JPS58170805A - Starting method of plant with boiler and turbine - Google Patents

Starting method of plant with boiler and turbine

Info

Publication number
JPS58170805A
JPS58170805A JP5101082A JP5101082A JPS58170805A JP S58170805 A JPS58170805 A JP S58170805A JP 5101082 A JP5101082 A JP 5101082A JP 5101082 A JP5101082 A JP 5101082A JP S58170805 A JPS58170805 A JP S58170805A
Authority
JP
Japan
Prior art keywords
turbine
plant
steam temperature
superheater
final superheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5101082A
Other languages
Japanese (ja)
Inventor
Isao Moriyama
功 森山
Shinobu Kishikawa
忍 基志川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5101082A priority Critical patent/JPS58170805A/en
Publication of JPS58170805A publication Critical patent/JPS58170805A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays

Abstract

PURPOSE:To permit the rapid starting of a plant by a method wherein a superheater spraying device, adjusting a steam temperature at the outlet of the final superheater to a specified value upon putting the turbine into the parallel operation in the plant for a period until the parallel operation after passing steam through the turbine, is provided in the plant. CONSTITUTION:A plant of a boiler and a turbine is provided with a final superheater 10, a turbine 11 and a reheater 12. An adder 15 calculates a difference between the final superheater outlet steam temperature Tact and the specified value Tset of the final superheater outlet steam temperature upon putting the turbine into the parallel operation and inputs it into a proportional plus integral controller 17 through a changeover switch 16. The final superheater outlet steam temperature is controlled by the superheater spraying device so that it becomes the specified value of the final superheater outlet steam temperature upon putting the turbine into the parallel operation. Thus, the rising of a turbine inlet steam temperature may be suppressed and the matching of the turbines may be facilitated while the amount of spray becomes a much amount of evaporation and the rapid starting of the plant after putting the turbine into the parallel operation may be permitted.

Description

【発明の詳細な説明】 本発明は、タービンバイパスを有するドラム型ボイラお
よび変圧モノチューブボイラと蒸気タービンからなるプ
ラントにおける起動時の温度制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control method at the time of startup in a plant consisting of a drum boiler having a turbine bypass, a variable pressure monotube boiler, and a steam turbine.

従来、タービンバイパスを有するボイラ・タービンプラ
ントの起動時のタービン入口蒸気温度は、燃料のみで制
御されているために、通気時および並入時のタービン入
口蒸気の規定温度によって燃料の投入量が抑えられてい
る(燃料投入量は、手動または、あらかじめ次められた
パターンに基づいて与えられる)。
Conventionally, the turbine inlet steam temperature at startup of a boiler/turbine plant with a turbine bypass is controlled only by fuel, so the amount of fuel input is suppressed by the specified temperature of the turbine inlet steam during ventilation and parallel entry. (Fuel input can be given manually or based on a preset pattern).

従来の方法では、並入時の燃料投入量が並入時タービン
メタルとのマツチング温度で抑えられているために、通
気から並入までの燃料投入蓋の増加が小さくなるか、あ
るいは燃料投入量が減少することさえある。そのため、
#発鼠も、燃料投入量に抑えられ、多量の蒸発−を有る
ことはできな(ゝ0 しかるに近年、エネルギー事情等により発′亀用ボイラ
・タービンプラントには昼間運転、深夜停止という運転
が安xされ、それに伴いプラントの急速起動が要求され
ている。
In the conventional method, the amount of fuel input during parallel entry is suppressed by the matching temperature with the turbine metal during parallel entry, so the increase in the fuel injection lid from ventilation to parallel entry is small, or the amount of fuel input is suppressed. may even decrease. Therefore,
#The fuel input is also limited, and it is impossible to have a large amount of evaporation. As a result, rapid startup of plants is required.

急速起動では、並入から全負荷まで上昇させる時間が非
常に短かいが、この間、電動駆動給水ポンプ(MBFP
)からタービン駆動給水ポンプ(TBFP)への切替(
約25%負荷で実施) TBFPの追加駆動(約50チ
負荷で実施)等の操作のために時間を資することや、温
度制御等の制限から、負荷変化率が5%/分程度に抑え
られるため、並入後の初負荷から、MBFP/TBFP
切替までの負荷上昇し−トが、従来に比べて非常に高(
ならさるをえない。
With rapid startup, the time to increase from normal to full load is very short, but during this time the electric drive water pump (MBFP)
) to turbine-driven water pump (TBFP) (
The load change rate can be suppressed to about 5%/min due to the need to save time for operations such as additional drive of the TBFP (carried out at about 50% load) and restrictions such as temperature control. Therefore, from the initial load after parallel input, MBFP/TBFP
The load increase until switching is much higher than before (
Then I won't have a monkey.

しかし、従来の方法で狗荷上昇lこ必要なタービン蒸気
量を得るため、並入後燃料を増加しても、ボイラでの熱
吸収遅れにより必要な蒸発量を確保することが困難であ
り、また、急激な燃料変化は、ボイラ各部のメタル温度
の急上昇となり熱応力の開から好ましくないために、急
速起動を行うことかできない。
However, in order to obtain the necessary amount of turbine steam using the conventional method, even if the fuel is increased after parallel injection, it is difficult to secure the necessary amount of evaporation due to the delay in heat absorption in the boiler. In addition, a sudden change in fuel causes a sudden rise in the metal temperature of each part of the boiler, which is undesirable because it releases thermal stress, making it impossible to perform a rapid start-up.

本発明は上記事情にかんがみてなされたもので、急速起
動に必要な蒸発量を並入時に確保するために通気から並
入の間に漸次、十分な燃料を投入し、これに伴うタービ
ン入口蒸気温度の上昇を抑えてプラントの急速起動を可
能にすることを目的とする。
The present invention has been made in view of the above circumstances.In order to ensure the amount of evaporation necessary for rapid startup at the time of parallel entry, sufficient fuel is gradually introduced between ventilation and parallel entry, and the accompanying turbine inlet steam is The purpose is to suppress temperature rise and enable rapid startup of the plant.

本発明によれは、タービンバイパスを有スる、ドラム型
ボイラおよび変圧モノチューブボイラと蒸気タービンよ
りなるプラントの起動待温度制御方法において、急速起
動に必要な蒸発量を確保するために、タービン通気、韮
入間に多量の燃料を投入すると共に同操作によって生じ
る並入時の蒸気トタービンメタルのオーバーマツチング
を防止するよ5.過熱器スプレィ装置によって最終過熱
器出口蒸気温度が並入時の最終過熱器出口蒸気温度の規
定値となるよう調節することが提供される。
According to the present invention, in a startup temperature control method for a plant including a drum boiler, a variable pressure monotube boiler, and a steam turbine having a turbine bypass, turbine ventilation is In addition to injecting a large amount of fuel between the piers, this operation also prevents overmatching of the steam and turbine metals during parallel piping.5. The superheater spray device provides for adjusting the final superheater outlet steam temperature to a specified value of the final superheater outlet steam temperature during parallel entry.

すなわちプラントの急速起動に必要な蒸発量を並入時に
確保するために、通気と並入の間に燃料を多量に投入す
るとタービン人口蒸気温度が上昇するために、並入時に
蒸気とメタルのオーバーマツチングが生ずるが、この温
度上昇を過熱器スゲレイ装置によって抑えることで、マ
ツチングを容易にすると共に、燃料投入量n加に伴う蒸
発量の増加と、スプレィ量が蒸発量になることを利用し
て多量の蒸発量を得ることによって並入後のプラントの
急速起動を可能にするボイラ・タービンプラントの方法
が提供される。
In other words, in order to ensure the amount of evaporation necessary for rapid startup of the plant at the time of parallel entry, if a large amount of fuel is injected between ventilation and parallel entry, the turbine artificial steam temperature will rise, so there will be an overflow of steam and metal at the time of parallel entry. Matching occurs, but by suppressing this temperature rise using the superheater sgerley device, matching becomes easier, and it also takes advantage of the fact that the amount of evaporation increases with the addition of fuel input and that the amount of spray becomes the amount of evaporation. A method for a boiler-turbine plant is provided that enables rapid start-up of the plant after commissioning by obtaining a large amount of evaporation.

以下添付図面に例示した本発明の好適な実施例について
詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below as illustrated in the accompanying drawings.

第1図は本発明方法を実施するボイラータービンプラン
トにおける過熱器スプレィ制御装置の構成を示している
。第1図において、参照符号lOは最終過熱器、11は
タービン、12は再熱器な示す。さらに符号13は最終
過熱器出口源、気温度Tactを検出する温度検出器、
14は並入時の最終過熱器出口蒸気温度の規定値Tse
tを定める設定器、15は加算器、16は切替えスイッ
チ、17は比例積分制御器を示している。
FIG. 1 shows the configuration of a superheater spray control device in a boiler turbine plant implementing the method of the present invention. In FIG. 1, reference numeral 1O indicates a final superheater, 11 a turbine, and 12 a reheater. Further, reference numeral 13 is a final superheater outlet source, a temperature detector for detecting the air temperature Tact,
14 is the specified value Tse of the final superheater outlet steam temperature during parallel entry
15 is an adder, 16 is a changeover switch, and 17 is a proportional-integral controller.

本発明方法はこのような制御装置を用いて、過熱器スプ
レィ量を操作することで、タービン通気後並入までの間
ターピン入口温度を制御するのである。
The method of the present invention uses such a control device to manipulate the superheater spray amount to control the turpin inlet temperature after the turbine is vented until the turbine is turned on.

加算器15は最終過熱器出口蒸気温度丁actおよび並
入時の最終過熱器出口蒸気温度規定値T4etを受げて
これらの偏差をとり、切替えスイッチ16を介して比例
積分制御器17へ入力する。この比例積分制御器17は
過熱器スプレィの操作量を決定する。切替えスイッチ1
6はON −OFF切替えスイッチであり、Tactと
Tsetとの偏差が負の間は加算器15によりOFFに
制御され、一旦偏差が正になるとそれ以後ONに保持さ
れる。すなわち、この切替えスイッチは通気から並入の
間の温度上昇を行なっている間(Tact<Tsetの
間)、負の偏差が比例積分制御器17に貯えられるのを
防止するためのものである。
The adder 15 receives the final superheater outlet steam temperature Tact and the specified value T4et of the final superheater outlet steam temperature at the time of parallel input, takes the deviation of these, and inputs it to the proportional-integral controller 17 via the changeover switch 16. . This proportional-integral controller 17 determines the amount of superheater spray operation. Changeover switch 1
Reference numeral 6 denotes an ON-OFF changeover switch, which is controlled to be OFF by the adder 15 while the deviation between Tact and Tset is negative, and is kept ON thereafter once the deviation becomes positive. That is, this changeover switch is used to prevent a negative deviation from being stored in the proportional-integral controller 17 while the temperature is being increased between ventilation and parallelization (during Tact<Tset).

第2図(a)は、起動時の燃料投入量のバター/を示す
。ここで、通気から並入までの間、並入時のマツチング
を考えずに蒸発量を多(とることを目的として燃料を同
図のように多量に投入すると、従来の過熱器スプレィを
使用しない方法では、タービン入口蒸気温度は第2図(
b)のように上昇し、並入時にマツチングができないが
、過熱器スゲレイを用いると、第2図(匂のよ−うにス
プレィで温度が制御されてマツチングが容易にできる。
FIG. 2(a) shows the amount of fuel input at startup. If a large amount of fuel is injected as shown in the figure, without considering the matching at the time of parallel entry, as shown in the figure, the conventional superheater spray will not be used. In this method, the turbine inlet steam temperature is determined as shown in Figure 2 (
As shown in b), the temperature rises and matching cannot be performed when paralleled, but if a superheater Sergei is used, the temperature can be controlled by spraying as shown in Fig. 2 (scent) and matching can be done easily.

この時、スプレィ量は第2図(d)、蒸発量は第2図(
e)のようになる。
At this time, the amount of spray is shown in Figure 2(d), and the amount of evaporation is shown in Figure 2(d).
e).

なお、第2図(b)および(C)において、符号TSは
並入時最終過熱器出口蒸気規定温度、  TRは通気時
最終過熱器出口蒸気規定温度、TS’は並入時タービン
入口蒸気規定温度、TR’は通気時タービン入口蒸気規
定温度を示している。
In Fig. 2 (b) and (C), the symbol TS is the specified final superheater outlet steam temperature during parallel entry, TR is the specified final superheater outlet steam temperature during ventilation, and TS' is the specified turbine inlet steam temperature during parallel entry. The temperature TR' indicates the specified turbine inlet steam temperature during ventilation.

第2図の例の場合、燃料投入量の増加により蒸鈷量が増
加しており、さらにスプレィ量はすべて蒸発量になるの
で、両者を合わせて十分な蒸発量を確保できる。これに
よって並入後の初負荷からの負荷上昇レートを高めるこ
とができ、急速起動が容易になると共にスプレィの蒸気
温度に対する連応性を用いると、並入時の蒸気温度とタ
ービンメタル温度のマツチングも容易になる。
In the case of the example shown in FIG. 2, the amount of evaporation increases due to the increase in the amount of fuel input, and since the amount of spray is all the amount of evaporation, a sufficient amount of evaporation can be ensured by combining the two. This makes it possible to increase the load increase rate from the initial load after parallel entry, making it easier to start up quickly, and by using the spray's dependence on steam temperature, it is possible to match the steam temperature and turbine metal temperature at the time of parallel entry. becomes easier.

以上本発明をその好適な実施例について詳述したが本発
明はこの特定の実施例に限定されるものではな(、本発
明の精神を逸脱しない範囲での幾多の変化変形が可能で
ある。
Although the present invention has been described in detail with reference to a preferred embodiment thereof, the present invention is not limited to this specific embodiment (although many changes and modifications can be made without departing from the spirit of the invention).

たとえば、本発明ではタービンバイパスおよびドラムを
有するボイラと蒸気タービ/からなるプラントの初負荷
からの負荷上昇レートを高めるのに必要な多量の蒸発量
を得るために、過熱器スプレィを使用したが、一般のボ
イラ・タービンプラントにおいても、並入時の蒸気とタ
ービンメタルの温度マツチングを容易にするために、タ
ービン湯気後並入までの間過熱器スプレィを使用するこ
とは有効な手段であり、本発明方法はSこの目的にも容
易に適用できるものである。
For example, in the present invention, superheater spray was used to obtain the large amount of evaporation necessary to increase the rate of load increase from the initial load of a plant consisting of a boiler and a steam turbine with a turbine bypass and a drum. Even in general boiler/turbine plants, it is an effective method to use superheater spray after the turbine steam enters the turbine until it enters the turbine, in order to easily match the temperatures of the steam and turbine metal during parallel entry. The invented method can be easily applied for this purpose.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する制御装置の一例を示す図
、第2図はポイン・タービンプラントの起動時の各種状
態例を示すグラフである。 10・・最終過熱器、11・・タービン、12・・再熱
器、13・・温度検出器、14・・設定器、15・・加
算器、16・・切替えスイッチ、17・・比例積分制御
器。 ′IJZ図 [e) 葆乙図 鮭  茶入   吟劉
FIG. 1 is a diagram showing an example of a control device for implementing the method of the present invention, and FIG. 2 is a graph showing various examples of states at the time of startup of a point turbine plant. 10... Final superheater, 11... Turbine, 12... Reheater, 13... Temperature detector, 14... Setting device, 15... Adder, 16... Changeover switch, 17... Proportional-integral control vessel. 'IJZ diagram [e] Salmon tea bowl Ginryu

Claims (1)

【特許請求の範囲】[Claims] ボイラ0タービンプラントにおいて、タービン通気M、
II2人までの間、過熱器スプレィ装置により最終過熱
器出口蒸気温度か韮入時の最終過熱器出口蒸気温度の現
定埴となるよう調節することを有機とするボイラ・ター
ビンプラントの起動方法。
In a boiler 0 turbine plant, turbine ventilation M,
II. A method for starting a boiler/turbine plant that includes adjusting the final superheater outlet steam temperature or the final superheater outlet steam temperature at the time of heating by a superheater spray device to the current value for up to two people.
JP5101082A 1982-03-31 1982-03-31 Starting method of plant with boiler and turbine Pending JPS58170805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5101082A JPS58170805A (en) 1982-03-31 1982-03-31 Starting method of plant with boiler and turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5101082A JPS58170805A (en) 1982-03-31 1982-03-31 Starting method of plant with boiler and turbine

Publications (1)

Publication Number Publication Date
JPS58170805A true JPS58170805A (en) 1983-10-07

Family

ID=12874804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5101082A Pending JPS58170805A (en) 1982-03-31 1982-03-31 Starting method of plant with boiler and turbine

Country Status (1)

Country Link
JP (1) JPS58170805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606903A (en) * 1984-04-27 1986-08-19 Exxon Research And Engineering Co. Membrane separation of uncoverted carbon fiber precursors from flux solvent and/or anti-solvent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606903A (en) * 1984-04-27 1986-08-19 Exxon Research And Engineering Co. Membrane separation of uncoverted carbon fiber precursors from flux solvent and/or anti-solvent

Similar Documents

Publication Publication Date Title
JPS58170805A (en) Starting method of plant with boiler and turbine
JPH0160721B2 (en)
CN105781646B (en) Combined cycle gas-steam turbine unit bypass pressure whole-process automatic control method and system
JP2955728B2 (en) Boiler main steam temperature control method and apparatus
JPS5918211A (en) Starting control method of steam turbine
JP2686262B2 (en) Operating method of once-through boiler
JP2767250B2 (en) Optimal plant starter
JPS61184306A (en) Steam-turbine reheater heating-steam pressure controller
JPS58170806A (en) Control method and device for starting of plant with boiler and turbine
JPS58138903A (en) Controller for water level of feedwater heater
JP2554704B2 (en) Turbine controller
JPH07158812A (en) Controlling method for boiler and control device for boiler
JPS5810103A (en) Turbine controller
JP2558869B2 (en) Turbine controller
JPH028122B2 (en)
JPS6218823Y2 (en)
JPS5928801B2 (en) Steam pressure control device for nuclear power plants
JPS57210106A (en) Controller for turbine
JPH0650163B2 (en) Operating method of once-through boiler
JP2670059B2 (en) Drum level controller for waste heat recovery boiler
JPH0666408A (en) Controller for recirculation starting system of boiler
JPS58146902A (en) Proportional integrator
JPH01189403A (en) Water level control for deaerator
JPH0346012A (en) Turbine controller
JPH0743084B2 (en) Main steam pressure controller