JPS58169434A - Electrical and dynamical diagnostic apparatus - Google Patents

Electrical and dynamical diagnostic apparatus

Info

Publication number
JPS58169434A
JPS58169434A JP5157982A JP5157982A JPS58169434A JP S58169434 A JPS58169434 A JP S58169434A JP 5157982 A JP5157982 A JP 5157982A JP 5157982 A JP5157982 A JP 5157982A JP S58169434 A JPS58169434 A JP S58169434A
Authority
JP
Japan
Prior art keywords
probe
measured
sample stage
sample
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5157982A
Other languages
Japanese (ja)
Other versions
JPH0155013B2 (en
Inventor
哲也 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5157982A priority Critical patent/JPS58169434A/en
Publication of JPS58169434A publication Critical patent/JPS58169434A/en
Publication of JPH0155013B2 publication Critical patent/JPH0155013B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、人体や動物等の生体組織の診断に使用する
電気・力学診断装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromechanical diagnostic device used for diagnosing biological tissues of humans, animals, etc.

生体の疾病を治療、処置するためには病変部の部位及び
種類等を検知することが不可欠である。そ−1− の様な検査の方法として生体組織の諸物1![!量を計
測する事が行なわれるようになって来ており、そのため
の装置も開発されて来ているが生体は工業材料と異なり
、複雑な形状の軟質体であるので規格化された物理量の
測定は困難である。特に局部溝な生体組織が複合化して
できた構造形態的に複→:1 一部を試験片としで採取して測定しでもシスナムとして
の生体の特性を把握するとは困難であり、したがって単
位面積当たりの力〈応力)に対する単位長さ当たりの変
位量(歪み〉というJ:うな規格化された物理量を直接
測定することは無想味′(″さえある。そこで生体とし
ての形態を保持したまま、生体への入力にたいする応答
を調べ、生体系の電気・力学的インピーダンス、位相差
、共振周波数、スティフネス、コンプライアンス、等の
巨視的評価指数を測定し、しかる後に数値理論モデル的
な考察によって生体の複素弾性率や複素誘電−2− 率を計算し、生体の形状に依存しない規格化された物理
量を求め、これにより生体の各部の診断をする方が有利
であり、そ・の様な診断を容易かつ確実に実施すること
を可能にする電気・力学診断装置の開発が望まれている
In order to treat and treat diseases in living organisms, it is essential to detect the site and type of a lesion. -1- As a method of inspection, various biological tissues 1! [! Measurement of quantities has become common practice, and devices for this purpose have also been developed, but unlike industrial materials, living organisms are soft bodies with complex shapes, so it is difficult to measure standardized physical quantities. It is difficult. In particular, it is difficult to understand the characteristics of the living body as a cisnum even if a part of it is taken as a test piece and measured, and therefore the unit area is Directly measuring a standardized physical quantity such as the amount of displacement (strain) per unit length in response to force (stress) is unconventional. , investigate the response to input to the living body, measure macroscopic evaluation indices such as electrical and mechanical impedance, phase difference, resonance frequency, stiffness, compliance, etc. of the living system, and then evaluate the biological system by considering numerical theoretical models. It is more advantageous to calculate the complex modulus of elasticity and complex permittivity, obtain standardized physical quantities that do not depend on the shape of the living body, and use this to diagnose each part of the living body. There is a need for the development of an electromechanical diagnostic device that can be easily and reliably carried out.

この発明は上記のごとき事情に鑑みてなされたものであ
って、生体各部を生体としての形態を保持したまま、生
体各部への電気・力学的信号の入力に対する応答を調べ
、巨視的評価指数を容易かつルと励振器と変位1を備え
、前記プローブどロードセルと励振器及び変位計を測定
軸上に設けかつ前記試料台上に位置する試料を間にして
前記試料台の反対側に配置し、かつ前記試料台を三次元
座標軸に関して回転変位可能□に構成されたことを特徴
とする。
This invention was made in view of the above circumstances, and it examines the response to electrical and mechanical signal input to each part of the living body while maintaining its biological form, and calculates the macroscopic evaluation index. The probe, load cell, exciter, and displacement meter are provided on the measurement axis and placed on the opposite side of the sample stand with the sample located on the sample stand in between. , and the sample stage is configured to be rotatably displaceable about a three-dimensional coordinate axis.

以下、この発明の詳細を一実施例を示す図面にっ−3− いて説明する。The details of this invention will be described below with reference to the drawings showing one embodiment. I will explain.

第1図及び第2図において、1は電気・力学診断装置で
ある。電気・力学診断装置1は、剛体の筺体2を備える
。筺体2の中央部空間は試料部3を構成する。試料部3
の直下には試料台4が配設されている。試料台4は回転
チルプルで構成され、方向と回転角度は制御器6によっ
て制御llされる。
In FIGS. 1 and 2, 1 is an electromechanical diagnostic device. The electrical/mechanical diagnostic device 1 includes a rigid housing 2 . The central space of the housing 2 constitutes a sample section 3. Sample section 3
A sample stage 4 is arranged directly below. The sample stage 4 is composed of a rotating tilt pulley, and the direction and rotation angle are controlled by a controller 6.

試料台4はX、Y、Zの各軸の方向に移動できる。The sample stage 4 can be moved in the directions of the X, Y, and Z axes.

それらの移動及び回転はモーターと歯車機構(図示せず
)により、制御器6の制御により行なう。
Their movement and rotation are controlled by a controller 6 using a motor and a gear mechanism (not shown).

試料台4にはマイクロ波受信子7が取付けられている。A microwave receiver 7 is attached to the sample stage 4.

一方、試料部3を挾んで、試料台4の反対側に、測定軸
8が配設され、その測定軸8上にブo−711、XYZ
o−ドセル12、励振器13、加速度計14及び変位計
15が取付けられている。
On the other hand, a measurement axis 8 is arranged on the opposite side of the sample stage 4, sandwiching the sample part 3, and a probe o-711, an XYZ
An o-docell 12, an exciter 13, an accelerometer 14 and a displacement meter 15 are installed.

プローブ11の先端には力学的プローブヘッドの外に、
場合によってはマイクロ波プローブ16が−4− 取付けられている。励振器13は測定軸8と固定してお
り、かつユニバーサルジヨイント17を介して支持部材
18に支持されている。したがって励振器13、励振器
13に固定している測定軸8及び測定軸8に取付けられ
ているプローブ11、XYZロードセル12、加速度計
14、変位計15はユニバーザルジヨイント17に関し
て任意の方向及び角度に回転することができる。その回
転方向及び回転角度は制御器6によって制御される。
At the tip of the probe 11, in addition to the mechanical probe head,
In some cases, a microwave probe 16 is attached. The exciter 13 is fixed to the measurement shaft 8 and supported by a support member 18 via a universal joint 17. Therefore, the exciter 13, the measurement axis 8 fixed to the exciter 13, the probe 11, the XYZ load cell 12, the accelerometer 14, and the displacement meter 15 attached to the measurement axis 8 can be moved in any direction and direction with respect to the universal joint 17. Can be rotated to any angle. The rotation direction and rotation angle are controlled by the controller 6.

一方、筺体2にはほぼ円弧状の案内部をもつ案内21が
固定しており、前記の支持部材18はこの案内21に支
持されてその案内部に沿って試料台4上の被測定物10
の回りに変位することができる。その変位量は制御器6
によって制御される。
On the other hand, a guide 21 having a substantially arc-shaped guide part is fixed to the housing 2, and the support member 18 is supported by this guide 21 and moves the object to be measured on the sample stage 4 along the guide part.
can be displaced around. The amount of displacement is controlled by controller 6
controlled by

この様な構成の電気・力学診断装置11による診断の操
作は次ぎの通りである。
Diagnostic operations using the electromechanical diagnostic device 11 having such a configuration are as follows.

まず、試料台4の上に被測定物としての生体もしくは生
体の一部を設置する。プローブ11のヘッドが被測定物
10に対し垂直になる位置まで試料台4を移動し、かつ
、測定軸8を案内21に沿っ−5− て移動し、さらにプローブ11のヘッドを微調整して行
なう。プローブヘッドの微調整は測定軸8を支えるユニ
バーサルジヨイントによって行なう。
First, a living body or a part of a living body as an object to be measured is placed on the sample stage 4 . Move the sample stage 4 to a position where the head of the probe 11 is perpendicular to the object to be measured 10, move the measurement axis 8 along the guide 21, and then finely adjust the head of the probe 11. Let's do it. Fine adjustment of the probe head is performed by a universal joint that supports the measuring axis 8.

ここでプローブヘッドが被測定物10の測定箇所の表面
に垂直になるというのは、幾何学的な意味ではなく、力
もしくは変位がプローブヘッドから被測定物10の測定
箇所に垂直に入力される位置にあることを意味する。力
学的振動応答の測定にさいし、プローブヘッドが被測定
物10の測定箇粛に対して垂直にセットされない場合は
、X、Y軸方向に(測定軸8と直行する而)内に分力が
生じ、被測定物面−ヒをプローブ11が滑るために、本
来存在しないはずの力学的な位相差が観測されることに
なる。この位相差が生じた時は、測定軸8にX、Y、Z
方向の分力を検出できるXYZロードセル12(力検出
器)により、X、Y、Z方向の分力がOもしくは測定軸
8に関して対称となるように測定軸8を微小回転させる
。ZY70−ドセル12からの信号を測定軸駆動装置(
図示せず)にフィードバックすることによって、この様
−6= な角度補正は実現出来る。プローブヘッドが正しくセッ
トされたなら、励振器13を起動して被測定物10に力
もしくは変位振幅で制御された振動入力を与えて、それ
に対する変位もしくは力の応答を変位計15及びXYz
ロードセル12(7軸)によって検出し、それぞれの信
号を所定のプロセスにしたがい加工して機械インピーダ
ンス、スチフネス、コンプライアンス、位相差等の力学
量を求め、プローブヘッド及び被測定物10の形状が雑
音を与えることができ、それに対する被測定物の応答を
FFT等の手法によってスペクトル分析すれば、生体の
機械インピーダンスの周波数スペクトルがあるパターン
として観測されるので、それによってさらに確度の高い
診:□・断が瞬時にして可能になる。最後に被測定物の
位置情報と電気・力学量はコンピューターに送られ、医
学画像として−7− 表示される。
Here, the fact that the probe head is perpendicular to the surface of the measurement point of the object to be measured 10 does not mean in a geometric sense, but rather that the force or displacement is input perpendicularly to the measurement point of the object to be measured 10 from the probe head. means in position. When measuring the mechanical vibration response, if the probe head is not set perpendicular to the measurement area of the object to be measured 10, component forces will be generated in the X and Y axis directions (perpendicular to the measurement axis 8). Since the probe 11 slides on the surface of the object to be measured, a mechanical phase difference that should not exist in the first place is observed. When this phase difference occurs, the X, Y, Z
Using an XYZ load cell 12 (force detector) capable of detecting component forces in the directions, the measurement axis 8 is slightly rotated so that the component forces in the X, Y, and Z directions are symmetrical with respect to O or the measurement axis 8. The signal from ZY70-Docell 12 is measured by the shaft drive device (
(not shown), such an angle correction of -6= can be realized. Once the probe head is set correctly, the exciter 13 is activated to apply a vibration input controlled by the force or displacement amplitude to the object to be measured 10, and the displacement or force response is measured by the displacement meter 15 and the XYz
It is detected by the load cell 12 (7 axes), and each signal is processed according to a predetermined process to obtain mechanical quantities such as mechanical impedance, stiffness, compliance, and phase difference. If the response of the object to be measured is analyzed using a method such as FFT, the frequency spectrum of the mechanical impedance of the living body will be observed as a certain pattern. becomes possible instantly. Finally, the position information and electrical and mechanical quantities of the object to be measured are sent to a computer and displayed as a medical image.

なお、この様な構成によって、DC〜低周低周波数誌可
聴周波数領域大3k H2)までの測定が可能になる。
It should be noted that this configuration enables measurement from DC to low frequency range (large audible frequency range 3K H2).

ただし、超音波領域での測定の場合は、プローブヘッド
はPZT等のセラミック送受波子で構成し、上記の励振
器13、変位計15、加速0波の透過率、反射率を測定
する場合はプ[1−ブヘッドを電極やマイクロ波用ホー
ンまたは反射用の同軸プローブ(例えば昭和53年特許
出願公開第100691号公報参照)に代え、計測器も
それに対応した発振器、スィーパ、ブリッジ、反射伝送
テストセット等に代える。
However, when measuring in the ultrasonic range, the probe head is composed of a ceramic transducer such as PZT. [1-Replace the head with an electrode, microwave horn, or coaxial probe for reflection (for example, see Patent Application Publication No. 100691 of 1981), and use a corresponding oscillator, sweeper, bridge, or reflection transmission test set for the measuring instrument. etc.

この様に構成された電気・力学診断装置においては、試
料の被検部を試料の一部分を構成する状態で検査するこ
とができ、したがって臨床的に使用できて、正確な検査
が可能であり、またプローブ、−8− ロードセル、励振器等からなる測定系が試料台の反対側
にあって種々の形状の試料に対して一定であり、試料の
形状に応じて系の調整を必要とせず、さらにプローブが
試料の被検部の表面の法線方向に接触して正確な情報を
得ることができる。
In the electromechanical diagnostic device configured in this way, it is possible to test the test portion of the sample in a state that constitutes a part of the sample, and therefore it can be used clinically and accurate testing is possible. In addition, the measurement system consisting of a probe, load cell, exciter, etc. is located on the opposite side of the sample stage and is constant for samples of various shapes, so there is no need to adjust the system depending on the shape of the sample. Furthermore, since the probe comes into contact with the surface of the test portion of the sample in the normal direction, accurate information can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に関わる電気・力学診断装
置を示す正面説明図、及び第2図は電気・力学診断装置
の側面拡大部分説明図である。 ;el 8・・・測定軸  10・・・被測定物  11・・・
プローブ  12・・・XYZロードセル  13・・
・励振器14・・・加速度計  15・・・変位計  
16・・・マイクロ波プローブ
FIG. 1 is an explanatory front view showing an electromechanical diagnostic device according to an embodiment of the present invention, and FIG. 2 is an enlarged side view of the electromechanical diagnostic device. ;el 8...Measurement axis 10...Object to be measured 11...
Probe 12...XYZ load cell 13...
・Exciter 14... Accelerometer 15... Displacement meter
16...Microwave probe

Claims (1)

【特許請求の範囲】[Claims] 少なくとも試料台とプローブとロードセルと励振器と変
位計を備え、前記プローブとロードセルとニーに配置し
、かつ前記試料台を三次元座標軸に関式で回転変位可能
に構成された電気・力学診断装置
An electromechanical diagnostic device comprising at least a sample stage, a probe, a load cell, an exciter, and a displacement meter, arranged at the knees of the probe, load cell, and the sample stage, and configured to be capable of rotationally displacing the sample stage in relation to a three-dimensional coordinate axis.
JP5157982A 1982-03-30 1982-03-30 Electrical and dynamical diagnostic apparatus Granted JPS58169434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5157982A JPS58169434A (en) 1982-03-30 1982-03-30 Electrical and dynamical diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5157982A JPS58169434A (en) 1982-03-30 1982-03-30 Electrical and dynamical diagnostic apparatus

Publications (2)

Publication Number Publication Date
JPS58169434A true JPS58169434A (en) 1983-10-05
JPH0155013B2 JPH0155013B2 (en) 1989-11-22

Family

ID=12890849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5157982A Granted JPS58169434A (en) 1982-03-30 1982-03-30 Electrical and dynamical diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS58169434A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922431A (en) * 1972-06-21 1974-02-27
JPS5439676A (en) * 1977-09-02 1979-03-27 Matsushita Electric Ind Co Ltd Gas detector
JPS5450173A (en) * 1977-09-14 1979-04-19 Ind Automachion Gmbh Unto Co Device for detecting number of mechanical vibration of blood vessel* tendon* bone or similar organ of human body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922431A (en) * 1972-06-21 1974-02-27
JPS5439676A (en) * 1977-09-02 1979-03-27 Matsushita Electric Ind Co Ltd Gas detector
JPS5450173A (en) * 1977-09-14 1979-04-19 Ind Automachion Gmbh Unto Co Device for detecting number of mechanical vibration of blood vessel* tendon* bone or similar organ of human body

Also Published As

Publication number Publication date
JPH0155013B2 (en) 1989-11-22

Similar Documents

Publication Publication Date Title
US5785663A (en) Method and device for mechanical imaging of prostate
US6585666B2 (en) Arthroscopic diagnostic probe to measure mechanical properties of articular cartilage
JP4425993B2 (en) Gripping material tester
US6595933B2 (en) Self-palpation device for examination of breast with 3-D positioning system
US4987898A (en) Method and device for the non-invasive measurement of pressure
US5146929A (en) Lumbar spine motion sensor
CN110420058B (en) Flexible robot with hardness detection function and detection method
DK389788A (en) ULTRASOUND MEASUREMENT PROBE
US20020112547A1 (en) Tactile probe
Yue et al. Dynamic piezoelectric tactile sensor for tissue hardness measurement using symmetrical flexure hinges and anisotropic vibration modes
US4881552A (en) Tooth stability monitor
JPH0347852B2 (en)
US6790186B1 (en) Device for evaluating the dynamic, mechanical properties of materials
JPS58169434A (en) Electrical and dynamical diagnostic apparatus
Araghi et al. Improved evaluation of dynamic mechanical properties of soft materials with applications to minimally invasive surgery
US5704360A (en) Ultrasound bone analyzers and methods for sensing body part
Roham et al. Design and fabrication of a new tactile probe for measuring the modulus of elasticity of soft tissues
RU2061405C1 (en) Device for determining mechanical properties of biological tissues
US11504194B2 (en) System and method for robust and low-cost multi-axis force sensor
RU2082312C1 (en) Apparatus for determining viscoelastic properties of soft tissues
RU2150884C1 (en) Diagnostic meter
Murayama et al. Remote sensing of mechanical properties of materials using a novel ultrasound transducer and signal processing
Chikweto et al. Evaluation of a robotic palpation sensor system for prostate cancer screening on silicone elastomers and prostate phantoms
Soetanto et al. Miniprobe transducer for tissue characterization
Reswick Physical Measurements on the Human Body