JPS58170086A - Thermocouple unit - Google Patents

Thermocouple unit

Info

Publication number
JPS58170086A
JPS58170086A JP57052807A JP5280782A JPS58170086A JP S58170086 A JPS58170086 A JP S58170086A JP 57052807 A JP57052807 A JP 57052807A JP 5280782 A JP5280782 A JP 5280782A JP S58170086 A JPS58170086 A JP S58170086A
Authority
JP
Japan
Prior art keywords
type
semiconductor
thin film
amorphous semiconductor
thermocoupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57052807A
Other languages
Japanese (ja)
Other versions
JPH0227827B2 (en
Inventor
Setsuo Kotado
古田土 節夫
Wareo Sugiura
杉浦 吾男
Kiyoshi Takahashi
清 高橋
Makoto Konagai
誠 小長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP57052807A priority Critical patent/JPS58170086A/en
Publication of JPS58170086A publication Critical patent/JPS58170086A/en
Publication of JPH0227827B2 publication Critical patent/JPH0227827B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Abstract

PURPOSE:To obtain a thermocouple unit which has high sensitivity by combining P type (N type) semiconductor and N type (P type) amorphous semiconductor having large thermocoupling capacity, large conductivity and different polarity of thermocoupling capacity. CONSTITUTION:In a thermocoupling unit 13, a P type (N type) thin amorphous semiconductor film 5 formed partly in contact with a P type (N type) diffused layer 3 forms a hot contact point 12, and ohmic electrodes 7, 8 form a cold contact point, and a DC thermal electromotive force Vth which is proportional to the temperature difference DELTAT between the hot contact point and the cold contact point is generated between the electrodes 7 and 8. The magnitude of the electromotive force Vth depends upon the thermocoupling capacity alphaP(N) of the layer 3, the thermocoupling capacity alpha'N(P) of the film 6 and the temperature difference DELTAT, thereby obtaining the power Vth not less than 0.65mV per temperature difference DELTAT=1 deg.C.

Description

【発明の詳細な説明】 本発明は結晶半導体の有する大きな熱電能特性と微細加
工性、アモルファス半導体薄膜の有する3つの特徴、す
なわち、(1)大きな熱電能特性、(2)p−m接合部
の有するオーミック性、(3)薄膜形成の容易さと微細
加工性とに着目し、結晶半導体およびアモルファス半導
体薄膜の有する特徴な互いに生かした新しい構造の熱電
対装置に関する。特に、この熱電対装置を応用して構成
される低周波から輻射波(光波)K至る電力検出装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention focuses on the large thermoelectric properties and microfabrication properties of crystalline semiconductors, and the three features of amorphous semiconductor thin films, namely (1) large thermoelectric properties, and (2) pm junction. This invention relates to a thermocouple device with a new structure that takes advantage of the characteristics of crystalline semiconductor and amorphous semiconductor thin films, focusing on (3) ease of thin film formation and microfabrication. In particular, the present invention relates to a power detection device for detecting power ranging from low frequencies to radiant waves (light waves) K, which is constructed by applying this thermocouple device.

ここでアモルファス半導体とは、液体及び気体を除く物
質であって、結、晶学的に3次元的同期性を示さない半
導体をいう。すなわち、不規則、非晶質状のもので、X
線回析図形で特定しうる回折ピークを持たない半導体を
呼ぶこととする。
Here, the amorphous semiconductor is a substance excluding liquid and gas, and refers to a semiconductor that does not exhibit crystallographic three-dimensional synchronization. That is, it is irregular, amorphous, and
Semiconductors that do not have diffraction peaks that can be identified in their line diffraction patterns are called semiconductors.

従来、高周波電力を測定する場合検出素子としてはボロ
メータが用いられ、最近では組−8b等に代表される薄
膜熱電対素子や81−丁aINに代表される半導体−薄
膜熱電対素子が用いられている。
Traditionally, when measuring high frequency power, a bolometer has been used as a detection element, and recently, thin film thermocouple elements such as Group-8b and semiconductor thin film thermocouple elements such as 81-CIN have been used. There is.

サーミスタやバレッタなどのボロメータを検出素子とし
【用いた方式は、高周波エネルギーを吸収したときに生
じる抵抗値変化から間接的に入射電力を測定するもので
、周囲の温度変化に対して敏感に抵抗値が変化するため
に零点が変動し、この零点ドリフトを補償する回路が必
要となりた。その上サーミスタの場合は、周波数が高く
なると入力定在波比が大きくなり、また、バレッタの場
合は、過電流に弱いなどの欠点がある。検出素子として
、薄膜熱電対素子や半導体−薄膜熱電対素子を用いた方
式は、薄膜熱電対素子又は半導体−薄膜熱電式素子が入
射高周波電力を吸収し、その入射電力に比例した直流の
熱起電力に変換して測定するものである。この方式はl
I6囲温度の変化による零点ドリフトは小さいが、、l
μW以下の微小な′:・ 1    電力を測定するのが困難である0%にBi 
−8b等やマイカ勢絶縁性基板に蒸着膜v4威した場合
、基板との付着力が弱くなる。しかも、水や有機溶剤に
よ5″′C膜質が損なわれるので、フォトエツチング技
IIK代表される微細加工技術が使用できない等の欠点
がある。一方、81−T@mNに代表される半導体−薄
膜熱電対素子は、支持基板の81の熱伝導率が約1.4
5W/αCと大きい。このため熱電対素子の検出感度を
高めるため、4基板を薄くする必要があり、実用化素子
では、基板厚さがbμm1度である。しかしながらこの
81− Tan Nを用いた半導体−薄膜熱電対素子は
p形あるいは話形半導体の有する大きな熱電能の片方の
みを使用したものであり、p形および3形の互いの極性
が逆である点を有効に生かした構造のp−+a*合形熱
形熱電対素子用化されていない。その理由としてはシー
11接合寥の有する整流性であり、又、整流性をなくす
ため、p −*@会合間オーミック電極用金属を挿入し
た構造のものは、被測定電力の電磁界分布をみだすため
、高周波電力検出鋏置醇には用いられなかった。
The method that uses a bolometer such as a thermistor or barrette as a detection element measures the incident power indirectly from the change in resistance value that occurs when high-frequency energy is absorbed, and the resistance value is sensitive to changes in the surrounding temperature. The zero point fluctuates due to the change in , and a circuit to compensate for this zero point drift is required. Furthermore, in the case of a thermistor, the input standing wave ratio increases as the frequency increases, and in the case of a barrette, there are drawbacks such as vulnerability to overcurrent. In a method using a thin film thermocouple element or a semiconductor-thin film thermocouple element as a detection element, the thin-film thermocouple element or semiconductor-thin film thermoelectric element absorbs incident high-frequency power, and generates a direct current thermal wave proportional to the incident power. It is measured by converting it into electric power. This method is l
I6 Although the zero point drift due to changes in ambient temperature is small, l
Minute ′ below μW:・1 Bi at 0% where it is difficult to measure the power
When the vapor-deposited film V4 is applied to an insulating substrate such as -8b or mica, the adhesion to the substrate becomes weak. Moreover, since the quality of the 5''C film is damaged by water or organic solvents, there are drawbacks such as the inability to use microfabrication techniques such as photoetching technique IIK.On the other hand, semiconductors such as 81-T@mN The thin film thermocouple element has a support substrate with a thermal conductivity of approximately 1.4.
It is large at 5W/αC. Therefore, in order to increase the detection sensitivity of the thermocouple element, it is necessary to make the four substrates thinner, and in a practical element, the substrate thickness is bμm 1 degree. However, this semiconductor-thin film thermocouple element using 81-Tan N uses only one side of the large thermoelectric power of the p-type or talk-type semiconductor, and the polarities of the p-type and 3-type are opposite to each other. It has not yet been applied to a p-+a* combination type thermocouple element with a structure that makes effective use of the points. The reason for this is the rectifying property of the Sea 11 junction, and in order to eliminate the rectifying property, those with a structure in which a metal for ohmic electrodes is inserted between the p-*@ groups will cause the electromagnetic field distribution of the power to be measured to be Therefore, it was not used for high-frequency power detection scissors.

以上の点に鑑み、本発明では1.アモルファス半導体薄
膜1例え+7・ゝ“7“X St薄膜)0有す8大きな
熱電能特性、p−am合部のオーミック性、薄膜形成の
容易さと微細加工性に着目し一結晶半導体の有する大き
な熱電能特性と微細加工性とを有効に生かした新しい構
造の高性能な熱電対装置およびこの熱電対装置を応用し
た電力検出装置を提供せんとするものである。第1図お
よび絽2図は、81F、とIlmの混合ガスを用いDC
グロー放電性により、ガラス基板上に堆積したp形およ
び1形アモルファス81薄膜の熱電能−導電性特性およ
び温度差−熱起電力特性な示す図である。第1図で丸印
はれ形の、また十印はP形の特性を示す。
In view of the above points, the present invention provides 1. Focusing on the large thermoelectric properties of an amorphous semiconductor thin film (e.g. +7."7" The present invention aims to provide a high-performance thermocouple device with a new structure that makes effective use of thermoelectric properties and microfabricability, and a power detection device that applies this thermocouple device. Figures 1 and 2 show DC using a mixed gas of 81F and Ilm.
FIG. 3 is a diagram showing the thermoelectric conductivity characteristics and temperature difference-thermoelectromotive force characteristics of p-type and 1-type amorphous 81 thin films deposited on a glass substrate due to glow discharge properties. In Fig. 1, the circles indicate the characteristics of the flaky type, and the 0 marks indicate the P-type characteristics.

熱電能αはp形で正、動形で負となる。p形および態形
ア篭ルファス8i薄膜形成用ドーピングガスとしては、
それぞれBsH@、 pusを用いた。熱電能の大きさ
としては、絶対値でp形が200声q7’Q以上を示す
、第2図は、p形および111モル7アスS1薄膜の両
端にメタル電極を設け、冷接点側を室温とし、温締点を
高温し、温接点と冷接点(室温)との温度差ATK対す
る熱起電力vtbの関係を示したものである。図面中、
実線はp形、一点鎖線はn形を示し、p形は正、3形は
負を示す。共によい線形性が得られている。以上の実験
結果より、アモルファス半導体薄膜、特にアモルファス
母薄膜は熱電対、材料として秀れた特性を示すことがわ
かった。第3図および$4図は本発、明による熱電体装
置の一実施例の構成を示す−で、第3図に平面IWV、
第4図にx−x’における断面図を示す。図面中1はフ
レーム、2は肉薄状のya 形(p形)半導体基板、3
はp形(n形)半導体拡散層、4は絶縁膜、5はp形(
n形)アモルファス半導体〒膜・642″形(p形)ア
%″′・3半導体薄膜、7はp形(n形)拡散層に設け
られたオーきツク電極、8は1形(P形)アモルファス
半導体薄膜に設けられたオーミック電極、9,10は各
オーミックー極に設けられた各リード線、11人、11
Bは冷接点、12は温接点、13は熱電対装置を示す。
The thermoelectric power α is positive in the p-type and negative in the dynamic type. Doping gases for forming p-type and alpha-8i thin films include:
BsH@ and pus were used, respectively. As for the magnitude of thermoelectric power, the p-type shows an absolute value of more than 200 mol 7'Q. Figure 2 shows that metal electrodes are provided at both ends of the p-type and 111 mol 7 as S1 thin films, and the cold junction side is kept at room temperature. The figure shows the relationship between the thermoelectromotive force vtb and the temperature difference ATK between the hot junction and the cold junction (room temperature) when the hot clamping point is raised to a high temperature. In the drawing,
The solid line indicates the p-type, the dashed line indicates the n-type, the p-type indicates positive, and the 3-type indicates negative. Good linearity was obtained in both cases. From the above experimental results, it was found that amorphous semiconductor thin films, especially amorphous mother thin films, exhibit excellent properties as thermocouples and materials. 3 and 4 show the configuration of an embodiment of the thermoelectric device according to the present invention.
FIG. 4 shows a cross-sectional view along line xx'. In the drawing, 1 is a frame, 2 is a thin ya-type (p-type) semiconductor substrate, and 3
is a p-type (n-type) semiconductor diffusion layer, 4 is an insulating film, and 5 is a p-type (
n-type) amorphous semiconductor film, 642" type (p-type) ) Ohmic electrodes provided on the amorphous semiconductor thin film, 9 and 10 each lead wire provided on each ohmic electrode, 11 people, 11
B indicates a cold junction, 12 a hot junction, and 13 a thermocouple device.

この熱電対装置(13)は、p形(n形)拡散層(3)
の一部に接触して設けられたp形(n形)7モル7ァス
半導体薄1K (61部が温接点(i2)を形成し、各
オーミック電& (7,8)部が冷接点な形成するので
、温接点と冷接点との間の温度差ΔT (C)に比例し
た直流熱起電力vtb (mV)がオーミック電&(7
)とオーミック電極(8)との間に発生する。この時発
生する熱起電力vtbの大きさは、p形(II形)半導
体拡散層(3)の熱電能αp (ml、n形(p形)ア
モルファス半導体薄膜(6)の熱電能αI 、(1)、
温度差6丁によって決定され、次式で与えられる。
This thermocouple device (13) has a p-type (n-type) diffusion layer (3)
A p-type (n-type) 7 mole 7 ass semiconductor thin 1K (61 parts form a hot junction (i2), and each ohmic conductor & (7, 8) parts form a cold junction Therefore, the DC thermoelectromotive force vtb (mV) proportional to the temperature difference ΔT (C) between the hot and cold junctions becomes an ohmic voltage &(7
) and the ohmic electrode (8). The magnitude of the thermoelectromotive force vtb generated at this time is the thermoelectric power αp (ml) of the p-type (II-type) semiconductor diffusion layer (3), the thermoelectric power αI of the n-type (p-type) amorphous semiconductor thin film (6), ( 1),
It is determined by the temperature difference 6 and is given by the following formula.

Vtb −(1114(nll +lα’n(111)
・ΔT・・・(1)第1図の実験結果および半導体の基
礎特性結果より、 cXp(m = 500(−450
)fiV/C以上、(1’*Ipl=−160(200
’)μ■で以上がそれぞれ得られているので、温度差Δ
T−IU当り0.65mV以上の熱起電力vtbが得ら
れる。p形(m形)半導体拡散層(3)とn%(p形)
アモルファス半導体薄膜(6)間に設けらtまたp形(
n形)アモルファス半導体薄膜(5)は、pl形(n形
)半導体とn形(p形)′アモルファス半導体薄膜を接
合させた場合に生じる整流性をなくすために用いられる
。フレーム(1)は、冷接点の温度を一定に保つのと、
肉薄状半導体基板(2)を保持する働きを有する。内薄
状の3形(ν形)半導体基板(2)上に設けられた絶縁
膜(4)は、−形(p形)半導体とn形(p形)アモル
ファス半導体薄膜(6)との間の電気的絶縁をとる働き
を有し、p形(II形)拡散層(3)上には必ずしも設
ける必要はないが、本図では設けた場合を図示した。
Vtb −(1114(nll +lα'n(111)
・ΔT... (1) From the experimental results shown in Figure 1 and the basic characteristics of semiconductors, cXp (m = 500 (-450
)fiV/C or more, (1'*Ipl=-160(200
') Since the above are obtained for μ■, the temperature difference Δ
A thermoelectromotive force vtb of 0.65 mV or more can be obtained per T-IU. p-type (m-type) semiconductor diffusion layer (3) and n% (p-type)
T-type or p-type (
The n-type (n-type) amorphous semiconductor thin film (5) is used to eliminate rectification that occurs when a pl-type (n-type) semiconductor and an n-type (p-type)' amorphous semiconductor thin film are bonded. The frame (1) keeps the temperature of the cold junction constant;
It has the function of holding the thin semiconductor substrate (2). The insulating film (4) provided on the inner thin three-type (ν-type) semiconductor substrate (2) is between the −-type (p-type) semiconductor and the n-type (p-type) amorphous semiconductor thin film (6). Although it is not necessarily necessary to provide the layer on the p-type (II-type) diffusion layer (3), this figure shows the case where it is provided.

この熱電対装置(13)を用いて高wjJ波電力Pを測
定する時には、リード1(QIO)間に曽測定高周波電
力PV供給する。このとき、供給された高周vt力Pは
、p形(カ形)半導体拡散層(3)およびn ′#/(
p形)アモルファス半導体薄Ill (6)で吸収され
、ジュール熱を発生する。この時発生するジュール熱の
大きさは、供給された高周波電力Pに比例するので、温
接点Th (12’)と冷接点Terllム。
When measuring the high wjj wave power P using this thermocouple device (13), the measured high frequency power PV is supplied between the leads 1 (QIO). At this time, the supplied high-frequency Vt force P is applied to the p-type (ca-type) semiconductor diffusion layer (3) and n'#/(
(p type) is absorbed by the amorphous semiconductor thin Ill (6) and generates Joule heat. The magnitude of the Joule heat generated at this time is proportional to the supplied high-frequency power P, so the hot junction Th (12') and the cold junction Terll.

11B)間の温度差ΔTは、供給された被測定高周波半
導体拡散層(3)およびn形(p形)アモルファス半導
体薄膜(6)で吸収発熱する“ことにより、各オーミッ
ク電極(′lB)間にもたらされる直流熱起電力vth
は次式で与えられる。
The temperature difference ΔT between the ohmic electrodes ('lB) is caused by absorption and heat generation in the supplied high-frequency semiconductor diffusion layer to be measured (3) and the n-type (p-type) amorphous semiconductor thin film (6). DC thermoelectromotive force vth brought to
is given by the following equation.

Vth −(Iα−1+1α’m(dl)ΔTo((l
αpla)+I(fntpH)・P−(2)(2)式よ
り、被測定高周波電力の大きさPは、熱電対装置(13
)の各オーミック電極(z8)間の、直流電圧を測定す
ることにより得られる。
Vth −(Iα−1+1α′m(dl)ΔTo((l
αpla)+I(fntpH)・P−(2) From equation (2), the magnitude P of the high-frequency power to be measured is determined by the thermocouple device (13
) is obtained by measuring the DC voltage between each ohmic electrode (z8).

被測定電力Pが一定の場合、得られる直流起電力・の大
きさは、温接点の−F昇温度が°高い程、大きい値が得
られ、又、応答速度は半導体基板の熱伝導率によって決
まるので、p形(Il形)半導体拡散層(3)および簾
形(p形)アモルファス半導体薄膜(6)の導電率や半
導体基板の熱伝導率な考慮しながら形状は決定される。
When the measured power P is constant, the magnitude of the DC electromotive force obtained increases as the -F temperature rise of the hot junction increases, and the response speed depends on the thermal conductivity of the semiconductor substrate. Therefore, the shape is determined while taking into consideration the electrical conductivity of the p-type (Il-type) semiconductor diffusion layer (3) and the screen-shaped (p-type) amorphous semiconductor thin film (6) and the thermal conductivity of the semiconductor substrate.

この場合、インピーダンス整合なiりなか、ら発熱部の
形状を小さくし、半導体基板の中央部に配置するととも
に、発生したジュール熱の放散を低く抑える必要がある
ので、半導体基板の板厚は通常5μm前後の肉薄状の形
状となる。
In this case, it is necessary to reduce the shape of the heat generating part from within the impedance matching circuit and place it in the center of the semiconductor substrate, as well as to suppress the dissipation of the generated Joule heat, so the thickness of the semiconductor substrate is usually reduced. It has a thin shape of around 5 μm.

第5図および第6図は、本発明の応用による光パワー検
出装セの一実施例を示す図で、謝5図に平面図を、第6
図に線x−fにおける断面図を示す。図面中、21は7
レーム、nは肉薄状態形(p形)半導体基板、乙はp形
(11形)拡散層、24は絶縁膜、25はp形(n形)
アモルファス半導体薄膜、墓は簾形(p形)アモルファ
ス半導体薄膜、n、28は各オーミック電極、9.30
は各リード・線。
5 and 6 are diagrams showing an embodiment of an optical power detection device to which the present invention is applied; FIG. 5 shows a plan view, and FIG.
The figure shows a cross-sectional view taken along line x-f. In the drawing, 21 is 7
n is a thin state type (p type) semiconductor substrate, O is a p type (11 type) diffusion layer, 24 is an insulating film, 25 is a p type (n type)
Amorphous semiconductor thin film, grave is blind-shaped (p-type) amorphous semiconductor thin film, n, 28 are each ohmic electrode, 9.30
is each lead/wire.

31は光吸収膜、島、azsは冷接点、33は温接点、
あは光パワー検出装置を示す。この光パワ、−検出装置
は、第3図および第4図で示した熱電対装置の温接点(
33)を形成するp形(II形)半導体−p形(簾形)
アモルファス半導体薄膜接合面上に光吸収膜(31)を
設けた構造で、光吸収膜は、全黒、カーボンブラックあ
るいは、組成比の異なったアモルファス半導体薄膜等で
構成される。
31 is a light absorption film, an island, azs is a cold junction, 33 is a hot junction,
A indicates an optical power detection device. This optical power detection device is a hot junction (
33) p-type (type II) semiconductor forming p-type (blind type)
It has a structure in which a light absorption film (31) is provided on the amorphous semiconductor thin film bonding surface, and the light absorption film is composed of all black, carbon black, or amorphous semiconductor thin films with different composition ratios.

以上の実施例で述べた熱電対装置、熱電対装置を応用し
た光パワー検出装置はそれぞれ一対の熱電対素子の構成
のものについて述べたが、構造上客AK想像できるよう
に、2対以上をカスケード状に接続した多対形態電対装
置および、それらを応用した光パワー検出装置を構成す
ることができ、しかもこの場合はオーミック電極間の出
力電圧(熱起電力) vthと出力インピーダンスは、
それぞれ熱電対素子数に比例して大きくなるので、測定
精度および所望の出力インピーダンス等に合わせた設計
ができる。
The thermocouple device and the optical power detection device applying the thermocouple device described in the above embodiments were each configured with a pair of thermocouple elements. It is possible to configure a multi-pair electrocouple device connected in a cascade and an optical power detection device applying them, and in this case, the output voltage (thermoelectromotive force) vth and output impedance between the ohmic electrodes are as follows.
Since the size of each thermocouple increases in proportion to the number of thermocouple elements, it is possible to design according to measurement accuracy, desired output impedance, etc.

次に製造方法について述べる。翼形(P形)V有するa
t 又はG@尋半導体基板(2)に通常のICプロセス
を用いてp形(話形)拡散層(3)、絶縁用酸化a!(
4)を形成したのち、グロー放電法を用いてp形(m形
)アモルファス半導体薄膜(5)および動形(p形)ア
モルファス半導体(6)を堆積する。/くターニングに
は、フオヘトエッチング技術又はメタルマスクを用いる
。次に、p形(n形)半導体拡散層およびn形(p形)
アモルファス半導体薄膜の各一部にオーミック電極を設
ける。オーiyり電極材料とし【はそれぞれ、ムL、ム
u 、 W。
Next, the manufacturing method will be described. Airfoil shape (P shape) V with a
t or G@Front semiconductor substrate (2) is coated with a p-type (circular) diffusion layer (3) and an insulating oxide a! using a normal IC process. (
4), a p-type (m-type) amorphous semiconductor thin film (5) and a dynamic (p-type) amorphous semiconductor (6) are deposited using a glow discharge method. For turning, photoetching technology or a metal mask is used. Next, a p-type (n-type) semiconductor diffusion layer and an n-type (p-type)
An ohmic electrode is provided on each part of the amorphous semiconductor thin film. The electrode materials are MU L, MU, and W, respectively.

NlCr 、 Pi等が用いられる。特にア毫ル7アス
半与 導体薄膜用電極材料としヤはNiCr 600ム/ A
u1ooo;O多層構造のものが秀れている。次に半導
体基板全面な保護膜で覆う、保−膜としては、CVD8
10m膜、 CVD81sN+膜、ボリミイド樹脂等を
用いる。次に令オーミック電極ノくラド部の保護膜を除
去して、リード線対(alO)を形成する。リード線と
してはビームリード方式、又はAugやム1リボン線等
をワイヤボンデングすることによって構成するが、ビー
ムリード方式が優れている0次に、半導体基板裏側の中
央部をケミカルエッチ等で除去して内薄状にする。この
場合半導体基板の周縁にフレーム(1)が形成できるよ
うに行う。この7レームは半導体基板の強度を保つとと
もに、熱シンクの作用をもつ。ここでは半導体基板を一
部エッチングで薄くしてフレームを残すようにしたが、
フレームをとりつける作り方をすることもできる。
NlCr, Pi, etc. are used. In particular, the electrode material for the 7th conductor thin film is NiCr 600 μm/A.
u1ooo;O The multilayer structure is excellent. Next, CVD8 is used as a protective film to cover the entire surface of the semiconductor substrate.
A 10m film, a CVD81sN+ film, a bolimide resin, etc. are used. Next, the protective film on the rad portion of the ohmic electrode is removed to form a lead wire pair (alO). The lead wire is constructed using the beam lead method or by wire bonding Aug or M1 ribbon wire, etc., but the beam lead method is superior.The central part of the back side of the semiconductor substrate is removed by chemical etching etc. and make it thinner. In this case, this is done so that a frame (1) can be formed around the periphery of the semiconductor substrate. These seven beams maintain the strength of the semiconductor substrate and also function as a heat sink. Here, a part of the semiconductor substrate was thinned by etching to leave a frame.
You can also learn how to attach a frame.

結晶方位(1,0,0)の81基板の場合には異方性エ
ツチング液を用いることにより容易に周縁にフレームを
形成することができる。最後に、エツチング技術婢を用
いてチップ状に分割して素子は完成する。
In the case of an 81 substrate with crystal orientation (1,0,0), a frame can be easily formed at the periphery by using an anisotropic etching solution. Finally, the device is completed by dividing it into chips using etching technology.

光パワー検出装置(34)の製造方法としては、前記熱
電対装置の製造方法に述べた1糧に、光吸追加する。光
吸収膜形成には、グロー放電法、あるいは真空蒸着法等
を用いることができる。又、光パワー検出装置の場合は
、p形(11形)半導体−a形(p形)アモルファス半
導体薄膜接合の整流性をなくするために挿入されたp形
(動形)アモルファス半導体薄膜の代わりに、オーミッ
ク性を示す金属薄膜、例えばU/ムu / NlCr構
造のものを用いてもよい。次にグロー放電法について若
干述べる。グロー放電法には直流電界中でグロー放電を
発生させるDCグロー放電法と高周波電界中でグロー放
電を発生させるRFダグロー放電法がある。第7図はR
Fダグロー放電法より、絶縁性基板尋にアモルファスS
1薄膜を堆積させる装置例である。この装置は真空容器
間と真空容器内に平行に配列されたアノードおおよびカ
ソード菊、ガス41を真空容器内に給気又は排気するた
めの給気口42および排気口8、アノードおよびカンー
ドを加熱するヒータ44等から構成される。絶縁性基板
砺はアノード上に置かれる。ガス41としては、通常S
%H6又は81F4とH3の混合ガスにドーピングガス
(例えばPH,、ムsH@ * BBH・等)を添加し
たものが用いられる。グロー放電中の真空圧力は数To
rr。
As a method for manufacturing the optical power detection device (34), light absorption is added to the method described in the method for manufacturing the thermocouple device. A glow discharge method, a vacuum evaporation method, or the like can be used to form the light absorption film. In addition, in the case of an optical power detection device, a p-type (dynamic type) amorphous semiconductor thin film inserted to eliminate the rectification property of a p-type (11 type) semiconductor-a-type (p-type) amorphous semiconductor thin film junction is used instead. Alternatively, a metal thin film exhibiting ohmic properties, such as a U/MU/NlCr structure, may be used. Next, we will briefly discuss the glow discharge method. Glow discharge methods include a DC glow discharge method in which a glow discharge is generated in a direct current electric field, and an RF daglow discharge method in which a glow discharge is generated in a high frequency electric field. Figure 7 is R
Using the F Douglow discharge method, amorphous S is deposited on the insulating substrate.
1 is an example of an apparatus for depositing a thin film. This device heats anodes and cathodes arranged in parallel between and within the vacuum chamber, an air supply port 42 and an exhaust port 8 for supplying or exhausting gas 41 into the vacuum container, and the anode and canard. It is composed of a heater 44 and the like. An insulating substrate is placed on the anode. The gas 41 is usually S.
%H6 or a mixed gas of 81F4 and H3 to which a doping gas (for example, PH, msH@*BBH, etc.) is added is used. The vacuum pressure during glow discharge is several To
rr.

電圧はほぼ一定で電流は1〜lOo m)v’dlであ
り、ガス反応の大部分は陽光柱(プラズマ46)内で起
る。特に、このグロー放電法では基板温度が400C以
下という低温度でアモルファス半導体薄膜を堆積できる
という特徴を有する(従来の薄膜製造のための熱分解法
では基板温度として500〜700゛Cが必要であった
)。DCグロー放電法を用いた堆積条件の一例としては
、放電圧力OJ〜Wテ・rr、放電電流1〜Zoo y
*Iv’d1.放電電圧500〜800 V 。
The voltage is approximately constant, the current is 1 to 10 m) v'dl, and most of the gas reactions occur within the positive column (plasma 46). In particular, this glow discharge method has the characteristic of being able to deposit amorphous semiconductor thin films at low substrate temperatures of 400°C or less (conventional thermal decomposition methods for thin film production require a substrate temperature of 500 to 700°C). Ta). As an example of deposition conditions using the DC glow discharge method, discharge pressure OJ~Wte・rr, discharge current 1~Zoo y
*Iv'd1. Discharge voltage 500-800V.

電極間隔3cIIL、基板温度260〜450 C,8
1F6/)I。
Electrode spacing 3cIIL, substrate temperature 260-450C, 8
1F6/)I.

−1〜10 、 BAH@/ 81F+ −100〜2
500 ppm 。
-1~10, BAH@/81F+ -100~2
500 ppm.

PH,/ 81F4= 100〜2500 ppmであ
る。この条件で堆積したアモルファス半導体薄膜として
、導電率Cr”ta2D(Q−ca)’以上ものが容易
に得られている。半導体薄膜の導電率を高める方法とし
ては、放電電流を大きくする方法あるいはドーピングガ
10割合を高くする方法等が一般的である。又、磁界を
印加する方法も有効である。以上の方法を用いて半導体
薄膜を堆積した場合、アモルファス膜中に100 A前
後の微細結晶相が含まれたり、多結晶的性質を示すよう
になるが熱電能特性は保持される。又、8l−Goの合
金形アモルファス半導体薄膜も高い導電率が得られる。
PH,/81F4=100-2500 ppm. As an amorphous semiconductor thin film deposited under these conditions, a conductivity of Cr"ta2D(Q-ca)' or higher can be easily obtained. Methods for increasing the conductivity of a semiconductor thin film include increasing the discharge current or doping. A common method is to increase the Ga10 ratio.Also, a method of applying a magnetic field is also effective.When a semiconductor thin film is deposited using the above method, a fine crystalline phase of around 100 A is formed in the amorphous film. , or exhibits polycrystalline properties, but retains thermoelectric properties.Furthermore, an alloy type amorphous semiconductor thin film of 8l-Go also has high conductivity.

この場合、GeH4の混合ガスにBan5又はPHトム
sHBのドーピングガスを添加したものを用い、DCグ
ロー放電法(直流電圧を印加する方法)、又はRFグロ
ー放電性偽周波電圧を印加する方法)を用いてアモルフ
ァス半導体薄膜を堆積させる。
In this case, a mixture of GeH4 and a doping gas of Ban5 or PH Tom sHB is used, and a DC glow discharge method (a method of applying a direct current voltage) or a method of applying a RF glow discharge pseudo-frequency voltage) is used. to deposit an amorphous semiconductor thin film.

次に本発明の効果を述べる。Next, the effects of the present invention will be described.

(1)熱電能、導電高が共に大きくかつ熱電能の極性が
互いに異なるp形(―形)半導体と筒形Cν形)アモル
ファス半導体を組み合わせたので高感度な熱電封装!お
よびこれを応用、1    した高周波電力検出素子、
光パワー検出装置を構成できる。
(1) Highly sensitive thermoelectric sealing due to the combination of p-type (--type) semiconductor and cylindrical Cν-type) amorphous semiconductor with large thermoelectric power and conductivity and different polarities of thermoelectric power! and a high-frequency power detection element using this,
An optical power detection device can be configured.

(2)温接点となる部分の半導体基板を薄くし、その厚
さ方向すべてにわたってp形(tたはn形)半導体領域
を形成し、その領域な熱電対構成の一方の素子としたう
また、半導体基板の周縁にはル−ムを備える↓5Qてし
、冷接点の熱シンクとし、熱電変換の効率を・あげ、か
つ強度を保持した。
(2) It is also possible to thin the semiconductor substrate in the area that will become the hot junction, form a p-type (T or n-type) semiconductor region over the entire thickness, and use that region as one element of the thermocouple configuration. A room is provided at the periphery of the semiconductor substrate to serve as a heat sink for the cold junction, increasing the efficiency of thermoelectric conversion and maintaining strength.

(3)  フォトエツチング技術に代表される微細加工
技術が使用できるので超小形の熱電対装置船な構成でき
る。
(3) Since microfabrication technology such as photo-etching technology can be used, it is possible to construct an ultra-small thermocouple device ship.

(4)  高周波電力、特にマイクロ波以上の電力を測
定する場合、p形(n形)半導体−p形(態形)アモル
ファス半導体薄膜−n形(p形)アモルファス半導体薄
膜接合形構造の高周波電力検出素子においては前記接合
部がオーミックをとるためのメタル電極を必要としない
構造なので、寄生リアクタンスが小さい、その結果、人
力定在波比を小さく抑えた電力積tts &子、すなわ
ち超高周波帯まで使用可能な電力検出製雪な製作できる
(4) When measuring high frequency power, especially power higher than microwave, high frequency power of p-type (n-type) semiconductor - p-type (morphology) amorphous semiconductor thin film - n-type (p-type) amorphous semiconductor thin film junction type structure In the detection element, the junction does not require a metal electrode for ohmic control, so the parasitic reactance is small, and as a result, the power product tts and tts with the manual standing wave ratio kept low, that is, up to the ultra-high frequency band. Can be used for power detection and snow making.

以上述べたように1本発明による熱電対装置はこれな応
用し【電力検出装置および光パワー検出装置を構成する
ことができ、しかも性能、製法において従来のものより
も幾多の利点を有しているので、産業上の効果が大きい
As described above, the thermocouple device according to the present invention can be applied in various ways to constitute a power detection device and an optical power detection device, and has many advantages over conventional devices in terms of performance and manufacturing method. Therefore, the industrial effect is large.

【図面の簡単な説明】 m1図はp形およびn形アモルファス81半導体薄膜の
熱電シ壌電率特性を示す図;謝2図はp形およびl形ア
モルファスSt半導体薄膜の温度差−熱起電力特性な示
す図;第3図、第4図は本発明による熱電対装置の一実
施例を示す図で第3図は平面図、第4図は第3図のx−
Xでの断面図を示す図;第す図、絶6区は本発明による
熱電対素子な応用した光パワー検出素子の一実施例を示
す図で記5図は平面図、鯖6図は第5図のx −x’で
の形(p形)半導体基板、 3.23はp形(n形)半
導体拡散層、4.24は絶縁酸化膜、 6.25はp形
(n形)アモルファス半導体薄膜、6.26は態形(p
形)アモルファス半導体薄膜、?、8.27゜公は各オ
ーミック電極、9,10.29.30は各り一ド締、 
IIA 、 IIB 、 324 、32Bは各冷接点
、 12 、33は温接点、13は熱電封装@ 、 1
4から20′!では欠番。 31は光吸収膜、34は光パワー検出装置、35から3
7までは欠番、39は陽極(アノード)、40は一極(
カソード)である。 代理人弁理士 小 池 龍太部 居2030 、!1060 △T″C 射3図 第4日
[Brief explanation of the drawings] Diagram m1 shows the thermoelectromotive force characteristics of p-type and n-type amorphous St semiconductor thin films; Diagram 2 shows the temperature difference-thermoelectromotive force of p-type and l-type amorphous St semiconductor thin films. Characteristic diagrams: Figures 3 and 4 are diagrams showing an embodiment of the thermocouple device according to the present invention. Figure 3 is a plan view, and Figure 4 is the x-
Figure 5 shows a cross-sectional view taken at the line X; Shape (p-type) semiconductor substrate at x-x' in Figure 5, 3.23 is p-type (n-type) semiconductor diffusion layer, 4.24 is insulating oxide film, 6.25 is p-type (n-type) amorphous Semiconductor thin film, 6.26 is the morphology (p
form) amorphous semiconductor thin film, ? , 8.27° public is each ohmic electrode, 9, 10, 29, 30 are each tightened by one dot,
IIA, IIB, 324, 32B are cold junctions, 12, 33 are hot junctions, 13 is thermoelectric sealing @, 1
4 to 20'! So, the missing number. 31 is a light absorption film, 34 is an optical power detection device, 35 to 3
Numbers up to 7 are missing, 39 is an anode, and 40 is a single pole (
cathode). Agent Patent Attorney Ryutabu Koike 2030,! 1060 △T″C Shooting 3 Figure 4th day

Claims (1)

【特許請求の範囲】 周縁に7レーム(1)を備えた肉薄状の筒形(p形)半
導体基板(2)と;該半導体基板面の一部に形成され、
該基板面の全厚さに散散されたp形(n形)半導体拡1
に漸(3)と;該半導体拡散層以外の該半導体基板面を
部分的に被榎する絶縁II (4)と;該半導体拡散層
の表面の一部に形成されたp形(鳳杉)(P形)の第2
のアモルファス半導体薄II(61と;i拡散層にオー
ミック接続された第1の電極(7)と;骸*2のアモル
ファス半導体薄膜にオーミック接続された第2の電極(
8)とな備え;前記#Llおよび第2電極部負1を冷接
点とし、該第1のアモルファス半導体畝12)を温接点
とすることにより#紺】。 第2電極間に熱起電力が発生するようにしたことを特徴
する熱電対装置。
[Scope of Claims] A thin cylindrical (p-type) semiconductor substrate (2) with seven rims (1) on the periphery; formed on a part of the surface of the semiconductor substrate;
A p-type (n-type) semiconductor spreader 1 scattered over the entire thickness of the substrate surface.
(3) and (4) an insulation II that partially covers the surface of the semiconductor substrate other than the semiconductor diffusion layer; (P type) second
amorphous semiconductor thin film II (61); a first electrode (7) ohmically connected to the i diffusion layer; a second electrode (7) ohmically connected to the amorphous semiconductor thin film of Mukuro *2;
8) and provision; by making the #Ll and the second electrode part negative 1 a cold junction, and making the first amorphous semiconductor ridge 12) a hot junction; A thermocouple device characterized in that a thermoelectromotive force is generated between the second electrodes.
JP57052807A 1982-03-31 1982-03-31 Thermocouple unit Granted JPS58170086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57052807A JPS58170086A (en) 1982-03-31 1982-03-31 Thermocouple unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57052807A JPS58170086A (en) 1982-03-31 1982-03-31 Thermocouple unit

Publications (2)

Publication Number Publication Date
JPS58170086A true JPS58170086A (en) 1983-10-06
JPH0227827B2 JPH0227827B2 (en) 1990-06-20

Family

ID=12925111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57052807A Granted JPS58170086A (en) 1982-03-31 1982-03-31 Thermocouple unit

Country Status (1)

Country Link
JP (1) JPS58170086A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138168A (en) * 1984-12-10 1986-06-25 Tokyo Keiso Kk Thermoelectric current meter
JPS62269026A (en) * 1986-05-16 1987-11-21 Anritsu Corp Radiant wave detection element and manufacture thereof
EP0935297A1 (en) * 1998-02-06 1999-08-11 Imra Europe S.A. A peltier effect thermoelectric module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330354A (en) * 1976-09-01 1978-03-22 Citizen Watch Co Ltd Production of liquid display cell
JPS5331985A (en) * 1976-09-06 1978-03-25 Seiko Epson Corp Thermoelectric generator for wristwatches
JPS53143180A (en) * 1977-05-18 1978-12-13 Energy Conversion Devices Inc Amorphous semiconductor structure and method of producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330354A (en) * 1976-09-01 1978-03-22 Citizen Watch Co Ltd Production of liquid display cell
JPS5331985A (en) * 1976-09-06 1978-03-25 Seiko Epson Corp Thermoelectric generator for wristwatches
JPS53143180A (en) * 1977-05-18 1978-12-13 Energy Conversion Devices Inc Amorphous semiconductor structure and method of producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138168A (en) * 1984-12-10 1986-06-25 Tokyo Keiso Kk Thermoelectric current meter
JPS62269026A (en) * 1986-05-16 1987-11-21 Anritsu Corp Radiant wave detection element and manufacture thereof
EP0935297A1 (en) * 1998-02-06 1999-08-11 Imra Europe S.A. A peltier effect thermoelectric module

Also Published As

Publication number Publication date
JPH0227827B2 (en) 1990-06-20

Similar Documents

Publication Publication Date Title
Klonz et al. Accurate thin film multijunction thermal converter on a silicon chip (AC-DC standard)
US20050178424A1 (en) Method of manufacturing crystalline film, method of manufacturing crystalline-film-layered substrate, method of manufacturing thermoelectric conversion element, and thermoelectric conversion element
JP2781608B2 (en) Thermoelectric converter
US3664874A (en) Tungsten contacts on silicon substrates
JPH01196873A (en) Silicon carbide semiconductor device
JPS58170086A (en) Thermocouple unit
CN214471098U (en) Vacuum heat insulation MEMS flow sensor
KR100795374B1 (en) Method for manufacturing a Thin Film Thermoelectric module for Heater, Cooler and Generator
JPS6410109B2 (en)
US3568010A (en) Thin film capacitive bolometer and temperature sensor
JPH0227826B2 (en)
JPH021379B2 (en)
JPH05283361A (en) Diamond semiconductor device and its manufacture
JPS63102382A (en) Manufacture and construction of thin film thermoelectric transducer module
JPS58123772A (en) Semiconductor element
US20160197211A1 (en) Method of manufacturing a photoelectric and thermoelectric sensor, and photoelectric and thermoelectric sensor
JPH10318830A (en) Infrared sensor
Cheng et al. The TCR of Ni24. 9Cr72. 5Si2. 6 thin films deposited by DC and RF magnetron sputtering
CN117500352A (en) Broadband thin film thermoelectric converter and preparation method thereof
JP2605405Y2 (en) Thermoelectric watch
JP2607542Y2 (en) Thermoelectric watch
JPS62269026A (en) Radiant wave detection element and manufacture thereof
JPS6240453Y2 (en)
JPS57153436A (en) Semiconductor device
JPH08339964A (en) Film formation of multilayer thin film