JPS58169763A - Fixed moving zoom unit - Google Patents

Fixed moving zoom unit

Info

Publication number
JPS58169763A
JPS58169763A JP5356182A JP5356182A JPS58169763A JP S58169763 A JPS58169763 A JP S58169763A JP 5356182 A JP5356182 A JP 5356182A JP 5356182 A JP5356182 A JP 5356182A JP S58169763 A JPS58169763 A JP S58169763A
Authority
JP
Japan
Prior art keywords
screen
sample
moving
scanning
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5356182A
Other languages
Japanese (ja)
Other versions
JPH0223972B2 (en
Inventor
Kenji Obara
健二 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP5356182A priority Critical patent/JPS58169763A/en
Publication of JPS58169763A publication Critical patent/JPS58169763A/en
Publication of JPH0223972B2 publication Critical patent/JPH0223972B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To improve controllability by automatically moving the center of a scanning area in the X-Y direction using a stepping motor and moving and enlarging a desired visual field up to the center of a screen using a control switch depending upon the number of screen divisions of a CRT. CONSTITUTION:When a sample is located in position (A) on a screen, button (A) of a control switch is pressed. Thus, a signal that specifies the moving direction of a sample stand 3a is output from the control switch 11 to a control section 10. A signal that specifies the number of pulses corresponding to the present magnifying power is issued from the control section 10 and pulse generators 8 and 9 receive both signals and issue the corresponding number of pulses. Stepping motors 6 and 7 receive these ourput pulses and move the sample stand 3a in arrow direction (A). The moving distances are Sx and Sy that move a picture in the X direction by 2/8 and in the Y direction by 2/8, respectively. After the sample stand is moved, the control section 10 issues a control signal to a scanning width variable unit 4 and doubles the display picture. As a result, the moved sample picture is doubled and is displayed on the screen of the CRT.

Description

【発明の詳細な説明】 本発明は、走査電子顕微鏡等に用いられる定移動ズーム
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a constant movement zoom device used in a scanning electron microscope or the like.

走査電子顕微鏡、イオンマイクロアナライザ等の装置に
おいては、細く集束された荷電粒子線によって試料面上
を照射すると同時に、その一定領域を走査して試料から
得られる種々の信号を検出している。該検出信号は、前
記走査と同期したCRT等の画像表示装置の輝度変調信
号として用いられ、画像表示装置には輝度変調走査像が
表示される。該走査像の倍率は、試料を照射する電子線
の走査幅とそれに対応する表示装置画面の長さの比によ
って決定される。
In devices such as scanning electron microscopes and ion microanalyzers, the surface of a sample is irradiated with a finely focused charged particle beam, and at the same time, a certain area is scanned to detect various signals obtained from the sample. The detection signal is used as a brightness modulation signal for an image display device such as a CRT that is synchronized with the scanning, and a brightness modulated scanned image is displayed on the image display device. The magnification of the scanned image is determined by the ratio of the scanning width of the electron beam that irradiates the sample to the corresponding length of the display screen.

通常の試料観察では、先ず初めに低倍率像を観察して目
的とする視野部分が画面のほぼ中央にくるように試料移
動装置を手動で操作する。
In normal sample observation, a low magnification image is first observed, and the sample moving device is manually operated so that the desired field of view is approximately in the center of the screen.

この状態で、倍率を上げれば目的とする視野部分が拡大
されて表示されるが、更にこの拡大視野中の特定部分を
詳細に観察しようとする場合には、再度試料移動装置を
用いて同じ操作を繰り返している。従って、通常の試料
観察においては、目的とする視野を探し出すまでに前述
の操作を数回行う必要があった。しかも、試料移動装置
は電子ビームに対して垂直な平面内の可いに直交する2
方向、即ちX方向、Y方向へ移動させる独立の2つの嫡
子を操作しないと、任意の方向へ試料を移動することが
できず、又、試料の移動速度が倍率に比較して速すぎた
り遅すぎたりして、思い通りの方向に動かしたり希望の
位置で停止させたりすることができなかった。従って、
操作者は目的とする視野を画面中央にもってくるために
多大の時間と労りを要していた。
In this state, if you increase the magnification, the desired field of view will be enlarged and displayed, but if you want to observe a specific part of this expanded field of view in more detail, you can repeat the same operation using the sample moving device. is repeated. Therefore, in normal sample observation, it is necessary to perform the above-mentioned operation several times before finding the desired field of view. Moreover, the sample moving device is located at two points perpendicular to the electron beam.
The sample cannot be moved in any direction without operating the two independent heirs that move it in the X direction and Y direction, and the sample movement speed may be too fast or slow compared to the magnification. I was unable to move it in the desired direction or stop it at the desired position. Therefore,
The operator requires a great deal of time and effort to bring the desired field of view to the center of the screen.

本発明は、このような点に鑑みてなされたもので、ステ
ップモータ或いは電磁的偏向手段で試料面上における電
子線走査域中心をX、Yの2方向に自動的に移動させる
ことができるようにすると共に、CRT画面を線引等で
分割し、この分割画面の分割数に応じた押しボタンを有
する制御スイッチを設け、該制御スイッチにより試料の
希望視野を画面中央まで移動させ、しかる後、所定の倍
率まで拡大されるようにして、試料の移動と倍率ズーム
、を一体化して操作性を格段に向上させた走査電子顕微
鏡の定移動ズーム装置を実現したものである。
The present invention has been made in view of these points, and is capable of automatically moving the center of an electron beam scanning area on a sample surface in two directions, X and Y, using a step motor or electromagnetic deflection means. At the same time, the CRT screen is divided by drawing lines or the like, and a control switch having push buttons corresponding to the number of divisions of the divided screen is provided, and the desired field of view of the sample is moved to the center of the screen by the control switch, and then, A constant-movement zoom device for a scanning electron microscope has been realized in which the specimen is enlarged to a predetermined magnification, and the movement of the sample and magnification zoom are integrated, and the operability is greatly improved.

以下、図面を参照し本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例を示す電気的構成図である
。図において、1は鏡筒、2は試料を2次元的にビーム
で走査する走査コイル、3は上面に試料(図示せず)が
置かれる試料台3aを有した駆動部である。4は走査コ
イル2を駆動する走査幅可変器で、表示画像の倍率は、
該走査幅可変器4でもって変えられる。例えば、走査幅
を1/2にすると、倍率は2倍になる。
FIG. 1 is an electrical configuration diagram showing an embodiment of the present invention. In the figure, 1 is a lens barrel, 2 is a scanning coil that scans a sample two-dimensionally with a beam, and 3 is a drive unit having a sample stage 3a on which a sample (not shown) is placed. 4 is a scanning width variable device that drives the scanning coil 2, and the magnification of the displayed image is as follows:
The scanning width can be changed using the scanning width variable device 4. For example, if the scanning width is reduced to 1/2, the magnification will be doubled.

5は走査コイル2に走査用電圧を供給する走査用電源、
6.7は駆動部3に取付けられ、試料台3aをそれぞれ
X、Y方向に移動するステップモータ、8.9はこれら
ステップモータ6゜7に駆動パルスを送出するパルス発
生器である。
5 is a scanning power supply that supplies scanning voltage to the scanning coil 2;
Reference numeral 6.7 is a step motor that is attached to the drive section 3 and moves the sample stage 3a in the X and Y directions, respectively. Reference numeral 8.9 is a pulse generator that sends drive pulses to these step motors 6.7.

10は走査幅可変器4及びパルス発生器8゜9を制御す
る制御部である。該制御部10としては、例えばマイク
ロコンピュータが用いられる。11は、第2図に示すよ
うな線引きにより分割されたCRT画面の分割数に対応
した押ボタンを有する制御スイッチである。本実施例の
CRT画面は、第2図に示すように、区画Aから区画I
まで9分割されており、画面全体の長さを縦横両方向に
それぞれ1としたときの各区画の占める長さの割合(縦
横とも同一)を図中に示した。このCRT画面の分割さ
れた八からlまでの区画と、上記制御スイッチ11の押
しボタンAから1はそれぞれ対応したものとなっている
。尚、CRT画面を分割するには、線引きされた透明板
をCRTに取り付ける構造でもよいし、CRT画面中に
輝線或いは線引きで描くものであってもよい。
Reference numeral 10 denotes a control section for controlling the scanning width variable device 4 and the pulse generator 8.9. As the control unit 10, for example, a microcomputer is used. Reference numeral 11 denotes a control switch having push buttons corresponding to the number of divisions of the CRT screen divided by lines as shown in FIG. The CRT screen of this embodiment is as shown in FIG.
The screen is divided into nine sections, and the ratio of the length occupied by each section (the same in both directions) is shown in the figure, assuming that the length of the entire screen is 1 in both directions. The divisions 8 to 1 of this CRT screen correspond to the push buttons A to 1 of the control switch 11, respectively. In order to divide the CRT screen, a transparent plate with drawn lines may be attached to the CRT, or bright lines or lines may be drawn in the CRT screen.

このように構成された本発明装置の動作を次に説明する
The operation of the apparatus of the present invention configured as described above will be explained next.

今、目的とする試料が画面−1−第2図のへの位置にあ
るものとする。操作軸は、そこで制御スイッチのAのボ
タンを押す。これにより、制御スイッチ11から制御部
10に、試料台3aの移動方向を指定する信号が出力さ
れる。制御部10からは倍率に応じたパルス数を指定す
る信号が与えられ、パルス発生器8.9は、これら両信
号を受けて対応した数のパルスを出力づる。
Assume that the target sample is now located at the position shown in Screen-1-Figure 2. For the operation axis, press button A on the control switch. As a result, a signal specifying the moving direction of the sample stage 3a is output from the control switch 11 to the control section 10. A signal specifying the number of pulses corresponding to the magnification is given from the control section 10, and the pulse generator 8.9 receives these two signals and outputs the corresponding number of pulses.

ステップモータ6.7は、パルス発生器8.9の出力パ
ルスを受けて、試料台3aを第3図の矢印Aに示す方向
に移動させる。移動距離は、像を画面上Y方向に2/8
、Y方向に2./8移動させる距ISx  (2/8)
、Sy  (2/8)である。移動が終了した後、制御
部10は走査幅可変器4に制御信号を送って、CRT画
面上の表示画像を2mに拡大づる。これにより、矢印六
方向に移動した試料像はその位置で2倍に拡大されてC
RT画面上に表示される。
Stepping motor 6.7 receives output pulses from pulse generator 8.9 and moves sample stage 3a in the direction shown by arrow A in FIG. The moving distance is 2/8 of the image in the Y direction on the screen.
, 2 in the Y direction. /8 Distance to move ISx (2/8)
, Sy (2/8). After the movement is completed, the control section 10 sends a control signal to the variable scanning width device 4 to enlarge the display image on the CRT screen to 2 m. As a result, the sample image moved in the six directions of the arrows is magnified twice at that position and C
Displayed on the RT screen.

上述の操作では、試料が第2図の区画への位置にある場
合の移動操作について説明したが、試料が区画B〜■の
何れの位置にある場合でも全く同様である。例えば、区
画Gの位置にあるときには、制御スイッチ11の押しボ
タンGを押せばよい。これにより、試料は第3図の矢印
Gの方向に移動した後、2倍に拡大される。イの伯の位
置に試料がある場合も同様で、試料は第3図に示すよう
な・でれぞれの向きに移動覆る。
In the above-mentioned operation, the moving operation when the sample is located in the section shown in FIG. 2 has been described, but the operation is exactly the same when the sample is located in any of the sections B to (2). For example, when in the position of section G, push button G of control switch 11 may be pressed. As a result, the sample moves in the direction of arrow G in FIG. 3 and is then enlarged twice. The same goes for the case where the sample is in the position marked by A, and the sample is moved and covered in each direction as shown in Fig. 3.

但し、ボタンEを押した時には移動しない。このような
第1回目の移動拡大操作によっても、所定の位置に所定
の倍率の走査像を得ることができなかった時には、再度
同様の操作を繰り返すことにより、最終的には画面中央
に希望の倍率の走査像を冑ることができる。尚、第1回
目の移動拡大走査によりCRT画面に表示されている走
査像は倍率が2倍に拡大されているので、第2回目の移
動拡大操作を行う場合、CRT画面上で第1回目と同じ
距離だ1ノ移動させるために必要なパルス発生器8.9
の出力パルス数はこれまでの17/2となる。このよう
に、2倍に拡大されるたびごとにパルス発生器8,9の
出力パルス数を1./2に減らしていかないと、関心の
ある部分の像がCRT画面をはみ出してしまうからであ
る。この制御は、制御部10が行う。第4図は、画面上
に関心のある部分の像Pが表示されていた場合に、上記
操作に伴ってこの部分が画面上どのように□変化しなが
ら中央に拡大して表示されるかを2つの例について示し
たものである。尚、CRT画面左方のアルファベットは
、押されたボタンの種類を示す。この第4図から明らか
なように、本発明装置によれば、操作者がCRT画面を
見ながらボタン操作のみで試料の移動拡大操作を行うこ
とができる。
However, it does not move when button E is pressed. If it is not possible to obtain a scanned image with a predetermined magnification at a predetermined position even with this first movement and enlargement operation, repeat the same operation again to finally obtain the desired image in the center of the screen. The magnification of the scanned image can be increased. Note that the scanned image displayed on the CRT screen by the first moving enlargement scan has been enlarged to twice the magnification, so when performing the second moving enlargement operation, the scanned image displayed on the CRT screen is Pulse generator required to move the same distance 1.9
The number of output pulses will be 17/2 of the previous number. In this way, the number of output pulses from the pulse generators 8 and 9 is increased by 1. This is because unless it is reduced to /2, the image of the part of interest will extend beyond the CRT screen. This control is performed by the control section 10. Figure 4 shows how, when an image P of a part of interest is displayed on the screen, how this part changes on the screen and is enlarged and displayed in the center according to the above operation. Two examples are shown. Note that the alphabet on the left side of the CRT screen indicates the type of button pressed. As is clear from FIG. 4, according to the apparatus of the present invention, the operator can move and enlarge the sample by simply operating the buttons while looking at the CRT screen.

従って、格段に操作性が向上する。Therefore, the operability is greatly improved.

次に、上述した実施例特有の効宋を説明するため、画面
中央の1辺が3/4の領域内の任意の部分を1回の拡大
操作によって次の画面の画面中央からどの程度狭い領域
内に追い込んで拡大して1jけるかを第5図を参照して
説明する。
Next, in order to explain the effect specific to the above-mentioned embodiment, we will explain how narrow the area is from the center of the next screen by enlarging any part within the 3/4 area at the center of the screen once. With reference to FIG. 5, it will be explained how to enlarge the image by pushing it inwards and increasing it to 1j.

第5図(I)、  (IF)、  (I[[)は3つの
場合を例にとって示したもので、図中のアルファベット
は、押されたボタンの種類を示す。又、Sは画面、2は
希望視野(即ち関心のある試料像の部分)、KはZが拡
大された際の大きさを示している。(T)の場合を例に
どって説明すると、希望視野Zを画面中央にもってくる
ために、制御スイッチ11の押し、ボタン八を押す。す
ると、視野Zは第3図の矢印への向きに移動しくI)−
2に示すように画面中央に移動する。しかる後、CRT
画面に表示された画像は2倍に拡大され(I)−3に示
されるようなものとなり、画面全体の1/4を占める。
FIG. 5 (I), (IF), (I[[) shows three cases as examples, and the alphabet in the figure indicates the type of button pressed. Further, S indicates the screen, 2 indicates the desired visual field (that is, the portion of the sample image of interest), and K indicates the size when Z is enlarged. To explain case (T) as an example, in order to bring the desired field of view Z to the center of the screen, press the control switch 11 and press button 8. Then, the field of view Z moves in the direction of the arrow in Figure 3.I)-
Move to the center of the screen as shown in 2. After that, CRT
The image displayed on the screen is enlarged twice, as shown in (I)-3, and occupies 1/4 of the entire screen.

尚、(Ir)に示す例は(1)と同様である。但し、(
III)に示す例の場合、既に希望視野Zが画面Sの中
央にあるので、押しボタンEを押すと、直ちに([[)
−3に示すような2倍の拡大画面になる。希望視野Zが
区画A、B、E (第2図参照)の位置にある場合につ
いて説明したが、他の区画0゜[)、F、G、H,rの
位置にある場合についても全く同様であり、1回の移動
拡大操作で中央の1/4画面内に入れることができる。
Note that the example shown in (Ir) is the same as (1). however,(
In the example shown in III), the desired field of view Z is already in the center of the screen S, so when pushbutton E is pressed, it is immediately displayed ([[)
The screen will be enlarged twice as shown in -3. Although we have explained the case where the desired field of view Z is located in sections A, B, and E (see Figure 2), the same applies to the cases where the desired field of view Z is located in other sections 0°[), F, G, H, and r. The image can be placed within the central 1/4 screen with one movement and enlargement operation.

第6図に示すように、最初に映し出された試料面の全長
をt、n回の移動拡大操作で中央の1774画面に入れ
ることの可能な部分の長さをhとすると、n−1の場合
h/lの比率は5゜十25=75%となる。残りの25
%の部分(図中のW)については、2倍拡大したときに
中央の1,74画面に入ることができない。もう一度同
じ操作を繰り返して22−4倍にするとり、/lの比率
G、t50+25+12.5=87゜5%となる。更に
もう一度2倍して計23−8倍にするとh/lの比率ハ
50 +25 + 12 。
As shown in Fig. 6, let t be the total length of the sample surface initially projected, and h be the length of the part that can be included in the central 1774 screen by n times of moving and enlarging operations, then n-1. In this case, the ratio h/l is 5° x 25=75%. remaining 25
% (W in the figure) cannot fit into the central 1,74 screen when enlarged twice. If the same operation is repeated once again to increase the amount by 22-4 times, the ratio G of /l becomes t50+25+12.5=87°5%. Furthermore, if we double it again to make a total of 23-8 times, the h/l ratio becomes 50 + 25 + 12.

5+6.25=93.75%になる。即ち、はじめの画
面を8倍にすると(n=3)、全体の93.75%の部
分を画面中央の1/4画面内に入れることができる。
5+6.25=93.75%. That is, if the initial screen is multiplied by 8 (n=3), 93.75% of the entire area can be placed within the 1/4 screen at the center of the screen.

上述した説明から明らかなように、この実施例において
は、画面を9等分割して1/3移動し拡大する場合等に
比して、常に画面の中央に関心のある試料像の部分を映
し出しながら効率良く拡大観察することができる。
As is clear from the above explanation, in this embodiment, the part of the sample image of interest is always displayed in the center of the screen, compared to the case where the screen is divided into 9 equal parts and moved by 1/3 for enlargement. Enables efficient magnified observation.

以ト、1回の移動拡大操作で2倍に拡大する人 場。について説明したが、倍率は2倍に限る必要がない
ことは言うまでもない。倍率を一般的にa倍とすると、
常に画面の中央に関心のある部分を映し出しながら効率
良く拡大観察するには第2図に示した各部分の割合は第
7図に示づようなものとなる。図中の(a’−1)/2
aはh−ツル幅を示す。押しボタンを押したときの試料
の移動方向は第8図に示す通りである。尚、画面中央の
1辺が(3a −3> /2aの領域内の任意の部分を
1回の拡大によって次の画面の画面中央の狭い領に1!
(限定範囲)に入れることができるが、この限定範囲の
幅は第9図に示すように(a−1)/2となり、倍率a
と画面に占める限定範囲の割合との関係は第10図のよ
うになる。図中、flが限定範囲を示す曲線、flがす
j−ツル幅を示す曲線であり、この曲線はCRT上の試
料移動量を示す曲線でもある。
Hence, the crowd can be doubled by one move/enlarge operation. However, it goes without saying that the magnification need not be limited to 2x. If the magnification is generally a times,
In order to efficiently enlarge and observe the area of interest while always displaying it in the center of the screen, the proportions of each area shown in FIG. 2 should be as shown in FIG. 7. (a'-1)/2 in the figure
a indicates h-vine width. The direction of movement of the sample when the push button is pressed is as shown in FIG. Note that by enlarging any part within the area where one side of the center of the screen is (3a - 3> /2a) once, it will be expanded to a narrow area in the center of the next screen.
(limited range), but the width of this limited range is (a-1)/2 as shown in Figure 9, and the magnification a
The relationship between this and the proportion of the limited range on the screen is shown in FIG. In the figure, fl is a curve showing the limited range, fl is a curve showing the width of the temple, and this curve is also a curve showing the amount of sample movement on the CRT.

尚、上述した実施例は本発明の一実施例に過ぎず幾多の
他の態様をとり得る。例えば画面を9等分割して、1回
の拡大に伴って1/3ずっ像を移動させるようにすれば
スイッチによって指定された分割部分の中央が画面の中
央に来て拡大されるので、押したボタンと各分割部分の
1応がつけやすく解り易い拡大装置となる。
It should be noted that the above-described embodiment is only one embodiment of the present invention, and many other embodiments may be adopted. For example, if you divide the screen into 9 equal parts and move the image by 1/3 with each enlargement, the center of the divided part specified by the switch will be at the center of the screen and the image will be enlarged. It is an easy-to-understand enlargement device with buttons and a map of each divided part.

更に又、上述した実施pAcおいては、試料1゜の電子
線走査域中心を移動させるため試料ステージを移動させ
たが、走査幅可変器の出ツノ信号ス信号源よりの出力値
を、押したボタンとその時の倍率に応じて制御部10に
よって制御するようにすれば電磁的に前記走査域中心を
移動させることができ、特に高倍観察において適した実
施態様となる。
Furthermore, in the implementation pAc described above, the sample stage was moved in order to move the center of the electron beam scanning area of the sample 1°, but the output value from the output horn signal source of the variable scanning width device was The center of the scanning area can be moved electromagnetically by controlling the control unit 10 according to the selected button and the magnification at that time, and this embodiment is particularly suitable for high-magnification observation.

以−F、詳細に説明したように、本発明によれば、試料
の移動と倍率ズームを一体化して操作性を格段に向上さ
せた走査電子顕微鏡の定移動ズーム装置を実用すること
ができる。
As described in detail below, according to the present invention, it is possible to put into practical use a constant movement zoom device for a scanning electron microscope that integrates sample movement and magnification zoom, thereby significantly improving operability.

【図面の簡単な説明】 第1図は本発明の一実施例を示す電気的接続図、第2図
はCRT画面の分割状態を示す説明図、第3図は試料の
移動方向を示す説明図、第4図は試料のCRT画面上の
移動拡大操作例を示す説明図、第5図はCRT画面士の
視野の動きを示す説明図、第6図は試料向の1!4画面
内に入る割合を示す説明図、第7図は倍率aのときのC
RT画面の分割状態を示す説明図、第8図はこのときの
試料の移動方向を示す説明図、第9図はCRT画面の限
定範囲を示す説明図、顎10図は倍率aと画面に占める
限定範囲の割合との関係を示す説明図である。 1・・・鏡筒      2・・・走査コイル3・・・
駆動部     3a・・・試料台4・・・走査幅可変
器  5・・・走査用電源6.7・・・ステップモータ 8.9・・・パルス発生器 10・・・制御部    11・・・制御スイッチ特許
出願人  日本電子株式会社 代 理 人  弁理士 井島藤治 −383= 尾4図 M6図 M9図 fi10図 −13(イ16 4剛) 384−
[Brief Description of the Drawings] Figure 1 is an electrical connection diagram showing one embodiment of the present invention, Figure 2 is an explanatory diagram showing the divided state of the CRT screen, and Figure 3 is an explanatory diagram showing the direction of movement of the sample. , Fig. 4 is an explanatory diagram showing an example of the operation of moving and enlarging the sample on the CRT screen, Fig. 5 is an explanatory diagram showing the movement of the field of view of the CRT screen operator, and Fig. 6 is an explanatory diagram showing the movement of the field of view of the CRT screen operator. An explanatory diagram showing the ratio, Figure 7 is C when the magnification is a
Figure 8 is an explanatory diagram showing the divided state of the RT screen, Figure 8 is an explanatory diagram showing the moving direction of the sample at this time, Figure 9 is an explanatory diagram showing the limited range of the CRT screen, and Figure 10 is the magnification a and the area occupied by the screen. FIG. 3 is an explanatory diagram showing a relationship with a ratio of a limited range. 1... Lens barrel 2... Scanning coil 3...
Drive unit 3a...Sample stage 4...Scanning width variable device 5...Scanning power source 6.7...Step motor 8.9...Pulse generator 10...Control unit 11... Control switch patent applicant JEOL Co., Ltd. Representative Patent attorney Toji Ijima - 383 = Fig. 4 M6 Fig. M9 Fig. 10 Fig. 13 (I 16 4 Tsuyoshi) 384-

Claims (1)

【特許請求の範囲】[Claims] 試料上における電子線の走査域中心を試料に灼して相対
的にX方向及びY方向に移動させる移動手段と、該手段
に倍率によって定まる口の移動信号を供給する手段と、
鏡筒内の走査コイルに供給されるX、Y走査信号の振幅
を決める走査幅可変器と、前記移動手段及び走査幅可変
器を制御する制御部と、CRT画面を線引等により分割
する分割手段と、該分割手段の分割数に対応した数の押
ボタンを有する制御スイッチとから構成されてなる定移
動ズーム装置。
a moving means for moving the center of the scanning area of the electron beam on the sample in the X direction and the Y direction relative to the sample; and means for supplying the means with an opening movement signal determined by a magnification;
a scanning width variable device that determines the amplitude of the X and Y scanning signals supplied to the scanning coil in the lens barrel; a control section that controls the moving means and the scanning width variable device; and a dividing device that divides the CRT screen by drawing lines or the like. and a control switch having a number of push buttons corresponding to the number of divisions of the dividing means.
JP5356182A 1982-03-30 1982-03-30 Fixed moving zoom unit Granted JPS58169763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5356182A JPS58169763A (en) 1982-03-30 1982-03-30 Fixed moving zoom unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5356182A JPS58169763A (en) 1982-03-30 1982-03-30 Fixed moving zoom unit

Publications (2)

Publication Number Publication Date
JPS58169763A true JPS58169763A (en) 1983-10-06
JPH0223972B2 JPH0223972B2 (en) 1990-05-28

Family

ID=12946221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5356182A Granted JPS58169763A (en) 1982-03-30 1982-03-30 Fixed moving zoom unit

Country Status (1)

Country Link
JP (1) JPS58169763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238996A (en) * 1984-05-11 1985-11-27 株式会社アポロメック Coupon type magnetic card and apparatus for using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100730797B1 (en) * 2006-02-03 2007-06-20 고영창 Fire prevention apparatus of outer wall for apartment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238996A (en) * 1984-05-11 1985-11-27 株式会社アポロメック Coupon type magnetic card and apparatus for using the same

Also Published As

Publication number Publication date
JPH0223972B2 (en) 1990-05-28

Similar Documents

Publication Publication Date Title
EP1061551B1 (en) Scanning charged-particle beam instrument and method of observing specimen image therewith
JPS58169763A (en) Fixed moving zoom unit
JP2000162504A (en) Enlarging observation device
JPH07262950A (en) Scanning electron microscope
US4006357A (en) Apparatus for displaying image of specimen
JPS63307652A (en) Focus detection device for electron microscope
JPS59148254A (en) Sample shifting device of scanning electron microscope or the like
JPS6363110B2 (en)
JPH0425803Y2 (en)
JPH0393140A (en) Apparatus for corresponding scanned electron microscopic image to optical microscopic image
JPH07130321A (en) Scanning electron microscope
JPH10302704A (en) Charged particle beam device
JPS6162015A (en) Micro-manipulation device
JPH10149793A (en) Method and device for controlling cursor
JP2000100366A (en) Scanning electron microscope
JPS61143931A (en) Multi-visual field observation of scanning analyzer
JPS59201354A (en) Electron microscope
JPH0782827B2 (en) Microscope sample position adjustment device using charged particles
JPH02215035A (en) Sample image display device
JP2000306538A (en) Charged particle beam scanning type image display device
JPH0935673A (en) Focusing ion beam device
JPH02262227A (en) Electron microscope
JP2001015058A (en) Method and apparatus for observing sample image in scanning type charged particle beam device
JPH0313701B2 (en)
JP2002318206A (en) X-ray radiographic equipment