional view taken along line A-A of FIG. 1 of FIG.
図 3は本実施形態に供されるべ一ンロ一夕とカムリングの正面図である。 図 4は図 3の B— B線断面図である。 FIG. 3 is a front view of a belt loop and a cam ring provided in the present embodiment. FIG. 4 is a cross-sectional view taken along the line B-B in FIG.
図 5は図 1の矢印 C一 C方向から見たサイドプレー卜の正面図である。 FIG. 5 is a front view of the side plate viewed from the direction of arrows C and C in FIG.
図 6はひげ溝の縦断面図である。 FIG. 6 is a longitudinal sectional view of a whisker groove.
図 7はひげ溝を示す図 6の D矢竭図である。 FIG. 7 is a D arrow view of FIG. 6 showing a whisker groove.
図 8は前記サイドプレートの背面図である。 FIG. 8 is a rear view of the side plate.
図 9は図 8の E— E線断面図である。 FIG. 9 is a cross-sectional view taken along line E-E of FIG.
図 1 0は他例を示すベーンポンプの縦断面図である。 FIG. 10 is a longitudinal sectional view of a vane pump showing another example.
図 1 1は図 1 0の矢印 F— F方向から見たリアプレートの正面図である。 図 1 2は図 1 1の G— G線断面図である。 FIG. 11 is a front view of the rear plate viewed from the arrow F-F direction of FIG. FIG. 12 is a cross-sectional view taken along line G-G of FIG.
図 1 3は図 1 2の矢印 H部の拡大図である。 発明を実施するための最良の形態 FIG. 13 is an enlarged view of arrow H in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明にかかるベーンポンプの実施形態を図面に基づいて詳述する。
このべーンポンプは、 従来と同じく、 車両のパワーステアリング装置等の油圧 機器に油圧を供給する供給源としてポンプに適用されたもので、 図 1に示すよう に、 内燃機関のシリンダブロックなどにポルトによって固定されたポンプ八ウジ ング 1と、 該ポンプ八ウジング 1内に配置されたポンプ本体 2と、 一端部側がポ ンプハウジング 1の内部に揷通した駆動軸 3とから主として構成されている。 前記ポンプ八ウジング 1は、 図 1及び図 2に示すように、 吸入通路 4と吐出通 路 5を有するブロック状のポンプボディ 6と、 そのポンプボディ 6に結合された ポンプカバ一 7とから成り、 このポンプボディ 6とポンプカバー 7との間にボン プ本体 2を収容する空間部が設けられている。 Hereinafter, an embodiment of a vane pump concerning the present invention is explained in full detail based on a drawing. This vane pump is applied to a pump as a supply source for supplying hydraulic pressure to hydraulic equipment such as a power steering device of a vehicle, as in the prior art, and as shown in FIG. It is mainly composed of a fixed pump housing 1, a pump body 2 disposed in the pump housing 1, and a drive shaft 3 having one end portion passing through the inside of the pump housing 1. The pump housing 1, as shown in FIGS. 1 and 2, comprises a block-shaped pump body 6 having a suction passage 4 and a discharge passage 5, and a pump cover 7 connected to the pump body 6. A space for accommodating the pump body 2 is provided between the pump body 6 and the pump cover 7.
前記ポンプ本体 2は、 図 1〜図 4に示すように、 前記ポンプカバー 7の内部に 収容配置されたカムリング 8と、 該カムリング 8の内側に回転自在に設けられた ベーンロータ 9と、 前記カムリング 8の両 に配置された一対のサイドブレート 1 0 , 1 1とを備えている。 As shown in FIGS. 1 to 4, the pump body 2 includes a cam ring 8 housed and disposed inside the pump cover 7, a vane rotor 9 rotatably provided inside the cam ring 8, and the cam ring 8. And a pair of side plates 1 0 and 1 1 arranged on both sides of
前記駆動軸 3は、 ポンプボディ 6から突出した他端部に駆動伝達用のドリブン プーリ 1 9が取付けられ、 このドリブンプーリ 1 9に巻回された図外のベルトを 通してエンジンの動力が伝達されるようになっている。 The drive shaft 3 has a driven pulley 19 for driving transmission attached to the other end projecting from the pump body 6, and the power of the engine is transmitted through a belt (not shown) wound around the driven pulley 19. It is supposed to be
前記カムリング 8は、 図 3に示すように外周面のほぼ 1 8 0 位置に形成され た一対の小半円形状のピン受け溝 8 b、 8 cに嵌合したロケートピン 1 3、 1 3 によってポンプハウジング 1に円周方向の位置決めがなされている共に、 内周面 8 aがほぼ楕円形状に形成されている。 As shown in FIG. 3, the cam ring 8 is provided with pump housings by locating pins 1 3 and 1 3 fitted in a pair of small semicircular pin receiving grooves 8b and 8c formed at approximately 180 positions on the outer peripheral surface. Positioning in the circumferential direction is made at 1, and the inner peripheral surface 8a is formed in a substantially elliptical shape.
前記べーンロータ 9は、 焼結合金によってほぼ円盤状に一体に成形されて、 外 周面とカムリング 8の内周面 8 aとの間にほぼ円環状のポンプ室 1 4を隔成して いる。 また、 ベーンロータ 9の中央には、 前記サイドプレート 1 0, 1 1を貫通 する前記駆動軸 3の先端部 3 aがセレーション結合するセレーシヨン孔 9 aが貫 通形成されていると共に、 外周部には、 1 :0個のスロット 1 5が円周方向の等間 隔位置に放射状に形成されている。 : The vane rotor 9 is integrally formed of a sintered alloy into a substantially disc shape, and a substantially annular pump chamber 14 is separated between the outer circumferential surface and the inner circumferential surface 8 a of the cam ring 8. . At the center of the vane rotor 9, a serration hole 9a through which the tip 3a of the drive shaft 3 penetrating the side plates 10, 11 is serrated is formed, and an outer peripheral portion is formed. , 1: 0 Slots 15 are radially formed at equally spaced positions in the circumferential direction. :
また、 この各スロット 1 5は、 内部に薄肉板状のベ一ン 1 6をそれぞれ放射方
向へ摺動自在に保持していると共に、 底部には各べ一ン 1 6をスロット 1 5の開 口端からカムリング 8の内周面 8 a方向へ突出させる背圧室 1 5 aが形成されて いる。 In addition, each slot 15 is provided with a thin plate-like vane 16 inside. A back pressure chamber 15a is formed at the bottom, in which the vanes 16 are made to slide toward the inner peripheral surface 8a of the cam ring 8 from the open end of the slot 15 while being held slidably in the direction. It is done.
また、 このべーン口一夕 9は、 図 1、 図 3、 図 5に示すように外周面の前記各 スロット 1 5が形成される該スロッ卜形成部 1 7以外の部位に切欠部である円弧 状の肉抜き部 1 8が形成されている。 In addition, as shown in FIG. 1, FIG. 3 and FIG. 5, this vane opening 9 is cut out at a portion other than the slot forming portion 17 where the respective slots 15 on the outer peripheral surface are formed. An arc-shaped lightening portion 18 is formed.
前記各スロット形成部 1 7は、 各肉抜き部 1 8の存在によってそれぞれ凸状に 形成されていると共に、 円周方向のほぼ中心位置に前記スロット 1 5がそれぞれ 形成されている。 The respective slot forming portions 17 are respectively formed in a convex shape by the presence of the respective thin portions 18 and the slots 15 are respectively formed at substantially central positions in the circumferential direction.
前記一方側のサイドプレート 1 0は、 ポンプボディ 6の端面に圧接され、 その 圧接部において、 図 1、 図 2及び図 5、 図 8に示すように、 ベーンロ一夕 9と摺 接する側の一側面に、 ポンプボディ 6に有する吸入通路 4に接続される径方向に 左右一対の吸入ボート 2 0、 2 0が形成されていると共に、 該吸入ボート 2 0、 The side plate 10 on one side is in pressure contact with the end face of the pump body 6, and as shown in FIG. 1, FIG. 2, FIG. 5 and FIG. A pair of radial left and right suction boats 20, 20 connected to the suction passage 4 provided in the pump body 6 is formed on the side, and the suction boats 20, 20,
2 0とクロスする方向位置に一対の第 1、 第 2吐出ポート 2 1、 3 4が形成され ている。 A pair of first and second discharge ports 21 and 34 are formed at positions in a direction crossing with 20.
また、 前記他方側のサイドブレ一ト 1 1には、 前記第 1吐出ポート 2 1に対し てカムリング 8を挟んだ対称位置に第 3吐出ポート 3 5が形成されており、 前記 第 1吐出ポー卜 2 1と第 3吐出ボート 3 5は、 後述する圧力室 2 2内に連通して いる。 また、 サイドプレート 1 0のカムリング 8と反対側に前記第 1吐出ポート 2 1の小開口面積の開口部 2 1 aが形成されている。 Further, third discharge ports 35 are formed at symmetrical positions sandwiching the cam ring 8 with respect to the first discharge port 21 in the side break 11 on the other side, and the first discharge port 35 is formed. 21 and the third discharge boat 35 communicate with each other in a pressure chamber 22 described later. In addition, an opening 21a having a small opening area of the first discharge port 21 is formed on the side of the side plate 10 opposite to the cam ring 8.
さらに、 前記第 2吐出ポート 3 4は、 図 1、 図 8、 図 9に示すように、 カムリ ング 8側の円弧帯状の吐出ポート部と反対側の面に該吐出ポート部よりも開口面 積の小さな開口部 3 4 aが流体の入口から出口に掛けてほぼ扇状に形成されてお り、 その開口面積が前記第 1吐出ポート 2 1の開口部 2 1 a及び第 3吐出ポ一ト Furthermore, as shown in FIG. 1, FIG. 8 and FIG. 9, the second discharge port 34 has an opening area larger than that of the discharge port on the side opposite to the arc-shaped discharge port on the cam ring 8 side. The small opening 3 4 a is formed in a substantially fan shape from the fluid inlet to the outlet, and the opening area thereof is the opening 2 1 a of the first discharge port 21 and the third discharge point
3 5の開口面積よりは小さいが従来の開口部より:は大きな開口面積に設定されて いる。 The opening area is smaller than the opening area of 35, but larger than that of the conventional opening.
また、 前記第 2吐出ポート 3 4の開口部 3 4 aの最大拡幅位置に、 ブリッジ 3
6が架設されていると共に、 該ブリッジ 3 6の前記出口側に、 作動流体の流れを 案内する切欠部 3 7がブリッジ 3 6の全長に亘つて形成されている。 Also, at the maximum widening position of the opening 3 4 a of the second discharge port 34, the bridge 3 6 is erected, and on the outlet side of the bridge 36, a notch 37 for guiding the flow of the working fluid is formed over the entire length of the bridge 36.
また、 前記サイドプレート 1 0は、 同じ一側面に前記各吐出ポート 2 1、 3 4 のべーン口一夕 9の回転方向と逆方向の孔緣 2 1 b、 3 4 bに一対のひげ溝 4 0, 4 0が形成されている。 In addition, the side plate 10 may have a pair of whiskers 21 b and 34 b in the direction opposite to the rotational direction of the respective ones of the discharge ports 21 and 34 on the same side. Grooves 40, 40 are formed.
この各ひげ溝 4 0、 4 0は、 図 3及び図 5に示すように、 各吐出ポート 2 1、 3 4の各孔緣 2 1 b、 3 4 bからべ一ンロータ 9の回転方向と逆方向にほぼ円弧 状に延設されて、 基端部 4 0 aから先端部 4 0 bに亘つて先端先細り状に形成さ れていると共に、 深さが図 6の縦断面で示すように、 最大に深い基端部 4 0 aか ら先端部 4 0 bにいくに従って漸次浅く形成されて、 該先端部 4 0 bで若干急に 立ち上がり形成されている。 また、 図 7の横断面で示すように、 ほぼ V字形状に 形成されて底部 4 0 cが鋭角状に形成されている。 As shown in FIG. 3 and FIG. 5, the respective whisker grooves 40, 40 are reverse to the rotating direction of the vane rotor 9 from the holes 21b, 34b of the respective discharge ports 21 and 34. It extends in a substantially arc shape in the direction, and is formed to be tapered from the proximal end 40 a to the distal end 40 b, and has a depth as shown in the vertical cross section of FIG. It is gradually shallower from the deepest proximal end 40 a to the distal end 40 b and is formed so as to rise slightly at the distal end 40 b. In addition, as shown in the cross section of FIG. 7, the bottom portion 40 c is formed in an acute angle shape and formed substantially in a V shape.
また、 先端部 4 0 bは、 前記基端部 4 0 aのほぼ中心を通る各べーン 1 6の回 転軌跡線(一点鎖線 Xで示す) よりも内方へ指向して形成されている。すなわち、 この先端部 4 O bは、 その延長線 (P線) が前記べーンロータ 9の回転に伴いひ げ溝 4 0付近に回転移動したベ一ン 1 6の径方向長さのほぼ中央位置よりも基部 寄りに指向して形成されている。 In addition, the distal end portion 40b is formed to be directed inward relative to the rotation locus line (shown by an alternate long and short dash line X) of each vane 16 passing substantially the center of the proximal end portion 40a. There is. That is, the tip portion 4 O b has a substantially central position of the radial length of the vane 16 whose extension line (P line) is rotationally moved to the vicinity of the winding groove 40 with the rotation of the vane rotor 9. It is formed more towards the base than it is.
また、 先端部 4 O bは、 前記従来のひげ溝よりも長く.延長形成されており、 そ の長さは、 最大でも隣接する一対のベーン 1 6 , 1 6間の円周方向の長さの半分 以下に設定されていると共に、 さらに漸次先細り状に形成されている。 Further, the tip 4 O b is longer than the conventional whiskers and is formed to extend, and the length thereof is at most the circumferential length between a pair of adjacent vanes 1 6 and 16. While being set to less than half of, it is further formed in a gradually tapered shape.
また、 ポンプ本体 2の外周面とポンプカバー 7の内周面との間には、 前記第 1 〜第 3吐出ポート 2 1、 3 4 , 3 5から吐出された作動油が流れ込む圧力室 2 2 が設けられている。 この圧力室 2 2は、 ポンプボディ 6に設けられた吐出通路 5 と該吐出通路 5と径方向の反対側に形成されたドレ一ン通路 2 4に並列に接続さ れている。 In addition, a pressure chamber 22 into which the hydraulic fluid discharged from the first to third discharge ports 21, 3 4 and 35 flows between the outer peripheral surface of the pump body 2 and the inner peripheral surface of the pump cover 7. Is provided. The pressure chamber 22 is connected in parallel to the discharge passage 5 provided in the pump body 6 and the drain passage 24 formed on the opposite side of the discharge passage 5 in the radial direction.
前記吐出通路 5には、 可変絞り機構 2 5が設けられている一方、 ドレーン通路 2 4の上流端には、 可変絞り機構 2 5の前後差圧に応動するドレーン弁 2 6が設
けられている。 A variable throttling mechanism 25 is provided in the discharge passage 5, while a drain valve 26 responsive to the pressure difference across the variable throttling mechanism 25 is provided at the upstream end of the drain passage 24. It is broken.
前記可変絞り機構 2 5は、 ポンプボディ 6の圧力室 2 2側の端面に形成された スプール収容穴 2 7と、 このスプール収容穴 2 7に進退自在に収容され、 その進 退位置に応じて吐出通路 5の開口面積を増減変化させるスプール 2 8と、 そのス プール 2 8を圧力室 2 2側に付勢するスプリング 2 9とを備えている。 The variable throttling mechanism 25 is housed in a spool housing hole 27 formed on the end face of the pump body 6 on the pressure chamber 22 side, and is accommodated in the spool housing hole 27 so as to be able to move back and forth. A spool 28 for changing the opening area of the discharge passage 5 and a spring 29 for biasing the spool 28 toward the pressure chamber 22 are provided.
そして、 この可変絞り機構 2 5は、 スプール 2 8の一端に作用する圧力室 2 2 の油圧とスプリング 2 9のばね力とのバランスによって進退作動すると共に、 ス プール 2 8がサイドブレ一ト 1 0に当接する初期位置において吐出通路 5の開口 面積が最大になるように設定されている。 尚、 前記第 2吐出ポート 3 4は、 サイ ドブレ一ト 1 0のうちの、 スプール 2 8の端面に対向する位置に開口している。 一方、 ドレーン弁 2 6は、 ポンプボディ 6の圧力室 2 2側の端面に形成された スプール収容穴 3 0と、 このスプール収容穴 3 0に進退自在に収容されたスプー ル 3 1と、 そのスプール 3 1を圧力室 2 2側に付勢するスプリング 3 2と、 スフ。 —ル 3 1が後退したときにその後退量に応じて圧力室 2 2に開口し、 かつ前記ド レーン通路 2 4の開口端を構成するドレンポート 3 3とを備えている。 The variable throttling mechanism 25 is operated by the balance between the hydraulic pressure of the pressure chamber 2 2 acting on one end of the spool 2 8 and the spring force of the spring 2 9. The opening area of the discharge passage 5 is set to be the largest at the initial position in which it abuts. The second discharge port 34 opens at a position facing the end face of the spool 28 in the side plate 10. On the other hand, the drain valve 26 has a spool housing hole 30 formed in the end face of the pump body 6 on the pressure chamber 22 side, a spool 31 housed in the spool housing hole 30 so as to be able to advance and retract, A spring 32 that biases the spool 3 1 to the pressure chamber 2 2 side, and a slip. When the groove 31 retracts, it is opened to the pressure chamber 22 according to the amount of retraction, and a drain port 33 constituting the open end of the drain passage 24 is provided.
前記スプール収容穴 3 0の底部 3 0 a側には、 可変絞り機構 2 5の下流側の圧 力が圧力導入通路 2 3を介して導入されるようになっている。 前記スプール 3 1 の一端は圧力室 2 2側に面し、 これによつてスプール 3 1の前 には前記可変絞 り機構 2 5の前後の圧力が作用するため、 ドレーン弁 2 6はその前後の差圧に応 じてドレーンポ一ト 3 3からドレーン通路 2 4への排出流量を増減制御するよう になっている。 . The pressure on the downstream side of the variable throttling mechanism 25 is introduced via the pressure introducing passage 23 to the bottom portion 3 0 a side of the spool accommodation hole 30. Since one end of the spool 31 faces the pressure chamber 22 side, the pressure before and after the variable throttle mechanism 25 acts on the front of the spool 31 so that the drain valve 26 has its front and rear sides. In accordance with the differential pressure of the valve, the discharge flow rate from the drain port 33 to the drain passage 24 is controlled to be increased or decreased. .
したがって、 この実施形態によれば、 駆動軸 3 (ベーンロータ 9 ) の回転速度 が低い間は、 可変絞り機構 2 5が吐出通路 5を最大に開いた状態でドレーン弁 2 6がスプリング 3 2の力によってドレ一ンポート 3 3を閉じているため、 回転速 度の増大に応じて吐出通路 5の供給流量も増大する。 Therefore, according to this embodiment, while the rotational speed of the drive shaft 3 (vane rotor 9) is low, the force of the spring 32 of the drain valve 26 with the variable throttle mechanism 25 opening the discharge passage 5 at maximum. Since the drain port 33 is closed by this, the supply flow rate of the discharge passage 5 also increases according to the increase of the rotation speed.
そして、 駆動軸 3の回転速度がある程度高まり、 可変絞り機構 2 5の前後差圧 が設定値を超えると、 その前後差圧に応動してドレ一ン弁 2 6のスプール 3 1が
ドレーンポート 3 3を開き、 ドレーン通路 2 4から作動油を排出することから、 吐出通路 5の供給流量の増大が抑制されるようになる。 . Then, when the rotational speed of the drive shaft 3 is increased to some extent and the differential pressure across the variable throttle mechanism 25 exceeds the set value, the spool 31 of the drain valve 26 responds to the differential pressure before and after that. Since the drain port 33 is opened and the hydraulic fluid is drained from the drain passage 24, the increase in the supply flow rate of the discharge passage 5 is suppressed. .
さらに、 この状態から駆動軸 3の回転速度が増大すると、 可変絞り機構 2 5の スプール 2 8が圧力室 2 2側の作動油の油圧によってスプリング 2 9のばね力に 抗して後退し、 吐出通路 5の開口面積が次第に縮小されるようになる。 これによ り、 吐出通路 5の供給流量は次第に減少し、 所謂フローダウン特性が得られるよ うになる。 Furthermore, when the rotational speed of the drive shaft 3 increases from this state, the spool 2 8 of the variable throttle mechanism 2 5 retracts against the spring force of the spring 2 9 by the hydraulic pressure of the hydraulic fluid on the pressure chamber 2 2 side. The opening area of the passage 5 is gradually reduced. As a result, the supply flow rate of the discharge passage 5 gradually decreases, and so-called flow down characteristics can be obtained.
また、 この実施形態によれば、 ベーンロータ 9の回転に伴い 1つのべーン 1 6 がひげ溝 4 0、 4 0の先端部 4 0 b、 4 0 bを通過した際に、各吐出ポ一ト 2 1 , 3 4からひげ溝内を逆流した高圧な作動流体は、 ひげ溝 4 0, 4 0の先端部 4 0 b、 4 0 b、 つまり内方へ指向した先端部 4 0 b、 4 0 bから隣接する次のベー ン 1 6の一側面の径方向内端部 1 6 a側や該内端部 1 6 aよりも基部側に突き当 たる。 このため、 かかるベーン 1 6に対する回転方向と反対方向への負荷、 すな わちモーメントが十分に小さくなり、 ベーンロータ 9への逆転方向への力も大幅 に低減する。 この結果、 ポンプ効率の低下を抑制することが可能になる。 Further, according to this embodiment, when one vane 1 6 passes the tip portions 40 b and 40 b of the whisker grooves 40 and 40 with the rotation of the vane rotor 9, each discharge port is The high-pressure working fluid flowing back from the inside of the whiskers from the toe 2 1, 3 4 is the tip 4 0 b, 4 0 b of the whisker 4 0, 40, that is, the tip 4 0 b, 4 directed inward. It abuts on the radially inner end 16 a side of one side of the next side of the next adjacent 1 s 1 from 0 b or on the base side of the inner end 16 a. As a result, the load in the direction opposite to the rotational direction, ie, the moment, on the vane 16 is sufficiently reduced, and the force in the reverse direction to the vane rotor 9 is also significantly reduced. As a result, it is possible to suppress a decrease in pump efficiency.
また、各ひげ溝 4 0 , 4 0の先端部4 0 13、 4 0 bを延長形成することにより、 隣接するべーン 1 6の一側面の径方向の内端部 1 6 a方向への指向性が強くなり、 高圧な作動流体を一側面の内端部 1 6 a方向に対して、 より確実に案 (^すること が可能になる。 In addition, by extending the tip portions 4 0 13 4 0 b of the respective whisker grooves 4 0 4 0, the radially inner end portion 1 6 a of one side surface of the adjacent vane 1 6 can be obtained. The directivity becomes stronger, and it becomes possible to more reliably formulate a high pressure working fluid in the direction of the inner end 16 a of one side.
しかも、 ひげ溝 4 0, 4 0の延長化によって、 例えば、 特に車両の直進運転時 などにおいてステアリングホイ一ルを大きく回転操作しない場合の吐出油圧の変 化を小さくすることができる。 すなわち、 ステアリングホイールを大きく回転操 作しない場合には、 吐出ポート 2 1, 3 4とその近傍に回転移動した一対のベー ン 1 6, 1 6間のポンプ室との差圧が小さくなつている。 そして、 ベーンロータ 9の回転に伴い各吐出ポート 2 1, 3 4付近に回転移動した前記ポンプ室が延長 されたひげ溝 4 0 , : 4 0によって第 1、 第 2吐出ポート 2 1, 3 4との連通開始 点が早くなり、 ベーン 1 6の回転速度に対して前記ポンプ室と第 1、 第 2吐出ポ
ート 2 1, 3 4との連通時間が長くなる。 したがって、 吐出ポート 2 1, 3 4内 の作動油圧のポンプ室への移動時間が長くなるので、 吐出ポ一ト 2 1, 3 4内で の作動流体の油圧変化が小さくなる。 In addition, the extension of the whisker grooves 40 can reduce the change in the discharge hydraulic pressure when the steering wheel is not largely rotated, for example, when the vehicle is traveling straight. That is, when the steering wheel is not largely rotated, the pressure difference between the discharge ports 21 and 34 and the pump chamber between the pair of vanes 16 and 16 rotationally moved in the vicinity is small. . And, the first and second discharge ports 21 and 34 are formed by the whisker grooves 40 and 40 into which the pump chamber which has been rotationally moved near the discharge ports 21 and 32 along with the rotation of the vane rotor 9 is extended. Of the pump chamber and the first and second discharge ports with respect to the rotational speed of the vane 16 The communication time with the ports 2 and 3 4 becomes long. Therefore, since the movement time of the hydraulic pressure in the discharge ports 21 and 32 to the pump chamber becomes long, the change in hydraulic pressure of the working fluid in the discharge ports 21 and 32 becomes small.
この結果、 かかるステアリングホイールの僅かな回転操作時にも、 吐出ポート 2 1, 3 4内の油圧の脈動を低減させることが可能になる。 As a result, even when the steering wheel is slightly rotated, it is possible to reduce the pulsation of the hydraulic pressure in the discharge ports 21 and.
また、 この実施形態にあっては、 第 2吐出ポート 3 4の開口部 3 4 aを比較的 大きく形成して、 開口面積を従来のものより大きく設定したことから、 作動中に おけるベ一ンロ一夕 9の図 1中上方 (第 1吐出ポ一ト 2 1側) への偏心動が防止 される。 Further, in this embodiment, the opening 3 4 a of the second discharge port 34 is formed relatively large, and the opening area is set larger than that of the conventional one. The eccentric movement to the upper side (the first discharge point 21 side) in Fig. 1 of the course 9 is prevented.
すなわち、 第 1吐出ポ一ト 2 1側は、 第 3吐出ポ一ト 3 5とともに全体の開口 面積が大きいのに対して、 第 2吐出ポート 3 4側は単一のポ一トであるから、 該 第 2吐出ポ一ト 3 4を通過する作動油圧が第 1、 第 3吐出ポ一ト 2 1 , 3 5を通 過する作動油圧よりも大きくなる。 このため、 ベ一ンロータ 9が、 ポンプの作動 中に高圧な第 2吐出ポート 3 4側の油圧によって第 1、 第 3吐出ポート 2 1、 3 5側、 つまり図 1中、 上方側に押上げられて偏心動してしまう。 したがって、 か かる付近の各べ一ン 1 6の先端部がカムリング 8の内周面に強く力で摺接するた め、 摩擦抵抗が大きくなつて、 ポンプ効率が低下してしまうおそれがある。 しかし、 本実施形態の うに、 第 2吐出ポート 3 4の開口部 3 4 aの開口两積 を大きく設定したことから、 第 1吐出ポート 2 1側との吐出圧がほぼ均一に近く バランスされることから、 ベ一ンロータ 9の偏心動の発生を抑制できる。 この結 果、 カムリング 8の内周面 8 aに対する各べーン 1 6の局部的な大きな摺動摩擦 抵抗の発生を低減させることができる。 したがって、 ポンプ効率の低下を防止す ることが可能になる。 That is, the first discharge port 21 side has a large opening area together with the third discharge port 35, while the second discharge port 34 side has a single point. The hydraulic pressure passing through the second discharge port 34 is greater than the hydraulic pressure passing through the first and third discharge ports 21 and 35. For this reason, the vane rotor 9 is pushed upward to the first and third discharge ports 21 and 35, that is, in FIG. 1, by the oil pressure on the high pressure second discharge port 34 side during operation of the pump. And it moves eccentrically. Therefore, since the tip of each vane 16 in the vicinity thereof is in sliding contact with the inner peripheral surface of the cam ring 8 with a strong force, the frictional resistance may be increased and the pump efficiency may be reduced. However, since the opening area of the opening 3 4 a of the second discharge port 34 is set large as in the present embodiment, the discharge pressure on the side of the first discharge port 21 is almost uniformly balanced. Thus, the occurrence of the eccentric motion of the vane rotor 9 can be suppressed. As a result, it is possible to reduce the occurrence of a large local sliding friction resistance of each vane 16 on the inner circumferential surface 8 a of the cam ring 8. Therefore, it is possible to prevent a decrease in pump efficiency.
また、 前記第 2吐出ポート 3 4の開口部 3 4 aの最大拡幅位置に、 ブリッジ 3 6を架設したことから、 該第 2吐出ポ一ト 3 4回りの剛性が確保できることは勿 論のこと、 このブリッジ 3 6によって絞り効果が発揮されて、 前記可変絞り機構 2 5によるパイ口ット圧の制御精度を高くすることができる。 ·
さらに、 ブリッジ 3 6の前記出口側に、 作動流体の流れを案内する切欠部 3 7 をブリッジ 3 6の全長に亘つて形成したことから、 該切欠部 3 7によって吐出通 路 5への作動流体の流動方向 (図 1矢印) を適正に制御することが可能になり、 この結果、 可変絞り機構 2 5の高い制御精度が得られる。 In addition, it is a matter of course that the rigidity around the second discharge port 34 can be secured by bridging the bridge 36 at the maximum widening position of the opening 3 4 a of the second discharge port 34. The diaphragm effect is exhibited by the bridge 36, and the control accuracy of the pie mouth pressure by the variable diaphragm mechanism 25 can be increased. · Furthermore, since a notch 3 7 for guiding the flow of the working fluid is formed on the outlet side of the bridge 36 over the entire length of the bridge 36, the working fluid to the discharge passage 5 is cut by the notch 3 7. It is possible to properly control the flow direction (arrow in FIG. 1) of the valve, and as a result, high control accuracy of the variable throttle mechanism 25 can be obtained.
図 1 0〜図 1 3は他の実施形態を示し、 ベ一ンポンプの構造中、 ポンプハウジ ングの構造などが先のものとは異なるが、 その他の基本的構造は同一である。 すなわち、 ポンプハウジング 5 0は、 後端開口が該ポンプハウジング 5 0にポ ルト固定されたプレート部材であるリアプレート 5 1によって閉塞されており、 ポンプハウジング 5 0の内部には、 前記カムリング 5 2と、 該カムリング 5 2内 部に回転自在に設けられた焼結合金材からなるベーンロータ 5 3がそれぞれ収容 配置されていると共に、 カムリング 5 2の一側面に一方側のサイドブレート 5 4 が配置されている。 また、 前記ポンプハウジング 5 0を貫通した駆動軸 5 5は、 先端部 5 5 aがリアプレート 5 1のほぼ中央に形成された軸受孔 5 1 bに軸受け されていると共に、 該先端部 5 5 a寄りの部位が前記べ一ンロータ 5 3の中央の セレーシヨン孔 5 3 aにセレーシヨン結合している一方、 基端側がポールべァリ ング 5 6によって回転自在に支持されている。 FIGS. 10 to 13 show another embodiment, in which the structure of the pump housing is different from that of the previous one in the structure of the vane pump, but the other basic structure is the same. That is, the pump housing 50 is closed by a rear plate 51 which is a plate member whose rear end opening is fixed to the pump housing 50 by a pole, and the inside of the pump housing 50 has the cam ring 52. And a vane rotor 53 formed of a sintered alloy material rotatably provided at an inner portion of the cam ring 52 is accommodated and disposed, and a side plate 54 at one side is disposed at one side of the cam ring 52. ing. Further, the drive shaft 55 passing through the pump housing 50 has a tip end portion 5 5 a bearing in a bearing hole 5 1 b formed substantially at the center of the rear plate 51, and the tip end portion 5 5 A portion closer to a is serration-bonded to the center hole 53a in the center of the vane rotor 53, while the proximal end is rotatably supported by a pole bearing 56.
また、 ベーンロータ 5 3に有する複数のスロットに図外のベーンが放射状に設 けられていると共に、 該べ一ン間に形成されたポンプ室はべ一ンロ一夕 5 3の回 転によつてその容積が変ィヒし、 この変化によつて容積が増加する部分に吸入区間 が、 容積が減少する部分に吐出区間が形成されている。 Further, vanes (not shown) are radially provided in a plurality of slots of the vane rotor 53, and the pump chamber formed between the vanes is rotated by the vane rotor 53. The suction section is formed in the portion where the volume is changed and the volume is increased by this change, and the discharge section is formed in the portion where the volume is decreased.
前記ポンプ室は、 サイドプレートの連通孔 5 7によって、 ポンプハウジング 5 0の内部凹部に形成された高圧室 5 8に連通している。 またポンプハウジング 5 0に設けられた吸入口 5 9は、 図 1 1に示すように、 リアプレート 5 1に形成さ れた左右一対の吸入ポート 6 0、 6 0と内部の低圧通路 6 1を介してポンプ室に 連通している。 The pump chamber is in communication with the high pressure chamber 58 formed in the internal recess of the pump housing 50 by the communication hole 57 of the side plate. Also, as shown in FIG. 11, the suction port 59 provided in the pump housing 50 has a pair of left and right suction ports 60, 60 formed in the rear plate 51, and an internal low pressure passage 61. It communicates with the pump chamber via
また高圧室 5 8と連通する図外の高圧通路と前記低圧通路 6 1との間には、 流 量制御弁 6 2が設けられており、 この流量制御弁 6 2によつて高圧室 5 8に導か
れた吐出油のうち余剰分を低圧通路 6 1に還流させて、 図外の吐出孔からァクチ ユエ一夕に吐出する作動流体を一定量に制御するようになっている。 A flow rate control valve 62 is provided between a high pressure passage (not shown) in communication with the high pressure chamber 58 and the low pressure passage 61. The high pressure chamber 58 is provided with the flow control valve 62. Led to The surplus of the discharged oil is returned to the low pressure passage 61 to control the working fluid discharged from the discharge hole outside the figure to a constant amount.
そして、 前記リアプレート 5 1は、 アルミ合金材によって一体に成形されて、 図 1 0〜図 1 2に示すように、 内端面 5 1 aが前記べーンロータ 5 3の回転に伴 ぃ該ベ一ンロータ 5 3の一側面 5 3 bに摺接するようになつていると共に、 該内 端面 5 1 aの少なくとも前記べ一ンロ一タ 5 3の一側面 5 3 bとの摺接部位に、 図 1 3にも示すように、 微小な油溜まり部 6 3が無数に形成されている。 The rear plate 51 is integrally formed of an aluminum alloy material, and as shown in FIGS. 10 to 12, the inner end surface 51 a is moved along with the rotation of the vane rotor 53. As shown in FIG. 1, the inner end face 5 1 a is in sliding contact with at least one side face 5 3 b of the inner rotor 5 3. As also shown in 3, the minute oil reservoirs 63 are formed innumerably.
この油溜り部 6 3は、 いわゆるラップ加工によって前記内端面 5 1 aの表面に ランダムな方向に形成した線状切り欠き 6 4の交点凹溝によって無数に形成され たものであって、 その深さは極めて小さく約 0 . 3 a、 あるいはそれよりも若干 小さく設定されている。 The oil reservoir portion 63 is innumerably formed by intersection grooves of linear notches 64 formed in random directions on the surface of the inner end surface 51a by so-called lapping. The size is very small, about 0.3 a, or slightly smaller.
したがって、 この無数の油溜り部 6 3に溜められた潤滑油によって、 前記内端 面 5 1 aとべ一ンロータ 5 3の一側面 5 3 bとの間に、 油膜が形成されることか ら、 両者、 5 1 a、 5 3 b間の潤滑性能が高くなり、 ベーンロ一夕 5 3よりも硬 度の低いリアプレート 5 1の内端面 5 1 aの摩耗の発生を十分に防止できる。 また、 油溜り部 6 3は、 ラップ加工によって形成するようにしたため、 その形 成作業が簡単であると共に、 微小な加工が可能になる。 Therefore, an oil film is formed between the inner end surface 5 1 a and the side surface 5 3 b of the vane rotor 5 3 by the lubricating oil accumulated in the innumerable oil reservoirs 63, The lubricating performance between both members 5 1 a and 5 3 b is enhanced, and the occurrence of the wear of the inner end surface 5 1 a of the rear plate 51 having hardness lower than that of the vane rod 53 can be sufficiently prevented. In addition, since the oil reservoir 63 is formed by lapping, the forming operation is simple and micro-processing is possible.
さらに、 油溜り部 6 3は、 その大きさ 前述のように極めて小さいことから、 たとえ内端面 5 1 aの全面に形成されていてもポンプノヽウジング 5 0との間のシ ール性が低下することはない。 Furthermore, since oil reservoir 63 is extremely small as described above, the sealability with pump housing 50 is reduced even if it is formed on the entire surface of inner end face 51a. There is nothing to do.
また、 前記微小な油溜り部 6 3をべーン口一タ 5 3の一側面 5 3 bのみに形成 することも可能であり、 さらに、 該ー側面 5 3 bとリアプレート 5 1の内端面 5 1 aとの両方に形成することも可能である。 It is also possible to form the minute oil reservoir portion 6 3 on only one side 5 3 b of the vane 5 3, and further, inside of the side 3 5 b and the rear plate 5 1 It is also possible to form on both the end face 5 1 a.
前記実施形態から把握できる請求項以外の技術的思想について、 以下に記載す る。 : The technical ideas other than the claims that can be grasped from the embodiment are described below. :
( 1 ) ポンプ八ウジング内に収容配置されたカムリングと、 (1) The pump has a cam ring housed in a housing.
該カムリングの側部に配置されたサイドブレートと、
前記サイドプレートのほぼ径方向の対象位置に開口形成された一対の吐出ポー 卜と、 A side plate disposed on the side of the cam ring; A pair of discharge ports that are formed at target positions in the substantially radial direction of the side plate;
該カムリング内に回転自在に収容され、 駆動軸によって回転駆動されるロータ と、 A rotor rotatably accommodated in the cam ring and rotationally driven by a drive shaft;
該ロータの外周部に放射方向に沿って形成された複数のスロット内に前記カム リングの内周面方向へ出没自在に保持されたべ一ンと、 を備えたベ一ンポンプに おいて、 A vane pump comprising: a vane rotatably held in the direction of the inner circumferential surface of the cam ring in a plurality of slots formed along the radial direction on the outer circumferential portion of the rotor.
前記一方の第 1吐出ポ一トのカムリングを挟んだ反対側に第 3吐出ポ一トを形 成し、 該第 1、 第 3吐出ポートを、 前記ポンプ八ウジングとカムリングとの間に 形成された圧力室に連通する 2系統に形成する一方、 他方の第 2吐出ポートの開 口面積を、 前記第 1、 第 3吐出ポートの全体の開口面積に近くなるように大きく 形成したことを特徴とするベーンポンプ。 A third discharge port is formed on the opposite side of the one first discharge port across the cam ring, and the first and third discharge ports are formed between the pump housing and the cam ring. The opening area of the other second discharge port is formed large so as to be close to the total opening area of the first and third discharge ports, while being formed in two systems communicating with the pressure chamber. Vane pump.
この発明によれば、 第 2吐出ポートの開口部の開口面積を大きく設定したこと から、 第 1吐出ポー卜側との吐出圧がほぼ均一に近くバランスされることから、 ロー夕の偏心動の発生を抑制できる。 この結果、 カムリングの内周面に対する各 ベーンの局部的な大きな摺動摩擦抵抗の発生を低減させることができる。 したが つて、 ポンプ効率の低下を防止することが可能になる。 According to the present invention, since the opening area of the opening of the second discharge port is set large, the discharge pressure on the side of the first discharge port is almost evenly balanced, so that the eccentricity of the low temperature can be reduced. The occurrence can be suppressed. As a result, it is possible to reduce the occurrence of a large local sliding friction resistance of each vane on the inner circumferential surface of the cam ring. Therefore, it is possible to prevent a decrease in pump efficiency.
( 2 ) 前記第 2吐出ポートの開口部を流体の入口から出口にかけてほぼ扇状に拡 大形成したことを特徴とする請求項 (1 ) に記載のベ一ンポンプ。 (2) The vane pump according to (1), wherein the opening of the second discharge port is formed in a fan-like shape from the inlet to the outlet of the fluid.
この発明によれば、 第 2吐出ポ一トの開口部の開口形状がほぼ扇状に拡大形成 されていることから、 可変絞り機構方向への作動流体の良好な流動性が得られる と共に、 吐出圧を効果的に低減させることができる。 According to the present invention, since the opening shape of the opening of the second discharge port is expanded in a substantially fan-like shape, good flowability of the working fluid in the direction of the variable throttle mechanism can be obtained, and the discharge pressure Can be effectively reduced.
( 3 )前記第 2吐出ポートの開口部の最大拡幅位置にブリッジを架設すると共に、 該プリッジの前記出口側に、 作動流体の流れを案内する切欠部をプリッジの全長 に亘つて形成したことを特徴とする請求項 (1 ) または (2 ) に記載のベ一ンポ ンプ。 . (3) The bridge is installed at the maximum widening position of the opening of the second discharge port, and a notch for guiding the flow of the working fluid is formed on the outlet side of the bridge over the entire length of the bridge. The pump according to claim 1 or 2, which is characterized by the present invention. .
この発明によれば、 第 2吐出ポートの開口部の最大拡幅位置に、 ブリッジを架
設したことから、 該第 2吐出ポート回りの剛性が確保できることは勿論のこと、 このプリッジによって絞り効果が発揮されて、 前記可変絞り機構によるパイロッ 卜圧の制御精度を高くすることができる。 According to the present invention, the bridge is installed at the widest position of the opening of the second discharge port. As a result of the provision, it is possible to secure the rigidity around the second discharge port, and of course, the throttling effect is exhibited by this ridge, so that the control accuracy of the pilot pressure by the variable throttling mechanism can be increased.
さらに、 作動流体の流れを案内する切欠部をプリッジの全長に亘って形成した ことから、 該切欠部によって吐出通路への作動流体の流動方向を適正に制御する ことが可能になり、 この結果、 可変絞り機構の高い制御精度が得られる。 Furthermore, since the notch for guiding the flow of the working fluid is formed over the entire length of the ridge, the notch enables the flow direction of the working fluid to the discharge passage to be properly controlled, and as a result, High control accuracy of the variable aperture mechanism can be obtained.
( 4 ) ポンプハウジング内に収容配置されたカムリングと、 (4) With a cam ring housed in the pump housing,
前記ポンプ八ゥジングの一端開口を閉塞しかつ前記力ムリングのー側面に当接 するプレート部材と、 A plate member closing an end opening of the pump holder and abutting on a side surface of the force mulling;
該カムリング内に回転自在に収容され、 駆動軸によって回転した際、 一側面が 前記前記プレート部材の内端面に摺接するロータと、 A rotor rotatably accommodated in the cam ring and having one side in sliding contact with the inner end face of the plate member when rotated by a drive shaft;
該ロ一夕の外周部に放射方向に沿って形成された複数のスロッ卜内に前記カム リングの内周面方向へ出没自在に保持されたべーンと、 を備えたベーンポンプに おいて、 A vane pump held in a plurality of slots formed in a radial direction on an outer peripheral portion of the rotor in a manner such that the vanes can be retracted toward the inner peripheral surface of the cam ring;
前記プレート部材の内端面あるいはロータの一側面の少なくともいずれか一方 に、 微小な油溜まり部を形成したことを特徴とするベ一ンポンプ。 A minute oil reservoir is formed on at least one of the inner end surface of the plate member and one side surface of the rotor.
この発明によれば、 微小な油溜り部に溜められた潤滑油によって、 前記内端面 と口一夕の一側面との間に、 常時油膜が形成されることから、 両者間の潤滑性能 が高くなり、 ロータとリアプレ一卜との間の摺動摩耗の発生を十分に防止するこ とができる。 According to the present invention, the lubricating oil accumulated in the minute oil reservoir portion always forms an oil film between the inner end surface and the side surface of the mouth, so that the lubricating performance between the both is high. As a result, the occurrence of sliding wear between the rotor and the rear plate can be sufficiently prevented.
( 5 ) .前記油溜まり部を、 ランダムな方向に形成した線状切り欠きの交点凹溝に よって形成したことを特徴とする請求項 (4 ) に記載のベ一ンポンプ。 (5) The vane pump according to (4), characterized in that the oil reservoir portion is formed by intersection grooves of linear notches formed in random directions.
( 6 ) 前記ランダムな方向に形成した線状の切り欠きの交点凹溝をラップ加工に よって形成したことを特徴とする請求項 (5 ) に記載のベ一ンポンプ。 , この発明によれば、 油溜り部をラップ加工によって形成するようにしたため、 その形成作業が簡単であると共に、 微小な加工が可能になる。 (6) The vane pump according to (5), characterized in that the intersection concave grooves of the linear notches formed in the random direction are formed by lapping. According to the present invention, since the oil reservoir is formed by lapping, the forming operation is simple and minute processing is possible.
本発明は前記各実施形態の構成に限定されるものではなく、 例えば、 前記油溜
り部を第 1の実施形態に適用することも可能であり、 この場合、 両サイドプレー ト 1 0 , 1 1の対向面、 つまりべーンロータの両側面と摺接する対向面に形成す るか、 あるいはベーンロータの両側面に形成することも可能である。
The present invention is not limited to the configuration of each of the above embodiments, and, for example, the oil reservoir It is also possible to apply the ridge portion to the first embodiment, and in this case, it is formed on the opposing surface of both side plates 10 1 and 11, that is, the opposing surface in sliding contact with both sides of the vane rotor Alternatively, it may be formed on both sides of the vane rotor.
Claims
1 . ポンプ八ウジング内に収容配置されたカムリングと、 1. The cam ring housed in the pump housing.
該カムリングの側部に配置されて、 吐出ポートが開口形成されたサイドブレー 卜と、 A side braze disposed at a side of the cam ring and having an outlet port formed therein;
該カムリング内に回転自在に収容され、 駆動軸によって回転駆動されるロータ と、 A rotor rotatably accommodated in the cam ring and rotationally driven by a drive shaft;
該ロータの外周部に放射方向に沿つて形成された複数のス口ッ卜内に前記カム リングの内周面方向へ出没自在に保持されたべ一ンと、 A vane rotatably held in the direction of the inner peripheral surface of the cam ring in a plurality of slots formed radially along the outer periphery of the rotor;
前記サイドプレートの前記ロータと摺接する内側面に切欠形成されて、 前記吐 出ポ一トと連通するひげ溝と、 を備えたベ一ンポンプにおいて、 A vane groove formed in an inner surface in sliding contact with the rotor of the side plate and communicating with the discharge point;
前記ひげ溝を前記吐出ポートから前記ロータの回転方向と反対方向に沿って漸 次先細り状に形成すると共に、 該ひげ溝の先端部を、 前記各べーンのひげ溝の基 端部を通る回転軌跡線よりも内方へ指向して形成したことを特徴とするベーンポ ンプ。 The whiskers are formed to be gradually tapered from the discharge port along the direction opposite to the rotational direction of the rotor, and the tip of the whiskers passes through the base of the whiskers of each vane. A vane pump characterized in that it is formed to be directed inward of the rotation locus line.
2 . 前記ひげ溝の先端部の延長線を、 前記ロータの回転に伴いひげ溝付近に回 転移動したベーンの径方向長さのほぼ中央位置よりも基部 りに指向させたこと を特徴とする請求項 1に記載のベーンポンプ。 2. The extension line of the tip of the whisker is characterized in that it is directed to the base rather than the substantially central position of the radial length of the vane rotated in the vicinity of the whisker as the rotor rotates. The vane pump according to claim 1.
3 . 前記ひげ溝の先端部を、 前記ロータの回転に伴いひげ溝付近に回転移動し たべ一ン方向へ延長形成したことを特徴とする請求項 1または 2に記載のベーン ポンプ。
3. The vane pump according to claim 1 or 2, wherein the tip of the whisker groove is formed to extend in the vane direction in which it is rotationally moved near the whisker groove as the rotor rotates.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB038263211A CN100425837C (en) | 2003-07-09 | 2003-07-09 | Vane pump |
PCT/JP2003/008724 WO2005005837A1 (en) | 2003-07-09 | 2003-07-09 | Vane pump |
JP2005503843A JPWO2005005837A1 (en) | 2003-07-09 | 2003-07-09 | Vane pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/008724 WO2005005837A1 (en) | 2003-07-09 | 2003-07-09 | Vane pump |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005005837A1 true WO2005005837A1 (en) | 2005-01-20 |
Family
ID=34044599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/008724 WO2005005837A1 (en) | 2003-07-09 | 2003-07-09 | Vane pump |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2005005837A1 (en) |
CN (1) | CN100425837C (en) |
WO (1) | WO2005005837A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014163294A (en) * | 2013-02-25 | 2014-09-08 | Showa Corp | Vane pump device |
US9062674B2 (en) | 2011-08-31 | 2015-06-23 | Showa Corporation | Vane pump including outer side plate defining high and low pressure notch grooves of differing lengths adjacent the high and low discharge ports for improved noise performance |
US20180128107A1 (en) * | 2016-11-04 | 2018-05-10 | Toyota Jidosha Kabushiki Kaisha | Vane oil pump |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101581301B (en) * | 2009-06-15 | 2014-02-05 | 胡东文 | Vane pump/motor |
JP5764453B2 (en) * | 2011-10-03 | 2015-08-19 | カヤバ工業株式会社 | Vane pump |
DE102012104804A1 (en) * | 2012-06-04 | 2013-12-05 | Zf Lenksysteme Gmbh | Displacement pump e.g. two-stroke vane pump, for conveying pressurized medium to gear box of motor vehicle, has side walls closed at groove bottom, where spacing of side walls from each other are enlarged over diameters of position pins |
JP7256598B2 (en) * | 2017-11-20 | 2023-04-12 | Kyb株式会社 | vane pump |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5540387Y2 (en) * | 1973-05-01 | 1980-09-20 | ||
JPH05133351A (en) * | 1991-11-11 | 1993-05-28 | Jidosha Kiki Co Ltd | Vane pump |
JPH10184563A (en) * | 1996-12-24 | 1998-07-14 | Aisin Seiki Co Ltd | Vane pump |
US6068461A (en) * | 1996-09-17 | 2000-05-30 | Toyoda Koki Kabushiki Kaisha | Vane type rotary pump having a discharge port with a tapered bearded groove |
US6120256A (en) * | 1998-04-23 | 2000-09-19 | Jidosha Kiki Co., Ltd. | Variable displacement pump |
US6203303B1 (en) * | 1998-12-11 | 2001-03-20 | Toyoda Koki Kabushiki Kaisha | Vane pump |
JP2001248569A (en) * | 2000-03-02 | 2001-09-14 | Unisia Jecs Corp | Vane pump |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2932236B2 (en) * | 1994-02-28 | 1999-08-09 | 自動車機器株式会社 | Variable displacement pump |
JP3683608B2 (en) * | 1995-01-26 | 2005-08-17 | ユニシア ジェーケーシー ステアリングシステム株式会社 | Variable displacement pump |
-
2003
- 2003-07-09 CN CNB038263211A patent/CN100425837C/en not_active Expired - Fee Related
- 2003-07-09 JP JP2005503843A patent/JPWO2005005837A1/en not_active Abandoned
- 2003-07-09 WO PCT/JP2003/008724 patent/WO2005005837A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5540387Y2 (en) * | 1973-05-01 | 1980-09-20 | ||
JPH05133351A (en) * | 1991-11-11 | 1993-05-28 | Jidosha Kiki Co Ltd | Vane pump |
US6068461A (en) * | 1996-09-17 | 2000-05-30 | Toyoda Koki Kabushiki Kaisha | Vane type rotary pump having a discharge port with a tapered bearded groove |
JPH10184563A (en) * | 1996-12-24 | 1998-07-14 | Aisin Seiki Co Ltd | Vane pump |
US6120256A (en) * | 1998-04-23 | 2000-09-19 | Jidosha Kiki Co., Ltd. | Variable displacement pump |
US6203303B1 (en) * | 1998-12-11 | 2001-03-20 | Toyoda Koki Kabushiki Kaisha | Vane pump |
JP2001248569A (en) * | 2000-03-02 | 2001-09-14 | Unisia Jecs Corp | Vane pump |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9062674B2 (en) | 2011-08-31 | 2015-06-23 | Showa Corporation | Vane pump including outer side plate defining high and low pressure notch grooves of differing lengths adjacent the high and low discharge ports for improved noise performance |
JP2014163294A (en) * | 2013-02-25 | 2014-09-08 | Showa Corp | Vane pump device |
US20180128107A1 (en) * | 2016-11-04 | 2018-05-10 | Toyota Jidosha Kabushiki Kaisha | Vane oil pump |
Also Published As
Publication number | Publication date |
---|---|
CN100425837C (en) | 2008-10-15 |
JPWO2005005837A1 (en) | 2006-08-24 |
CN1764783A (en) | 2006-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5395713B2 (en) | Vane pump | |
JP6182821B2 (en) | Variable displacement vane pump | |
US5188522A (en) | Vane pump with a throttling groove in the rotor | |
US20150354564A1 (en) | Oil pump | |
WO2005005837A1 (en) | Vane pump | |
JP5371795B2 (en) | Variable displacement vane pump | |
JP3813783B2 (en) | Vane pump | |
JP2012163040A (en) | Vane pump | |
WO2018084105A1 (en) | Vane pump | |
JP3734627B2 (en) | Variable displacement vane pump | |
JP2870602B2 (en) | Variable displacement vane pump | |
JP2003097453A (en) | Variable displacement vane pump | |
JP2012163041A (en) | Vane pump | |
KR100742866B1 (en) | Vane pump | |
JP2599964Y2 (en) | Vane pump | |
JP4260661B2 (en) | Vane pump | |
JP2010265852A (en) | Vane pump | |
JP2582863Y2 (en) | Vane pump | |
JP3657784B2 (en) | Variable displacement pump | |
JP3940145B2 (en) | Variable displacement vane pump | |
JP4009455B2 (en) | Variable displacement vane pump | |
CN111630276A (en) | Pump device | |
JPH07259754A (en) | Variable displacement type pump | |
JP3739215B2 (en) | Variable displacement vane pump | |
JP4410528B2 (en) | Variable displacement vane pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005503843 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020057018401 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038263211 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057018401 Country of ref document: KR |