JPS58170301A - Method for automatic control of electric automobile - Google Patents

Method for automatic control of electric automobile

Info

Publication number
JPS58170301A
JPS58170301A JP57053367A JP5336782A JPS58170301A JP S58170301 A JPS58170301 A JP S58170301A JP 57053367 A JP57053367 A JP 57053367A JP 5336782 A JP5336782 A JP 5336782A JP S58170301 A JPS58170301 A JP S58170301A
Authority
JP
Japan
Prior art keywords
speed
gear
vehicle
automatic transmission
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57053367A
Other languages
Japanese (ja)
Inventor
Takahiro Iwami
隆広 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP57053367A priority Critical patent/JPS58170301A/en
Publication of JPS58170301A publication Critical patent/JPS58170301A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/0016Control of angular speed of one shaft without controlling the prime mover
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PURPOSE:To enable electric automobile to travel efficiently even when it is operated acceleratedly or deceleratedly on a sloping road by a method wherein the speed change point of an automatic transmission for vehicle speed is changed to the low speed side in proportion to the increase in acceleration of the vehicle. CONSTITUTION:A speed change logic circuit 6 detects the condition of travel by the signals sent from a vechicle-speed sensor 51, an acceleration sensor 52 and a torque sensor 53, and selects the gear desirable for reduction of fuel consumption. Then, comparing the gear presently in use with the selected gear, a clutch 21 is disengaged when a gear change is required, a gear change is performed on a geared speed changer 22, and the clutch 21 is engaged after speed matching control has been performed. Through these procedures, a vehicle can be operated most efficiently in fuel consumption even when it is acceleratedly or deceleratedly driven or when it is travelling on a sloping road.

Description

【発明の詳細な説明】 本発明は自動変速機を備えた電気自動車の制御方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling an electric vehicle equipped with an automatic transmission.

従来の自動変速機付電気自動車では、定常走行状態を基
準として車速および出力軸トルクを検出し;この2つの
車両走行条件を入力とし自動変速機の変速ギアの変更を
制御していたので、加減速時または坂路走行時においで
、エネルギー効率の良い走行(効率的走行という)を行
うことができなかった。
In conventional electric vehicles with automatic transmissions, vehicle speed and output shaft torque are detected based on steady driving conditions; these two vehicle driving conditions are used as input to control changes in the automatic transmission's gears. Energy efficient driving (referred to as efficient driving) was not possible when decelerating or driving on a slope.

本発明の目的は、加減速時dj、よび坂路走行時におい
ても効率的走行が可能となる電気自動中の自動制御方法
の提供にある。
An object of the present invention is to provide an automatic control method for an electric automatic vehicle that enables efficient travel during acceleration/deceleration dj and when traveling on a slope.

つぎに本発明を図と共に説明する。Next, the present invention will be explained with reference to the drawings.

第1図は電気自動車の駆動系を示し、1は駆動用電動機
(モーター)、2は自動変速機、3はディファレンシャ
ルギア、4は車輪である。この電気自動車の駆動系の内
モーター1および自動変速機2は、第2図に示す如くモ
デル化でき、車両の加速度を考慮し、車速を自動変速機
出力側回転数で代用すると次の式(1)で現わされるこ
とが知られている。
FIG. 1 shows the drive system of an electric vehicle, where 1 is a drive electric motor, 2 is an automatic transmission, 3 is a differential gear, and 4 is wheels. The motor 1 and automatic transmission 2 in the drive system of this electric vehicle can be modeled as shown in FIG. 1) is known to appear.

王e=Ktla Ia = −(Ra /La ) Ia−(KO/La
 ) Wl + (1/l−a ) FiTe =JI
 Wl +DI W1+F1 +TIT2=kn+TI Wl  =kmW2 T’2 =J2 W2 +1)2 W2−+−F2第2
図および式(1)において各記号はつぎの吊を表わす。
King e=Ktla Ia = -(Ra/La) Ia-(KO/La
) Wl + (1/l-a) FiTe = JI
Wl +DI W1+F1 +TIT2=kn+TI Wl =kmW2 T'2 =J2 W2 +1)2 W2-+-F2 2nd
In the diagram and equation (1), each symbol represents the following suspension.

4e;モータートルク[kgmコ Ra ;電機子抵抗[オーム] 1a ;電機子電流1アンペア] 1−a;電機子インダクタンス[ヘンリー][1;入力
電圧[ポルトコ Ke ;速度定数1ボルト/rpm ]k■;ギア比 Kt ;l〜シルク数[kgm/アンペア]W1 ;自
動変速機入力軸回転数(モーター回転数> [、rpm
 ] W2;自動変速機出力軸回転数(rpm )■1 ;自
動変速入力i〜ルク[k(1m ]−「2 :自動変速
機出力トルク[kgmコJ1 ;自動変速機入力端慣性
モーメンl−1’、kom/ rpm ] 、ノ2 ;自動変速機111カ側慣性モーメント[k叶
/rpml Dl ;自IJJI変速機入力側粘性摩擦抵抗係数[k
4e; Motor torque [kgm Ra; Armature resistance [ohm] 1a; Armature current 1 ampere] 1-a; Armature inductance [Henry] [1; Input voltage [portco Ke; speed constant 1 volt/rpm] k ■;Gear ratio Kt;l~silk number [kgm/ampere]W1;Automatic transmission input shaft rotation speed (motor rotation speed> [, rpm
] W2: Automatic transmission output shaft rotation speed (rpm) 1; Automatic transmission input i~lux [k (1 m)] - 2: Automatic transmission output torque [kgm] J1; Automatic transmission input end moment of inertia l- 1', kom/rpm], ノ2; Automatic transmission 111 moment of inertia [k/rpm Dl; automatic transmission input side viscous frictional resistance coefficient [k
.

m /rpm ] D2 ;自動変速機出力側粘性摩擦および空気抵抗−次
近似による抵抗係数[kgm /rpm ]F1 ;自
動変速機入2J側クーロン摩擦抵抗[kcr1 「2 ;ころがり抵抗子〇坂]1(抗生回転部分クー[
1ン摩擦抵抗[kgm ] また、モーター1および自動変速Ia2の単位時間当り
のエネルギー消費fil(、エネルギー消費率)V[k
w]は永久磁石形直流電動機を用いた場合式(2)で近
似できる。
m / rpm ] D2 ; Automatic transmission output side viscous friction and air resistance - drag coefficient based on -order approximation [kgm / rpm ] F1 ; Automatic transmission input 2J side Coulomb friction resistance [kcr1 "2 ; Rolling resistor 〇 slope] 1 (Antibiotic rotating part cool [
1 frictional resistance [kgm] Also, energy consumption fil (, energy consumption rate) V[k
w] can be approximated by equation (2) when a permanent magnet type DC motor is used.

V (La 、 Wl ) = (K1  (a +に
212a→−に3 Wl 十に4 Wl 十に5 )十
(:)Kt r a Wl−(2) この式(2)はエネルギー消費率Vが、電気式電流1a
および、自動変速機入力側回転数(モーター回転数)W
lの関数であることを示し、右変0内はモーターの電気
的エネルギー損失を表わし、機械的損失は右辺最終項内
に含まれ、Qは単イQ換粋のための定数[単位はkw/
kgm −rpm ]である。
V (La, Wl) = (K1 (a + 212a → - 3 Wl 10 4 Wl 10 5) 10 (:) Kt r a Wl- (2) This equation (2) shows that the energy consumption rate V is , electric current 1a
and automatic transmission input side rotation speed (motor rotation speed) W
The value within 0 represents the electrical energy loss of the motor, the mechanical loss is included in the final term on the right side, and Q is a constant for single Q reduction [unit: kw /
kgm-rpm].

K1−に5は定数であり、K1項はブラシ電気損など、
K2項は電機子銅損など、1<3項tよ風損なと、K4
項は鉄損なと、K5項は電流、回転数に関係しない固定
指を示す。
5 is a constant in K1-, and the K1 term is a brush electric loss, etc.
K2 term is armature copper loss, etc. If 1<3 term t is windage loss, K4
The term is iron loss, and the K5 term indicates a fixed finger that is not related to current or rotation speed.

本発明において自動変速機のギア比の切換えを行う変速
曲面はつぎのように決定される。
In the present invention, the speed change surface for changing the gear ratio of the automatic transmission is determined as follows.

ある走行状態(T2、W2、W2)が与えられたとき、
ギア比kmで奏功したとすれば、モデルの式(1)を使
って、エネルギー消費V(式(2))を王2、W2、W
2、およびkmの関数として表わせる。すなわら、 V =V (T2 、W2 、W2 ; km)・・・
(3)同じ走行状態を別のギア比kn(m=n)で走行
したどすれば、同様の削算により =5− V=V (1−2、W2 、W2 : kn)−(4)
である。そこで、 V (T2 、W2 、W2 ;km) <V (T2
 、W2、W2;kn)・・・(5) より、ギア比kmで走行する方がエネルギー消費が少く
てすむ領域を求めることができる。この領域を計nする
ど式(6)のJ:うになる。
When a certain running state (T2, W2, W2) is given,
If the gear ratio km is successful, then using the model equation (1), the energy consumption V (formula (2)) can be calculated as W2, W2, W
2, and can be expressed as a function of km. In other words, V = V (T2, W2, W2; km)...
(3) If the same running condition is run with a different gear ratio kn (m=n), then by similar reduction, =5-V=V (1-2, W2, W2: kn)-(4)
It is. Therefore, V (T2, W2, W2; km) <V (T2
, W2, W2; kn) (5), it is possible to find a region where energy consumption is lower when traveling with a gear ratio of km. If we add up this area to n, we get J in equation (6).

T2〉(−α3 /3+4α4 [α2 W”2 十/
2α4・・・(6) ただし α1  =  [KI  Dl  /Kt  + 2に
2  D  IF  1/Kt−トに3  +QF  
1]  (km−kn)α2 =に2 DI2/に〜十
に4→−QDl ] (km’−kn’)α3 =−[
K1 /Kt +2に2 Fl /に’t ] (1/
km−1/kn) a4 =−に2 /に2t  (1/klIm−1/k
n”)α0  (W2 > = [K1 /Kt +2
に2 Fl /K”t ] J1  (km−kn) 
W2 +に26− Jl  (Inn−kn) W2 、/に+al  (
W2  )  =  [2に2  DI  /に2t 
 +Q]  、ノー、ld (km−kn)、W2 第3図は加)*1灸W2が一定の場合の性能限界曲線を
示し、この図で表わされている3本の折れ線△、B、C
はそれぞれ3つの線分から成っている。
T2〉(-α3 /3+4α4 [α2 W”2 10/
2α4...(6) However, α1 = [KI Dl /Kt + 2 to 2 D IF 1/Kt-to 3 +QF
1] (km-kn) α2 = 2 DI2/~10 4→-QDl] (km'-kn') α3 =-[
K1 /Kt +2 to 2 Fl /to't] (1/
km-1/kn) a4 = -2/2t (1/klIm-1/k
n”) α0 (W2 > = [K1 /Kt +2
2 Fl/K”t] J1 (km-kn)
W2 + to 26- Jl (Inn-kn) W2, / to +al (
W2 ) = [2 to 2 DI / to 2t
+Q], No, ld (km-kn), W2 Figure 3 shows the performance limit curve when moxibustion W2 is constant, and the three polygonal lines △, B, C
consists of three line segments each.

A:横軸にほぼ平行な線分でモータに流せる電流をある
値(alllaX以下におさえるためにて゛きる眼界で
ある。これはモータを保護するためである。  ′B:
斜めの線分で、モータにかりる電圧をある値Eimax
以Fに制限するためにできる限界である。
A: It is possible to keep the current that can flow through the motor in a line segment almost parallel to the horizontal axis below a certain value (allaX. This is to protect the motor.'B:
The voltage applied to the motor is set to a certain value Eimax by a diagonal line segment.
This is the limit that can be applied to limit the number of F.

これは、バッテリーの限界および士−タの保護のためで
ある。
This is due to battery limitations and data protection.

C:垂直(縦軸に平行)な線分で、モータの回転数をあ
る値Wimax以下に制限するためにできる限界である
。これもモータを保護するためである。
C: A vertical line segment (parallel to the vertical axis), which is the limit that can be used to limit the rotation speed of the motor to a certain value Wimax or less. This is also to protect the motor.

−F記の性能限界も、加速11W2によって第4口出 のように変化するが、Δ、Bは変速という点に関しては
あまり重要な意味はなく、はとんど考慮しなくてよく、
モータの電流、電斤を制限ずればすむ問題である。Cは
第4図−[、加速度と無関係に同じ位置にあり、よっで
」已−タの回転数がWlmaXに1.νれば、変速曲面
に優先して強制的に変速させればよい。
The performance limit in -F also changes as shown in the fourth output depending on the acceleration 11W2, but Δ and B do not have a very important meaning in terms of gear shifting, so there is no need to consider them.
This problem can be solved by limiting the motor current and power. C is at the same position regardless of the acceleration in FIG. If ν, then it is sufficient to forcibly shift the gears by giving priority to the shift curved surface.

上記3つの性能限界の式を記すと、 A : T2 =km (Kt r amax −Fl
 ) −DI KmW2−Jl k#+W2  (m 
== 1.2.3)[3+ 1−2 =km(1(t 
l:imax/Ra −Fl  )−(Kt Ke /
Ra 十D1 ) kmW2−Jl kiW2(m= 
                1.2.3) C: W2maxm =W1max/km (m = 
1.2.3)ただし、klで1stギア(kmにおいて
m−1)k2で2ndギア (km、 rn = 2)
k3で3rdギア(km、 m = 3)を意味Jる。
The above three performance limit formulas are written as follows: A: T2 = km (Kt ramax - Fl
) -DI KmW2-Jl k#+W2 (m
== 1.2.3) [3+ 1-2 =km(1(t
l:imax/Ra −Fl )−(Kt Ke /
Ra 1 D1) kmW2-Jl kiW2 (m=
1.2.3) C: W2maxm = W1max/km (m =
1.2.3) However, 1st gear at kl (m-1 in km) 2nd gear at k2 (km, rn = 2)
K3 means 3rd gear (km, m = 3).

すなわち、T’2−W2−W2空間内で式(6)を満足
する領域ではギアlimで走行する方が効率がよい。こ
の領域の境界面すなわち(6)式で等号が成り立−)面
が第5図の変速曲面である。
That is, in the region where formula (6) is satisfied within the T'2-W2-W2 space, it is more efficient to travel in gear lim. The boundary surface of this region, that is, the surface in which the equality sign holds in equation (6) is the speed change curved surface shown in FIG.

kmとしT” istギア(kl : kmにおいてm
−1)Iulとlノ’(2ndギア (lt2 :kn
におイTn = 2)  としたものが第5図の1−2
変速曲而である。
km and T” ist gear (kl: m in km
-1) Iul and lノ' (2nd gear (lt2:kn)
1-2 in Figure 5 is the case where Tn = 2).
It's a shifting curve.

2−3変速曲面についても同様である。The same applies to the 2-3 speed change curved surface.

この考え方では、走行状態(T2、W2、W2)を仮定
するとして考案を進めているので、加速性とギア比との
関係は問題ない。また、出力[・ルクT2を変数にとっ
ており、登板抵抗はこのT2に含まれるので、変速曲面
は登板角の影響を受【)ない。
In this way of thinking, the idea is being developed assuming the running conditions (T2, W2, W2), so there is no problem with the relationship between acceleration performance and gear ratio. Furthermore, since the output [·lux T2 is taken as a variable and the pitching resistance is included in this T2, the speed change surface is not affected by the pitching angle.

第6図は自動変速機の制御装置を示す。自動変速機2は
クラッチ21と歯車変速装置22と、前記クラッチ21
および歯車変速装置22を作動させる作動装置23から
なり制御装置は車速センサ51、加速度センサ52、ト
ルクセンサ53とからなる車両走行条件検出部5と、該
検出部5の出力および歯車変速装置におけるギア位置を
入力として、本発明にかかる変速制御方法に基づき出力
して作動装置23を9− 作動さける変速論理回路6どからなり、この制御装置は
、第7図に示す如く、検出部5で走行状態を検出(70
1) L、燃費の低減に望ましいギアの選択(702)
を行い、つぎに現在のギア位置と比較してギア切換えの
要否を判定(703) L、ギア切換え不要のとぎはそ
のままリターンし、切換え要のとぎはクラッチ21を切
り(704) 、ギア切換え(705)を行い、揃速制
御(70G)を行ってからクラッチ21を結合(707
) L、でリターンする。
FIG. 6 shows a control device for an automatic transmission. The automatic transmission 2 includes a clutch 21, a gear transmission 22, and the clutch 21.
The control device includes a vehicle running condition detection section 5 consisting of a vehicle speed sensor 51, an acceleration sensor 52, and a torque sensor 53, and the output of the detection section 5 and the gear in the gear transmission. The control device includes a shift logic circuit 6 which inputs the position and outputs the shift control method according to the present invention to prevent the actuating device 23 from operating.As shown in FIG. Detect state (70
1) L, selection of gear desirable for reducing fuel consumption (702)
and then compares it with the current gear position to determine whether or not a gear change is necessary (703). L. If a gear change is not required, return as is; if a gear change is required, the clutch 21 is disengaged (704), and the gear is changed. (705), performs uniform speed control (70G), and then engages the clutch 21 (707).
) Return with L.

この変速論理回線の作用を第8図に示すブローチヤード
とともに説明する。
The operation of this speed change logic line will be explained with reference to the broach yard shown in FIG.

自動変速機出力側回転数W2、その回転加速度W2、お
よび自動変速機出力トルクT2を読み込み(801) 
、つぎに第1速における最大出力側回転数W2max1
stおJ:び第2速における最大出力側回転数W2ma
x2ndを読み込む(802)。つぎに出力側回転数W
2が最大出力側回転数W 2111aXより小さいか否
かの判別(803)を行い、小さいときは1−2変速曲
面データの読み込み(8011)をし、10− 1−2変速点のトルクT20を計棹(805) L、、
現在の1〜ルクT2が該変速点の1〜ルクT20より大
きいか否かの判別(806)を行い、F2〉F20のど
きは1stギアの出力を発生する。判別(803)にお
いてW2 >W2maxのときはつぎにW2 <W2m
ax2ndか否かの判別(807)を行いyesのとき
は2−3変速曲而データの読み込み(807)をした後
、2−3変速点200の1−ルク計算809を行いF2
〉T2O0か否かを判別(810)する。F2>T2O
0のときは第2速ギアの出力を発生さぜ王2<1−20
0のときは第3速ギアの出力を生ずる。F2>F20か
否かの判別(806)においてF2<F20のときは2
−3変速曲面データの読み込み(808)を行う。また
W2 < W2max2ndの判別においてW2> W
2max2ndのときは第3速ギアの出力を生じる。
Read automatic transmission output side rotation speed W2, its rotational acceleration W2, and automatic transmission output torque T2 (801)
, then the maximum output side rotation speed W2max1 in 1st speed
st OJ: Maximum output side rotation speed W2ma in 2nd gear
x2nd is read (802). Next, output side rotation speed W
2 is smaller than the maximum output side rotation speed W 2111aX (803), and if it is smaller, the 1-2 shift curve data is read (8011), and the torque T20 at the 10-1-2 shift point is calculated. Measurement pole (805) L,,
It is determined (806) whether or not the current 1~LQ T2 is larger than the 1~LQ T20 at the shift point, and when F2>F20, a 1st gear output is generated. If W2 > W2max in determination (803), then W2 < W2m
It is determined whether or not it is ax2nd (807), and if yes, the 2-3 shift curve data is read (807), then the 1-luke calculation 809 of the 2-3 shift point 200 is performed, and the F2
> Determine whether or not T2O0 (810). F2>T2O
When it is 0, generate the output of the 2nd gear. 2<1-20
When it is 0, it produces the output of the 3rd gear. In determining whether F2>F20 (806), if F2<F20, 2
-3 Read speed change surface data (808). Also, in the determination of W2<W2max2nd, W2>W
When 2max2nd, the output of the third speed gear is generated.

以上の如く本発明の電気自動車の自動制御方法は、車速
、出力軸トルクに加えて車両加速度を入力としているの
で全ての走行条件が正確に把握でき、これにより他の複
雑な装置を用いず、車両加速度の増大に応じて車速に対
する自動変速機の変速点を低速がわに変更する等だけで
、加減速時、坂路走行時および坂路走行における加減速
運転時においても最も燃費効率の良い走行が可能となる
As described above, since the automatic control method for electric vehicles of the present invention uses vehicle acceleration in addition to vehicle speed and output shaft torque as input, all driving conditions can be accurately grasped. Simply by changing the shift point of the automatic transmission relative to the vehicle speed to a lower speed in response to an increase in vehicle acceleration, the most fuel-efficient driving can be achieved even when accelerating/decelerating, driving on a slope, and accelerating/decelerating while driving on a slope. It becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電気自動車の駆動系の概略図、第2図はモータ
ーおよび自動変速機の原理図、第3図は車両加速度が一
定の場合の自動変速機の変速線図、を示す。第4図は車
両加速度を考慮した自動変速機の変速線図、第5図はそ
の三次元グラフ、第6図は自動変速機の制御装置の構成
を示すブロック図、第7図は自動変速機の制御装置の制
御方法を示すブロック図、第8図はその作動説明のため
のフローチャートである。 図中 1・・・モーター 2・・・自動変速機 3・・
・デファレンシャルギア 4・・・車輪 ゼ官り忌も 用p−Ljへ
FIG. 1 is a schematic diagram of the drive system of an electric vehicle, FIG. 2 is a principle diagram of the motor and automatic transmission, and FIG. 3 is a shift diagram of the automatic transmission when vehicle acceleration is constant. Figure 4 is a shift diagram of the automatic transmission that takes into account vehicle acceleration, Figure 5 is its three-dimensional graph, Figure 6 is a block diagram showing the configuration of the automatic transmission control device, and Figure 7 is the automatic transmission. FIG. 8 is a block diagram showing a control method of the control device, and FIG. 8 is a flowchart for explaining its operation. In the diagram: 1...Motor 2...Automatic transmission 3...
・Differential gear 4...To p-Lj for wheels

Claims (1)

【特許請求の範囲】[Claims] 電動機の出力を車両走行条件に応じて自動変速機で変速
する電気自動車においで、車速、出力軸トルク、および
車両加速度を入力とし、車両加速戊の増大に応じて車速
に対する自動変速機の変速点を低速がわに変更すること
を特徴とする電気自動車の自動制御方法。      
In an electric vehicle in which the output of the electric motor is shifted by an automatic transmission according to vehicle driving conditions, the vehicle speed, output shaft torque, and vehicle acceleration are input, and the shift point of the automatic transmission relative to the vehicle speed is determined according to the increase in vehicle acceleration. An automatic control method for an electric vehicle characterized by changing the speed to a low speed.
.
JP57053367A 1982-03-30 1982-03-30 Method for automatic control of electric automobile Pending JPS58170301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053367A JPS58170301A (en) 1982-03-30 1982-03-30 Method for automatic control of electric automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053367A JPS58170301A (en) 1982-03-30 1982-03-30 Method for automatic control of electric automobile

Publications (1)

Publication Number Publication Date
JPS58170301A true JPS58170301A (en) 1983-10-06

Family

ID=12940839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053367A Pending JPS58170301A (en) 1982-03-30 1982-03-30 Method for automatic control of electric automobile

Country Status (1)

Country Link
JP (1) JPS58170301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127801A (en) * 1984-07-18 1986-02-07 日立エレベ−タサ−ビス株式会社 Waste oil treating tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127801A (en) * 1984-07-18 1986-02-07 日立エレベ−タサ−ビス株式会社 Waste oil treating tool
JPH0244721B2 (en) * 1984-07-18 1990-10-05 Hitachi Elevator & Service

Similar Documents

Publication Publication Date Title
US4495451A (en) Inertial energy interchange system with energy makeup by combustion engine on demand
CN100431887C (en) Deceleration control apparatus and method for a vehicle
CN103906653B (en) The controller for motor of elec. vehicle
EP1291219A3 (en) Auxiliary drive and automobile equipped with the same
JP3687429B2 (en) Braking force control device for vehicle
JP2003113934A (en) Automatic transmission, controlling device, and automobile
CN105121244A (en) Hybrid vehicle control device
JP3104308B2 (en) Electric vehicle air conditioner
US9248826B2 (en) Vehicle power-generator device and vehicle power-generation control method
JP2000030753A (en) Control device of battery for hybrid vehicle
KR950011205B1 (en) Control apparatus for induction motor &amp; electric rolling stock
US6971461B2 (en) Front and rear wheel drive vehicle and control device for controlling same
WO2018053891A1 (en) Power assembly device for battery electric vehicle
CN113895244A (en) Vehicle control method, device, electronic device and storage medium
JPH02133005A (en) Motor-driven vehicle
US20020058564A1 (en) Front and rear wheel drive vehicle and control device for controlling same
JP2004096932A (en) Controller of hybrid vehicle
JP2000118246A (en) Control device for driving gear of vehicle
JPS58170301A (en) Method for automatic control of electric automobile
JP3879736B2 (en) Drive control device for four-wheel drive vehicle
CN107650692B (en) Distributed power system and offroad vehicle with the system
SE512461C2 (en) Method and apparatus for controlling an automated gearbox
EP3812628A1 (en) Vehicle and method of controlling the same
RU2204492C1 (en) Crawler vehicle electrical transmission
JPH11318001A (en) Control device of hybrid vehicle