JPS58170804A - Level control device for feedwater heater - Google Patents

Level control device for feedwater heater

Info

Publication number
JPS58170804A
JPS58170804A JP5132682A JP5132682A JPS58170804A JP S58170804 A JPS58170804 A JP S58170804A JP 5132682 A JP5132682 A JP 5132682A JP 5132682 A JP5132682 A JP 5132682A JP S58170804 A JPS58170804 A JP S58170804A
Authority
JP
Japan
Prior art keywords
water level
pressure
heater
valve
emergency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5132682A
Other languages
Japanese (ja)
Other versions
JPH0219362B2 (en
Inventor
Hitoshi Ishikawa
均 石川
Tatsuo Imaizumi
今泉 辰雄
Noriyoshi Teranishi
寺西 詔奉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP5132682A priority Critical patent/JPS58170804A/en
Publication of JPS58170804A publication Critical patent/JPS58170804A/en
Publication of JPH0219362B2 publication Critical patent/JPH0219362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series

Abstract

PURPOSE:To control the level of a feedwater heater nicely by a method wherein an emergency level adjusting valve is preceded to open and the forced closing of a normal level adjusting valve is delayed by a timer when the operation thereof is transferred to the independent load operation in a plant by a load interception. CONSTITUTION:The level of a first high-pressure feedwater heater 12 is detected by a level transmitter 20 while normal and emergency adjusting valves 23, 24 are controlled through normal and emergency adjusting meters 21, 22. When the operation is transferred to the independent load operation in the plant by the interception of the load, an FCB signal is introduced into a three-way solenoid valve 81 and the emergency level adjusting valve 24 is opened immediately to suppress the rise of the level. On the other hand, the FCB signal is introduced into the three-way solenoid valve 80 through the timer 82 and the normal level adjusting valve 23 is closed forcibly. Thus, the bypass operation of the feed water heater due to the rise of the levels of the first and second high-pressure feedwater heaters 11, 12 may be interrupted and the stable level control may be effected.

Description

【発明の詳細な説明】 本発明は、火力発電プラントおよび原子力発電プラント
の給水加熱器の水位制御に係り、負荷遮断による所内単
独負荷運転において運用する給水加熱器の水位制御装置
に関するう 火力発電プラントを例にとシ高圧給加熱器廻りを主体と
した配管系統図である第1図により説明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to water level control of feedwater heaters in thermal power plants and nuclear power plants, and relates to a water level control device for feedwater heaters operated in single-load operation in the plant due to load shedding. As an example, this will be explained with reference to FIG. 1, which is a piping system diagram mainly showing the area around the high-pressure feed heater.

ボイラ1で発生した蒸気は主蒸気管50で主蒸気止弁6
0を介して高圧タービン2に流入し、仕事をする。仕事
した後の排出蒸気は低温再熱管51によりボイラ1に導
かれ、再加熱されて高温再熱管52で再熱蒸気止弁65
を介し中圧タービン3に流入して仕事を行々い、さらに
、低圧タービン4に流入して仕事を行ない、復水器6に
排出される。排出された蒸気は凝縮し、復水ポンプ7に
よシ加圧され低圧給水加熱器8を介して脱気器9に流入
し、脱気器9より給水ポンプ10で加圧され、第2高圧
給水加熱器11および第1高圧給水加熱12で加熱され
てボイ21へ給水として送られる。
The steam generated in the boiler 1 is passed through the main steam pipe 50 to the main steam stop valve 6.
0 to the high pressure turbine 2 to do work. The exhaust steam after work is led to the boiler 1 through a low temperature reheat pipe 51, where it is reheated and passed through a high temperature reheat pipe 52 to a reheat steam stop valve 65.
The water flows into the intermediate pressure turbine 3 via the turbulence turbine 3 to perform work, then flows into the low pressure turbine 4 to perform work, and is discharged to the condenser 6. The discharged steam is condensed, pressurized by the condensate pump 7, flows into the deaerator 9 via the low pressure feed water heater 8, is pressurized from the deaerator 9 by the feed water pump 10, and is then pressurized to the second high pressure. The water is heated by the feed water heater 11 and the first high-pressure feed water heater 12 and sent to the boiler 21 as feed water.

一方、第1高圧加熱器12は加熱蒸気を低温再熱管51
より抽気止弁63を介して取り入れ、給水を加熱する。
On the other hand, the first high-pressure heater 12 transfers the heated steam to the low-temperature reheat pipe 51.
The water is taken in through the bleed stop valve 63 and the feed water is heated.

熱交換により発生したドレンはその水位を水位発信器2
0により検出し、常用水位調節計21を介して常用水位
調節弁23を制御し、水位を一定に制御しつつ、第2高
圧給水加熱器11に導く。この常用ラインでドレン排出
能力が不足し、水位が上昇した場合には非常用水位調節
計22を介し、非常用水位調節弁24を制御し水位を規
定値に制御しつつ復水器6へ排出する。また、第2高圧
給水加熱器11は加熱蒸気として中圧タービン3から抽
気管53によシ抽気止弁66および抽気逆止弁67を介
して蒸気を取り入れ、給水を加熱し、熱交換されて発生
したドレンは第1高圧給水加熱器12と同様に水位制御
しつつ、脱気器9もしくは復水器6に導びかれる。
The water level of the drain generated due to heat exchange is transmitted to the water level transmitter 2.
0 is detected, the regular water level control valve 23 is controlled via the regular water level controller 21, and the water is guided to the second high pressure feed water heater 11 while controlling the water level to be constant. If the drain discharge capacity in this regular line is insufficient and the water level rises, the emergency water level control valve 24 is controlled via the emergency water level controller 22 to control the water level to the specified value and discharge it to the condenser 6. do. In addition, the second high-pressure feed water heater 11 takes in steam as heating steam from the intermediate pressure turbine 3 through the bleed pipe 53 through the bleed air stop valve 66 and the bleed air check valve 67, heats the feed water, and heats the feed water. The generated drain is guided to the deaerator 9 or the condenser 6 while the water level is controlled in the same way as the first high-pressure feed water heater 12.

近年、計画設計されたプラントでは、外線遮断等によシ
負荷遮断が発生し九場合には、プラントの稼動率を向上
するため、プラント停止を行なわず、所内単独負荷運転
に移行する処置がとられることが多い。この場合、主塞
止弁60は緊急閉止し、高圧タービンバイ′パス弁62
を弁開の制御状態にして、主蒸気管50より高圧タービ
ンバイパス弁62を介して、主蒸気を低温再熱管51に
バイパスする。同様に、再熱蒸気止弁65を閉止し、低
圧タービンバイパス弁64を弁開制御状態にし、高温再
熱管52より高温再熱蒸気を復水器6に排出する。この
処理により負荷遮断によるタービンのオーバースピード
が防止される。また、塞止弁60と再熱蒸気止弁65の
閉止により、タービン内の圧力は負圧となる、−万一給
水加熱器および脱気器9には負荷連断前の蒸気および飽
和水が残っているため、これらが逆流して(飽和水はフ
ランシュして逆流)タービンに流入しようとする。
In recent years, in well-planned plants, when load shedding occurs due to external line cut-off, etc., in order to improve the plant's operating rate, it is necessary to move to single-load operation within the plant instead of shutting down the plant. This is often the case. In this case, the main blocking valve 60 is emergency closed and the high pressure turbine bypass valve 62 is closed.
is controlled to open the valve, and main steam is bypassed from the main steam pipe 50 to the low-temperature reheat pipe 51 via the high-pressure turbine bypass valve 62. Similarly, the reheat steam stop valve 65 is closed, the low-pressure turbine bypass valve 64 is controlled to open, and high-temperature reheat steam is discharged from the high-temperature reheat pipe 52 to the condenser 6 . This process prevents turbine overspeed due to load shedding. In addition, by closing the blocking valve 60 and the reheat steam stop valve 65, the pressure inside the turbine becomes negative pressure. As some of the remaining water remains, they try to flow backwards (saturated water flows back through the franchise) and into the turbine.

しかし、抽気管には抽気逆止弁が設置されているため、
実際にはタービンへの逆流は生じない。万一、タービン
に冷蒸気が流入するとタービンを損傷する恐れがあるの
で、安全を期するため、一般には、負荷遮断と同時に、
抽気止弁を強制閉止する事が多い。タービンはその後、
再熱蒸気止弁・65を開き、その部に設けられた再熱蒸
気加減弁(図示省略)で調節し、所内負荷運転に移行す
る。
However, since the bleed pipe is equipped with a bleed check valve,
Actually no backflow to the turbine occurs. In the unlikely event that cold steam flows into the turbine, there is a risk of damaging the turbine, so to ensure safety, generally, at the same time as load shedding,
The bleed stop valve is often forced to close. The turbine then
Open the reheat steam stop valve 65, adjust it with the reheat steam control valve (not shown) provided there, and shift to in-house load operation.

一方、ボイラ1は負荷遮断と同時に燃料を急激に絞り込
む指令(以下PCB信号と略)に基き所内負荷運転に見
合う燃料量まで燃量の絞り込みを行なうが、この時のボ
イラの負荷変化率は燃料の種別、ボイラの構造等による
各種制限値、制御性等によって変化するが、比較的長い
時間を必要とする。ボイラ1への給水は、ボイラの負荷
変化に従って、徐々に給水量を下げるが、給水温度もこ
れを徐々に下げ、ボイ2に急激な給水温度変化を与えな
い事が望ましい。この丸め、第1図の例においては低温
再熱管51より加熱蒸気を得ている第1高圧給水加熱器
12は負荷遮断時にもこれを運転継続し、ボイラ給水温
度の確保を行なっている。
On the other hand, boiler 1 reduces the fuel amount to the amount of fuel suitable for the load operation in the station based on a command to rapidly reduce the fuel at the same time as the load is cut off (hereinafter abbreviated as PCB signal). It takes a relatively long time, although it varies depending on the type of boiler, various limit values depending on the structure of the boiler, controllability, etc. The amount of water supplied to the boiler 1 is gradually reduced in accordance with changes in the load of the boiler, but it is desirable that the temperature of the water supply is also gradually lowered to avoid sudden changes in the temperature of the water supply to the boiler 2. In the example shown in FIG. 1, the first high-pressure feedwater heater 12, which obtains heated steam from the low-temperature reheat pipe 51, continues to operate even when the load is cut off to ensure the boiler feedwater temperature.

しかし、この給水加熱器より下段の給水加熱器が運転を
停止しているため、第1高圧給水加熱器12の入口給水
温度が低く、給水加熱器でゐ熱負荷が高くなり、抽気蒸
気量が増加し、ドレン量が急激に増加する。そのため第
1高圧給水加熱器12、さらには、第2高圧給水加熱器
11の水位が急上昇し、レベル高スイッチ40の設定点
まで達し、給水加熱器バイパス弁切替え装置42を介し
、給水加熱器バイパス弁43および44を切替え、第1
高圧給水加熱器12および第2高圧給水加熱器11をバ
イパスして、温度の低い給水をボイラ1に送ることにな
り、前述した第1高圧給水加熱器11.12の役割をは
たさなくなる。このため、負荷遮断による所内単独負荷
運転時にも、第1高圧給水加熱器12および第2高圧給
水加熱器11の安定した水位制御を行なう必要があシ、
従来の水位制御方式ではこれに対処する十分な制御が得
られない問題があった。
However, since the feed water heaters below this feed water heater have stopped operating, the inlet feed water temperature of the first high pressure feed water heater 12 is low, the heat load on the feed water heater is high, and the amount of extracted steam is reduced. The amount of drain increases rapidly. Therefore, the water level of the first high-pressure feedwater heater 12 and furthermore the second high-pressure feedwater heater 11 rises rapidly and reaches the set point of the high level switch 40, and the water level of the first high-pressure feedwater heater 12 and furthermore, the water level of the second high-pressure feedwater heater 11 rises to the set point of the high level switch 40, and the water level is transferred to the feedwater heater bypass valve via the feedwater heater bypass valve switching device 42. Switch valves 43 and 44 to the first
The high-pressure feedwater heater 12 and the second high-pressure feedwater heater 11 are bypassed, and low-temperature feedwater is sent to the boiler 1, so that it no longer plays the role of the first high-pressure feedwater heater 11, 12 described above. For this reason, it is necessary to perform stable water level control of the first high-pressure feed water heater 12 and the second high-pressure feed water heater 11 even during single-load operation within the station due to load shedding.
Conventional water level control methods have had the problem of not being able to provide sufficient control to deal with this problem.

本発明の目的は、負荷遮断による所内単独負荷運転に移
行した場合にも、良好な水位制御を行ない得る給水加熱
器の水位制御装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a water level control device for a feed water heater that can perform good water level control even when switching to in-house single load operation due to load shedding.

本発明は負荷遮断による所内単独負荷運転移行時には、
第1図に示すように、低温再熱管51より加熱蒸気を得
る第1高圧給水加熱器12のみが運転され、他の給水加
熱器類11.8等(脱気器9を含む)はタービンへの水
もしくは冷蒸気の流入防止のため、抽気止弁を閉止し運
転を止めている。このため、!1高圧給水加熱器12の
入口給水温度が下り、この給水加熱器での熱負荷が増加
し、水位が上昇する。(所内負荷単独運転移行時には一
般に低温再熱管の蒸気圧力は一時的に上昇し、この圧力
上昇によっても給水加熱器の熱負荷が増加しドレン量が
増加するが、一方、調節弁よりのドレン排出量も増加す
るので、圧力上昇による水位上昇は、一般に、はとんど
生じない)給水加熱器内の水位が上昇した場合には、非
常用調節弁24が開かれ(制御信号による)ドレンが排
出されるが、急激な水位上昇に対しては作動遅れを生ず
るため、水位は過度に上與し、レベル高のスイッチが作
動し、給水加熱器パイノ(ス運転となる。
In the present invention, when shifting to in-house single load operation due to load shedding,
As shown in FIG. 1, only the first high-pressure feedwater heater 12 that obtains heated steam from the low-temperature reheat pipe 51 is operated, and the other feedwater heaters 11.8, etc. (including the deaerator 9) are connected to the turbine. To prevent the inflow of water or cold steam, the bleed stop valve is closed and operation is stopped. For this reason,! 1 The inlet water temperature of the high-pressure feed water heater 12 decreases, the heat load on this feed water heater increases, and the water level rises. (Generally, the steam pressure in the low-temperature reheat pipe increases temporarily when the station shifts to single-load operation, and this pressure increase also increases the heat load on the feed water heater and the amount of condensate. In general, a rise in the water level due to an increase in pressure will not occur because the amount of water also increases.) If the water level in the feedwater heater rises, the emergency control valve 24 is opened (by a control signal) and the drain is closed. However, there is a delay in operation in response to a sudden rise in the water level, so the water level rises excessively and the high level switch is activated, causing the feedwater heater to operate in pinosu mode.

この不具合現象を未然に防止するため、所内単独負荷運
転移行への信号と同時に、非常用弁を先行また、低圧側
給水加熱器8の水位が過度に上昇するのをさけるため、
ある時限後(非常用調節弁がドレン排出に必要な弁開度
に達するのを待って)に常用調節弁23を強制閉止し、
給水加熱器群全体の水位制御の改善を計る。
In order to prevent this problem from occurring, the emergency valve is activated at the same time as the signal to shift to in-house single load operation, and in order to avoid the water level of the low pressure side feed water heater 8 from rising excessively,
After a certain time limit (after waiting for the emergency control valve to reach the valve opening required for drain discharge), the regular control valve 23 is forcibly closed,
Aim to improve water level control throughout the feed water heater group.

以下、本発明の一実施例を第2図によって説明する。第
2図は第1図の従来技術に対し、第1高圧給水加熱器1
2のドレン制御系に対し、本発明の一実施例を採用した
場合の制御系統図である。
An embodiment of the present invention will be described below with reference to FIG. Fig. 2 shows a first high-pressure feed water heater 1 in contrast to the conventional technology shown in Fig. 1.
2 is a control system diagram when one embodiment of the present invention is adopted for the drain control system of No. 2. FIG.

従来技術と同様に第1高圧給水加熱器12の水位を水位
発信器20で検出し、空気圧信号として常用水位調節計
21および非常用調節計22に送る。常用水位調節計2
1では、水位信号と設定値(常用水位制御レベルNWL
)の偏差(Δ)により比例・積分演算を行ない、調節弁
の操作信号を発信し常用水位調節弁23を制御する。ま
た、非常用水位調節計22では水位信号と設定値(非常
用水位制御レベルDWL)の偏差(Δ)により比例演算
を行ない、非常用水位調節弁24を制御する。本発明に
おいては非常用水位調節計22をカスケード設定式の調
節計として設定値の切替を可能とし、通常運転時DWL
設定用減圧弁72およびFCB (ボイラ燃料絞り込み
)時DWL設定用減圧弁73で設定された空気信号を3
方口電磁弁81に接続し、いずれかの信号を選択して中
力し、信号切替時の変化を緩慢に行なわせるための絞り
タンク83を介し、非常用水位調節計22に対する設定
信号を与えるようにしている。負荷遮断による所内単独
負荷運転移行時には、FCB信号を3方口電磁弁81に
取り込み、通常運転時DWL設定用減圧弁72による設
定空気信号よ、9PCB時DWL設定用減圧弁73によ
る設定空気信号に切替える。
Similar to the prior art, the water level of the first high-pressure water heater 12 is detected by the water level transmitter 20 and sent as an air pressure signal to the regular water level controller 21 and the emergency controller 22. Regular water level controller 2
1, the water level signal and set value (normal water level control level NWL)
), a proportional/integral calculation is performed based on the deviation (Δ), and a control valve operation signal is transmitted to control the regular water level control valve 23. Further, the emergency water level controller 22 performs proportional calculation based on the deviation (Δ) between the water level signal and the set value (emergency water level control level DWL), and controls the emergency water level control valve 24. In the present invention, the emergency water level controller 22 can be used as a cascade setting type controller to switch the set value, and DWL during normal operation
The air signal set by the pressure reducing valve 72 for setting and the pressure reducing valve 73 for DWL setting during FCB (boiler fuel throttling) is
It is connected to the side solenoid valve 81, selects one of the signals, turns it on neutrally, and gives a setting signal to the emergency water level controller 22 via the throttle tank 83 for slowing changes when switching the signal. That's what I do. When shifting to in-house single load operation due to load shedding, the FCB signal is taken into the 3-way solenoid valve 81, and the set air signal from the DWL setting pressure reducing valve 72 during normal operation and the set air signal from the DWL setting pressure reducing valve 73 during 9PCB. Switch.

非常用水位調節計22の通常時およびFCB時の設定点
および制御特性を第3図に示す。前記の非常用水位調節
計22の設定値を切替えによシ第3図の通常DWL制御
のように通常時設定点大まで水位が上昇するのを待って
非常用水位調節弁24の制御を行なうことをせず、PC
B時設定点BをNWL以下としているので、設定値切替
と同時に、非常用水位調節計22の出力信号を出し、非
常用水位調節弁24を直ちに開くことができる。
FIG. 3 shows the set points and control characteristics of the emergency water level controller 22 during normal times and during FCB. After changing the setting value of the emergency water level controller 22, the emergency water level control valve 24 is controlled after waiting for the water level to rise to the normal setting point as in the normal DWL control shown in FIG. PC without doing anything
Since the set point B at time B is set below NWL, the output signal of the emergency water level controller 22 can be outputted at the same time as the set value is changed, and the emergency water level regulating valve 24 can be opened immediately.

これにより、水位の上昇を抑えることができる。This makes it possible to suppress the rise in water level.

一方、常用水位調節弁23に対しては常用水位調節計2
1と常用水位調節弁23の間に二方口電磁弁80を設置
し、常用水位調節計21の制御信号および強制閉止用減
圧弁71にで設定された空気信号を3方口電磁弁80に
送信し、PCB信号に対し、タイマ82を入れ、PCB
信号発生後、ある時限後に、常用水位調節計よりの制御
信号より強制閉止信号に切替える。
On the other hand, for the regular water level control valve 23, the regular water level controller 2
A two-way solenoid valve 80 is installed between the regular water level controller 1 and the regular water level control valve 23, and the control signal of the regular water level controller 21 and the air signal set to the forced closing pressure reducing valve 71 are sent to the three-way solenoid valve 80. The timer 82 is set in response to the PCB signal, and the PCB
After a certain period of time has elapsed after the signal is generated, the control signal from the regular water level controller switches to a forced closing signal.

負荷遮断による所内単独負荷運転移行時には、PCB信
号を3方口電磁弁80にタイマー82(非常用水位調節
弁がドレン排出に必要な弁開度に達するのを待つ。タイ
マ設定値は1〜5秒とするのが望ましい。)を介して取
り込み、常用水位調節計21の制御信号により強制閉止
用減圧弁71で設定され九空気信号に切替え、常用水位
調節弁23を強制閉止する。第4図に負荷遮断による所
内単独負荷運転移行時の各給水加熱器身内圧力を示す。
When shifting to in-house single load operation due to load shedding, the PCB signal is sent to the 3-way solenoid valve 80 using the timer 82 (wait until the emergency water level control valve reaches the valve opening required for drain discharge.The timer setting value is 1 to 5). (preferably, seconds), and is set by the forced closing pressure reducing valve 71 according to the control signal of the regular water level controller 21, and is switched to the 9 air signal, and the regular water level regulator 23 is forcibly closed. Figure 4 shows the internal pressure of each feedwater heater when the station shifts to single-load operation due to load shedding.

従来、第4図のように常用水位調節弁23の前圧、すな
わち、第1高圧給水加熱器内圧90が急上昇するだめ、
第2高圧給水加熱器11へのドレン流人量が増加する。
Conventionally, as shown in FIG. 4, if the front pressure of the regular water level control valve 23, that is, the internal pressure 90 of the first high-pressure feed water heater, suddenly increases,
The amount of drain flowing into the second high-pressure water heater 11 increases.

一方第1高圧給水加熱器々内圧力91は低下し第2高圧
給水加熱器11のドレン排出先である脱気器々内圧力9
4とほぼ同圧となるためドレン排出量が不足し水位が上
昇して、復水器ヘドレン排出する非常用ラインが作動し
ドレン排出を行なうが、前述の第1高圧給水加熱器12
からドレンが流入するため、この非常用ラインでも排出
不足となり、水位上昇を続け、レベル高スイッチが作動
し給水加熱器がバイパス運転に切替られる不具合を生ず
るつ 本発明においては電荷連断によ、す1所内単独負荷運転
移行時に、常用水位調節弁23を強制閉止し、第1高圧
給水加熱器よりのドレン流人を遮断するので前述の不具
合現象を未然に防ぐことができる。
On the other hand, the internal pressure 91 of the first high-pressure feed water heaters decreases, and the internal pressure 9 of the deaerator, which is the drain destination of the second high-pressure feed water heater 11, decreases.
4, the drain discharge amount is insufficient and the water level rises, and the emergency line for discharging the condenser hedren is activated to discharge the condensate.
Since condensate flows in from the drain, there is insufficient discharge even in this emergency line, and the water level continues to rise, causing a problem in which the high level switch is activated and the feed water heater is switched to bypass operation. At the time of transition to single-load operation within the plant, the regular water level control valve 23 is forcibly closed and drain flow from the first high-pressure feed water heater is cut off, so that the above-mentioned problems can be prevented.

また、タイマ82で常用水位調節弁23の強制閉止を遅
らしたことにより、・非常用水位調節弁24がドレン排
出に必要な弁開度に達するまでの第1高圧給水加熱器1
2の水位上昇を緩和する効果もある。
In addition, by delaying the forced closing of the regular water level control valve 23 by the timer 82,
It also has the effect of mitigating the rise in water levels in step 2.

本発明の一実施例では給水加熱器水位制御系として空気
式を採用した場合について述べたが、電気式およびデジ
タル式も適用できる。同様に、非常用水位調節計を比例
動作とした場合について述べたが設定値を適当に選べば
、比例・積分動作の場合に本利用できる。また、第2高
圧給水加熱器へのドレン遮断を常用水位調節弁を強閉止
した場合について述べたが、常用水位調節弁の前または
後に連断弁を設け、これを強制閉止することも可能であ
る。
In one embodiment of the present invention, a case has been described in which a pneumatic type is adopted as the feed water heater water level control system, but an electric type and a digital type can also be applied. Similarly, although the case where the emergency water level controller is set to proportional operation has been described, if the setting value is selected appropriately, this can be used in the case of proportional/integral operation. In addition, although we have described the case where the drain to the second high-pressure water heater is shut off by forcibly closing the regular water level control valve, it is also possible to install a connection valve before or after the regular water level control valve and forcibly close it. be.

なお、図中2i1i高圧タービン、5は発電機。In the figure, 2i1i is a high-pressure turbine, and 5 is a generator.

42は給水加熱器バイパス弁切替え装置、61は低温再
熱抽気逆止弁、64け低圧タービンバイパス弁である。
42 is a feed water heater bypass valve switching device, 61 is a low temperature reheat extraction air check valve, and 64 is a low pressure turbine bypass valve.

本発明によれば負荷通断による所内単独負荷運転移行時
に、第1高圧給水加熱器および第2高圧給水加熱器の水
位上昇による給水加熱器バイパス運転が防げ、安定した
水位制御ができる。
According to the present invention, when the station shifts to single-load operation due to load interruption, bypass operation of the feedwater heaters due to a rise in the water levels of the first high-pressure feedwater heater and the second high-pressure feedwater heater can be prevented, and stable water level control can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の給水加熱器水位制御を示す火力発電プラ
ントの系統図、第2図は本発明の一実施例の給水加熱器
ドレン制御の系統図、第3図は本発明の非常用調節針の
制御特性図、第4図は給水加熱器の圧力特性図である。 6・・・復水器、11・・・第2高圧給水加熱器、12
・・・第1高圧給水加熱器、20・・・水位発信器、2
1・・・常用水位調節計、22・・・非常用水位調節計
、23・・・常用水位調節弁、24・・・非常用水位調
節弁、40・・・レベル高スイッチ、71・・・強制閉
止用減圧弁、72・・・通常運転時DWL設定用減圧弁
、73・・・FCB時DWL設定用減圧弁、80.81
・・・3茅3目 j゛ 芳帛膚(−/、) $4区 1   片開(8r) e13
Fig. 1 is a system diagram of a thermal power plant showing conventional feedwater heater water level control, Fig. 2 is a system diagram of feedwater heater drain control according to an embodiment of the present invention, and Fig. 3 is an emergency control system according to the present invention. The needle control characteristic diagram and FIG. 4 are the pressure characteristic diagrams of the feed water heater. 6... Condenser, 11... Second high pressure water heater, 12
...First high-pressure water heater, 20...Water level transmitter, 2
DESCRIPTION OF SYMBOLS 1... Regular water level controller, 22... Emergency water level controller, 23... Regular water level regulating valve, 24... Emergency water level regulating valve, 40... Level high switch, 71... Pressure reducing valve for forced closing, 72... Pressure reducing valve for DWL setting during normal operation, 73... Pressure reducing valve for DWL setting during FCB, 80.81
...3 grass 3 eyes j゛ aromatic skin (-/,) $4 ward 1 single open (8r) e13

Claims (1)

【特許請求の範囲】[Claims] 1、蒸気発生器によシ発生した蒸気によりタービンを駆
動して発電を行なう発電プラントにおいて、前記タービ
ンへの余剰蒸気を復水器に直接導くタービンバイパス系
統と、前記蒸気発生器への給水ラインに設けた加熱器と
、前記ターと/で一部仕事をした蒸気もしくは前記蒸気
発生器よりの蒸気によシ給水を加熱し、熱交換により発
生したドレンは前記給水加熱器のドレン水位を第1の規
定値に保つよう第1の調節弁で制御し、低圧側給水加熱
器に導く手段と、前記fJ1の規定値より上方に設定さ
れた第2の規定値で制御する第2の調節弁を通して、さ
らに低圧側の機器にドレ/を導く事ができるように構成
された手段とからなり、通常の発電状態より所内負荷運
転への切替信号により、前記第2の規定値を前記第1の
規定値より下方に設定変更する手段を設けたことを特徴
とする給水加熱器の水位制御装置。
1. In a power generation plant that generates electricity by driving a turbine using steam generated by a steam generator, a turbine bypass system that directly leads excess steam to the turbine to a condenser and a water supply line to the steam generator The feed water is heated by the steam that has done some work in the heater and/or the steam generator or the steam from the steam generator, and the drain generated by heat exchange raises the drain water level of the feed water heater. means for controlling fJ1 at a specified value by a first control valve and guiding it to the low-pressure side feed water heater; and a second control valve controlling at a second specified value set above the specified value for fJ1. and a means configured to be able to guide drainage through the device to equipment on the low-pressure side. A water level control device for a feed water heater, characterized in that it is provided with means for changing the setting below a specified value.
JP5132682A 1982-03-31 1982-03-31 Level control device for feedwater heater Granted JPS58170804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5132682A JPS58170804A (en) 1982-03-31 1982-03-31 Level control device for feedwater heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5132682A JPS58170804A (en) 1982-03-31 1982-03-31 Level control device for feedwater heater

Publications (2)

Publication Number Publication Date
JPS58170804A true JPS58170804A (en) 1983-10-07
JPH0219362B2 JPH0219362B2 (en) 1990-05-01

Family

ID=12883791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5132682A Granted JPS58170804A (en) 1982-03-31 1982-03-31 Level control device for feedwater heater

Country Status (1)

Country Link
JP (1) JPS58170804A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535828A (en) * 1978-09-06 1980-03-13 Hitachi Ltd Water level controller for highhpressure feed water heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535828A (en) * 1978-09-06 1980-03-13 Hitachi Ltd Water level controller for highhpressure feed water heater

Also Published As

Publication number Publication date
JPH0219362B2 (en) 1990-05-01

Similar Documents

Publication Publication Date Title
EP1397810A1 (en) A brayton cycle nuclear power plant and a method of starting the brayton cycle
CA1138657A (en) Control system for steam turbine plants including turbine bypass systems
JPS58170804A (en) Level control device for feedwater heater
JPS60165459A (en) Composite hot-water supplier
JP2674263B2 (en) Control method for reheat steam turbine
US4338789A (en) Method of varying turbine output of a supercritical-pressure steam generator-turbine installation
JPS5926765B2 (en) Control method and device for a turbine plant having a turbine bypass line
JPS6239653B2 (en)
JPH0232442B2 (en) JOKITAABINNOKIDOHOHO
CA1057065A (en) Control systems for steam turbine plants including turbine bypass systems
JPH0467001B2 (en)
JP2004225667A (en) Method and device for controlling operation of steam turbine
JPS61138806A (en) Steam turbine plant
CA1163814A (en) Method of varying turbine output of a supercritical- pressure steam generator-turbine installation
JPH0330687B2 (en)
JPH0475363B2 (en)
JPS6056110A (en) Control method of ventilator
JPH02130202A (en) Combined plant
JPS6239657B2 (en)
JP2670059B2 (en) Drum level controller for waste heat recovery boiler
JPS61155605A (en) Supply water flow rate control device of heat recovery boiler
JPS63162906A (en) Steam turbine plant
JPH0128202B2 (en)
CN117570507A (en) Device and method for switching heat supply steam sources of secondary reheating unit
JPH0549884B2 (en)