JPS58169006A - Optical position measuring device - Google Patents

Optical position measuring device

Info

Publication number
JPS58169006A
JPS58169006A JP5406682A JP5406682A JPS58169006A JP S58169006 A JPS58169006 A JP S58169006A JP 5406682 A JP5406682 A JP 5406682A JP 5406682 A JP5406682 A JP 5406682A JP S58169006 A JPS58169006 A JP S58169006A
Authority
JP
Japan
Prior art keywords
light
light source
lens
aperture
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5406682A
Other languages
Japanese (ja)
Inventor
Motoo Shimizu
清水 基夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP5406682A priority Critical patent/JPS58169006A/en
Publication of JPS58169006A publication Critical patent/JPS58169006A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object

Abstract

PURPOSE:To prevent the measuring error due to defocusing of an image, by detcting the light reflected by an object to be measured through a lens, and measuring the interval between the lens and the object to be measured based on the position of a light source where the amount of the received light becomes the maximum. CONSTITUTION:The image of the light emitted from the small area light source 1 is formed on the surface S of the object to be measured through a beam splitter 5 such as a semitransparent mirror and a lens system means 2. The reflected light from the surface S is inputted to a light detector 4 through the lens system means 2, the beam splitter 5, and an aperture 3 in the reverse direction. The light source 1 is scanned in the forward and reverse directions of (x) by a light source scanning means 15. A reference pulse signal corresponds to the reference position of the light source, which is scanned by a driving signal source 13. When the time between the reference pulse signal and one of peak position pulse signals is measured, the interval between the lens 2 and the surface S can be obtained.

Description

【発明の詳細な説明】 本斃明は、光学式位置測定装置に関し、詳しくは、光線
を用いて非接触的に物体の位置をIIIII精度に測定
するtillに闘する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical position measuring device, and more particularly, it deals with still measuring the position of an object in a non-contact manner using a light beam with high precision.

物体の位置または寸法を非接触的に測定する方法として
は、空気マイクロメータ、あるいは顧黴−により拡大す
る方法轡が提案されているが、両者では形状の複雑なも
のの測定には種々の支障があり、ま友、後者では電気的
信号に変換することが−17いために、生産工程におけ
る連続測定等への応用は効率的でない欠点がある。
As a non-contact method for measuring the position or dimensions of an object, methods using an air micrometer or magnification using a magnifying glass have been proposed, but both methods have various problems when measuring objects with complex shapes. However, since the latter method cannot be converted into an electrical signal, it is inefficient to apply to continuous measurements in production processes.

本発明は従来の技術に内在する上記欠点を解消する為に
なされたものであり、従って本脅明の目的は、光の反射
量を電気的に処理することにより物体の位置を高精度で
、非接触的にしかも連続的に測定することができる新規
な位置測定装置を提供することにある。
The present invention has been made in order to eliminate the above-mentioned drawbacks inherent in the conventional technology, and therefore, the purpose of the present invention is to electrically process the amount of reflected light to locate an object with high precision. It is an object of the present invention to provide a novel position measuring device that can perform continuous measurement in a non-contact manner.

本発明の上記目的は、レンズ系手段と、該レンズ系手段
の大略光軸に沿う方向に周期的に往復運動する小発光面
積の光源手段と、光線分岐手段と、―配光雑手段の発光
面積に対応して設計された小口愉のアパーチャ手段と、
該アパーチャ手段を介して入射する光を検出する光検出
器手段とを具備し、mu a己しノズ糸手段による前記
光源手段の結像点付近に位置する被測定面の基準点に対
する位置を・前記アパーチャ手段を通知前記光検出器手
段へ入射する―配被創定面からの反射光量が前記光源手
段の運動に伴って最大となるときのIIjJ紀元練手段
の位置から求めることを特徴とする光学式位置測定装置
、によって達成される。
The above-mentioned objects of the present invention include: a lens system means, a light source means with a small light emitting area that reciprocates periodically in a direction substantially along the optical axis of the lens system means, a light beam branching means, and a light distribution miscellaneous means. A small aperture means designed according to the area,
a photodetector means for detecting light incident through the aperture means, and a photodetector means for detecting the position of the surface to be measured, which is located near the imaging point of the light source means by the nozzle thread means, with respect to a reference point; Notification of the aperture means is determined from the position of the IIjJ era training means when the amount of reflected light from the distribution creation surface becomes maximum in accordance with the movement of the light source means. This is achieved by an optical position measuring device.

本発明は光の反射量を電気的に処理することにより物体
の位置を数μ集橿度の精度で非接触に測定するものであ
り、光学式であるが表面での反射を用いているために、
投影法にみられる様な画像の焦点ずれ(ピンボケ)にょ
る測定IIK差龜少ない。
The present invention non-contactly measures the position of an object with an accuracy of several micrometers by electrically processing the amount of light reflected, and although it is an optical method, it uses reflection on the surface. To,
The measurement IIK difference due to image defocusing (out of focus) as seen in projection methods is small.

次に本発明をその嵐好な各笑施伺について図面を参照し
ながら具体的に説明しよう。
Next, the present invention will be specifically explained with reference to the drawings.

第1図(a)、(b)、(−)、(d)は本発明の詳細
な説明する図である。
FIGS. 1(a), (b), (-), and (d) are diagrams explaining the present invention in detail.

今、同図(、)において、小面積の光線1よシ尭し九九
は半透明鏡尋による光線分岐器5、レンズ系手段2を経
て被測定物の表rkUsに結侭する。ここで表thIS
の面積度が為く鏡面であるとすると、この向での反射光
は逆方向へ反射され、レンズ系手段2、光線分岐器5、
アパーチャ6を経て光検出44−\入射する。ここで、
アパーチャ3は、光源1の寸法とレンズ系により定まる
一定の口径のピンホールであって、第1図(a)の状態
では丁度表面Sからの反射光、従って光線1の像がM律
する位置に置かれる。
Now, in the same figure (,), a light beam 1 of a small area enters the surface of the object to be measured rkUs via a beam splitter 5 using a semi-transparent mirror and a lens system means 2. Here table thIS
Assuming that it is a mirror surface with a degree of area of
The light enters through the aperture 6 and is detected at 44-\. here,
The aperture 3 is a pinhole with a fixed diameter determined by the dimensions of the light source 1 and the lens system, and in the state shown in FIG. placed.

次に、光線1の位置を同図(b)に示す様に後方へ(2
の負方向)へ勤かした状態を考えると、光は図中の矢印
の様に進み、結像点は面Sの手前となり、史にその反射
光はアパーチャ50手前にて結遣する。このために、ア
パーチャ3を透過する光(よ、図からも理解される様に
、周辺部分が7パーチヤ6により削られるため光検出器
4に到達する丸蓋は低下する。
Next, the position of ray 1 is moved backward (2) as shown in the same figure (b).
Considering the state where the light is directed in the negative direction), the light travels as shown by the arrow in the figure, the imaging point is in front of the surface S, and the reflected light is converged in front of the aperture 50. For this reason, the light that passes through the aperture 3 (as can be seen from the figure), the peripheral portion is shaved off by the perch 6, so that the amount of light that reaches the photodetector 4 is lowered.

次に、逆に同図(c)の如く光源1がmlj方に移動し
た場合1gは、反射光の結像点はアパーチャ5を越え九
抜力となるために、(b)の場合と同様に光量祉低)す
る、                    1使っ
て、光線1の位@zと光検出器4の出力信号レー・ルV
との関係は、同図(d)の様に、2の変化に対し、レン
ズとtiisとの間隔dに対応した光線の位置adに於
てピーク値をとシ、他ではレベルが低下する。従って、
光源1を一方向に移動させ、光検出器4の出力が最大に
なる−の位置を求めれば、逆にレンズ2とfiJsとの
間隔dを求めることができる。
Next, conversely, when the light source 1 moves in the mlj direction as shown in (c) of the same figure, the imaging point of the reflected light exceeds the aperture 5 and becomes a force of 9, so it is the same as in the case (b). (low light intensity), using 1, the position of the ray 1 @z and the output signal rail V of the photodetector 4
As shown in FIG. 2(d), for a change of 2, the peak value is reached at the position ad of the light beam corresponding to the distance d between the lens and tiis, and the level decreases elsewhere. Therefore,
Conversely, by moving the light source 1 in one direction and finding the position - where the output of the photodetector 4 is maximum, the distance d between the lens 2 and fiJs can be found.

伺、ここで光源としては半導体レーザ、尭光ダイオード
等が適切なものとして考えられるが、その他に例えばH
a−N−レーザ光の出力を光ファイバによシ取出し、こ
の先7アイパの出射端を「光―1」として使用すること
は最も実用的な一例といってよい。
Here, semiconductor lasers, photodiodes, etc. are considered suitable as light sources, but there are also other sources, such as H
The most practical example is to take out the output of the aN-laser light through an optical fiber and use the output end of the 7-eyeper as "light-1".

次に、反射面Sが面粗さ数μ集程度のm向であって鏡面
でないときには、上記の場合と若干◆情が異つ九ものと
なる。即ち、光源1よυ発し九九はthlSでは鏡面に
よる様な形では反射せず各方向に散乱されることになる
ので、アパーチャ3の位置には光線1ではなく8面で散
乱され九九を二次的な光源とする儂が形成される。ここ
で、栴1W(a)の状態では5ITi上の二次的な光線
は光#A1が止しく集光しているために、倣小なスポッ
トとなるが、同図(1))わるいは(C)の状態ではS
向は光線1の像点からずれているので、二次的な光線は
大きなスポットとなる。従って、アパーチャ6を通過す
る光墓はl1Il紀の睨面の場合と光量、感度は異るが
、−1図(d)と同様の関係を得る。
Next, when the reflective surface S has a surface roughness of several microns in the m direction and is not a mirror surface, the situation is slightly different from the above case. In other words, in thlS, the υ emitted from light source 1 is not reflected by a mirror surface, but is scattered in each direction, so at the position of aperture 3, the light ray is scattered by 8 planes instead of 1, and the multiplication table is A secondary light source is formed. Here, in the state of 1W (a), the secondary light beam on 5ITi becomes a small spot because light #A1 is still condensed; In state (C), S
Since the direction is shifted from the image point of ray 1, the secondary ray becomes a large spot. Therefore, although the light intensity and sensitivity of the light beam passing through the aperture 6 are different from those of the 11Il period, the relationship is similar to that shown in Figure -1 (d).

次に本発明の一夾施例を示す喘2図では、光線1は光源
走査手段15によりzの前後方向に走査される。この結
果、光検出器4の出力と時間の関係の波形として同図(
b)が得られるが、これを増幅器11にて項嘱し死後、
ピーク検出回路によりピークとなる時点にパルスを発生
させるピークパルス出力回路12の出力として、同図(
d)に示される様に、通虐光線の1サイクル当り2つの
ピーク位置パルスが出力される。他方、光線の走査は躯
勧匍号瞭16の出力佃号によって駆動されている。従っ
て、m鯛イ呂号−16より走査される光纒の基槃位置に
対めする基準パルス傷吟を同図(g)の如く得ることが
CI!!るために、時間1[細手lR14により基準パ
ルス情呼とピーク原電パルス匍号の一方との閾の時間t
dを計測すれば、レンズ2と5lIiとの間隔を求める
ことができる。
Next, in FIG. 2 showing one embodiment of the present invention, the light beam 1 is scanned in the front and rear direction of z by the light source scanning means 15. As a result, the waveform of the relationship between the output of the photodetector 4 and time is shown in the figure (
b) is obtained, which is processed by the amplifier 11 and after death,
As the output of the peak pulse output circuit 12 that generates a pulse at the peak point by the peak detection circuit, the output shown in the same figure (
As shown in d), two peak position pulses are output per cycle of the through-ray. On the other hand, the scanning of the light beam is driven by the output signal of the construction signal 16. Therefore, it is possible to obtain the reference pulse signal corresponding to the basic position of the light line scanned by m-taiiro-go-16 as shown in the same figure (g). ! In order to
By measuring d, the distance between lens 2 and 5lIi can be determined.

本方式の場合、光臨の寸法、アパーチャの寸法及びレン
ズの焦点距離等を適轟に選ぶことにょシ、帽1μ集とい
う高精度め測定がら、欄定範囲数―程度の広範囲の測定
まで、広い範囲の非接触測定が可能である。
In the case of this method, it is necessary to appropriately select the dimensions of the light beam, the dimensions of the aperture, the focal length of the lens, etc., and it can be used for a wide range of measurements, from high-accuracy measurements of 1 μm collection to wide-range measurements of about 100 µm. A range of non-contact measurements is possible.

父、反射面での光のスポットが小さいために、複雑な杉
状の物体についても局所的な測定ができるという特長が
あるため、対象物を走査してその輪郭を求める等の用途
に特に有効である。
Since the light spot on the reflective surface is small, it has the advantage of being able to perform local measurements even on complex cedar-shaped objects, so it is particularly useful for applications such as scanning the object and finding its outline. It is.

次に本発明の別の実施例を示す第3図では、発光器21
より発した光は光ファイバ22を通してレンズ系へ送日
される。これにより光ファイバ22の出力端を光ファイ
バの可撓性を利用して同図中の2の方向に振動させてや
れば、これが1IiI記の実施例の光臨1と等価のもの
となる。他方、光検出器側にも図示の光ファイバ23を
用いて光検出器24と結合してやれば、光フアイバ25
目身が17記の実施例におけるアパーチャ3と等価の働
きをする。光7−Iイパを用いることは装置ll構成上
の自由度が増す。
Next, in FIG. 3 showing another embodiment of the present invention, a light emitter 21
The emitted light is sent to the lens system through the optical fiber 22. As a result, if the output end of the optical fiber 22 is made to vibrate in the direction 2 in the figure by utilizing the flexibility of the optical fiber, this becomes equivalent to the optical wave 1 of the embodiment described in 1IiI. On the other hand, if the illustrated optical fiber 23 is also used on the photodetector side and is coupled to the photodetector 24, the optical fiber 25
The eye body functions equivalent to the aperture 3 in the 17th embodiment. Using the Hikari 7-I IPA increases the degree of freedom in terms of device configuration.

即ち、発光器としてHm−Ng父はAr等の大形のガス
レーザを用いるときには、第5図の構造にすれば測定用
の光学系部分と発光器とを分離することがで睡るので、
測定対象に光学系部分だけを取付ければ自由に測定がで
きる利点がある。
That is, when using a large gas laser such as Hm-Ng or Ar as a light emitter, the structure shown in Figure 5 allows the optical system for measurement and the light emitter to be separated.
It has the advantage of being able to measure freely by attaching only the optical system to the object to be measured.

向、本爽施例で「先掘」となる光ファイバの端部の動か
し方の例として、第4図に示す如く、光ファイバ22の
先端にプリズム25を取付けることにより、光の出射角
をv曲けて光ファイバとプリズムを同時に2方向に振動
させてやれば容易に目的を達することができる。
As an example of how to move the end of an optical fiber, which is "pre-drilling" in this embodiment, as shown in FIG. The purpose can be easily achieved by bending the optical fiber and vibrating the prism in two directions at the same time.

以上の説明では簡単のために、レンズ糸は単レンズとし
ているが、実用的な装置では組レンズの使用または光路
の一整のための図示されていないプリズムあるいはレン
ズが使用される場合もあるが、本発明の主旨に関係ない
ために省略している。
In the above explanation, for simplicity, the lens thread is a single lens; however, in a practical device, a set of lenses or a prism or lens (not shown) may be used to align the optical path. , are omitted because they are not related to the gist of the present invention.

まだ、光娠の走査手段は電歪振動子を用いたも   ′
のまたは磁力を用いた振動子あるいはカムとモータの組
合せ等各種のものが考えられるが、本発明の主旨にかな
うものであれはどんな彫式のもので4よい。
However, the scanning means for photoconception still uses an electrostrictive vibrator.
Various types of vibrators using magnetic force or a combination of a cam and a motor are conceivable, but any type of type may be used as long as it meets the gist of the present invention.

本発明によれば、以上説明した如く、物体の位r1tま
たは寸法を、非接触的に且つ連続的に、しかも1%精度
で測定することが可能となる。
According to the present invention, as explained above, it is possible to measure the position r1t or dimension of an object non-contactly and continuously with an accuracy of 1%.

以上本発明をその良好な実施例について説明したが、そ
れは単なる例承的なものであり、ここで説明され九夾施
例によってのみ本願尭明が限定されるものでないことは
勿論である。
Although the present invention has been described above with respect to its preferred embodiments, these are merely examples, and it goes without saying that the present invention is not limited to the nine embodiments described herein.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理的実施例上水す図、輪2図は本発
明の一実施例を示す概略構成図、第6図は本発明の別の
実施例を示す概略構成図、第4図は光ファイバを用いた
と虐の光鼻の走置方法の一例を示す図である。 1−・・元諒、2・・・レンズ系手獣、6・拳・アパー
チャ、4.24・・・光検出器、511・・光線分岐器
、11・・嗜増輻器、12・・・ビークパルス出力回路
、16・・・HAllll (gi号―、14・・・時
間計11J −t= &、15−−−元―走査+段、2
1・011+4振器、22.23  ・−一光ファイバ
、25@・Φブリ代 理 人    升塊士 熊 谷 
雄太部Xd 7    (d) 第1図 第2図  リ
Fig. 1 is a diagram showing a basic embodiment of the present invention; Fig. 2 is a schematic diagram showing one embodiment of the invention; Fig. 6 is a schematic diagram showing another embodiment of the invention; FIG. 4 is a diagram showing an example of a method of moving the optical nose using an optical fiber. 1-... Genryo, 2... Lens-based hand beast, 6- Fist/Aperture, 4.24... Photodetector, 511... Ray splitter, 11... Addition radiator, 12...・Beak pulse output circuit, 16...HAllll (gi number -, 14... time meter 11J -t= &, 15---original-scanning + stage, 2
1・011+4 shakers, 22.23・−1 optical fiber, 25@・Φburi agent Kumagaya
Thick part Xd 7 (d) Figure 1 Figure 2 Li

Claims (1)

【特許請求の範囲】[Claims] レンズ系手段と、該レンズ系手段の大略光軸に沿う方向
に周期的に往復運動する小斃光面積の光源手段と、光線
分岐手段と、#M配光臨手段の発光面積に対応して設計
され九小口径のアパーチャ手段と、該アパーチャ手段を
介して入射する光を検出する光検出器手段とを具備し、
前記レンズ系手段による前記光源手段の結儂点付近に位
置する被欄定面の基準点に対する位置を、@配アパーチ
ャ手段を通り111配光検出器手段へ入射する*配被掬
定面からの反射光量が前記光源手段の運動に伴って最大
となるときの#IIJ記光源手段の位置から求めること
を特徴とする光学式位置測定811゜
Designed to correspond to the light emitting area of the lens system means, the light source means with a small light area that reciprocates periodically in a direction roughly along the optical axis of the lens system means, the light beam branching means, and the #M light distribution means. an aperture means having a small aperture, and a photodetector means for detecting light incident through the aperture means;
The lens system means determines the position of the target field surface located near the junction point of the light source means with respect to the reference point. Optical position measurement 811° characterized in that the amount of reflected light is determined from the position of the light source means described in #IIJ when the amount of reflected light becomes maximum with the movement of the light source means.
JP5406682A 1982-03-31 1982-03-31 Optical position measuring device Pending JPS58169006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5406682A JPS58169006A (en) 1982-03-31 1982-03-31 Optical position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5406682A JPS58169006A (en) 1982-03-31 1982-03-31 Optical position measuring device

Publications (1)

Publication Number Publication Date
JPS58169006A true JPS58169006A (en) 1983-10-05

Family

ID=12960240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5406682A Pending JPS58169006A (en) 1982-03-31 1982-03-31 Optical position measuring device

Country Status (1)

Country Link
JP (1) JPS58169006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732361U (en) * 1993-10-15 1995-06-16 健悟 芥川 Lighter with pipe storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732361U (en) * 1993-10-15 1995-06-16 健悟 芥川 Lighter with pipe storage

Similar Documents

Publication Publication Date Title
US5141302A (en) Intraocular length measuring instrument
CN102575926A (en) Devices and methods for determining positions and measuring surfaces
US7808617B2 (en) Dual resolution, dual range sensor system and method
JP2003232989A (en) Automatic focusing module for system of microscopic base, microscopic system having automatic focusing module and automatic focusing method for system of microscopic base
KR890013458A (en) Surface roughness photodetection method and apparatus
JP3947159B2 (en) Sensor device for quick optical distance measurement according to the confocal optical imaging principle
KR102323317B1 (en) Lidar sensors and methods for lidar sensors
US3552857A (en) Optical device for the determination of the spacing of an object and its angular deviation relative to an initial position
JP2002296018A (en) Three-dimensional shape measuring instrument
JPS58169006A (en) Optical position measuring device
JPS58169008A (en) Optical position measuring device
JPS6334963B2 (en)
JPH0124242B2 (en)
JPS6125011A (en) Optical distance measuring device
JPH04151502A (en) Photosensor device
JPH08334317A (en) Measuring microscope
JP3967058B2 (en) Method and apparatus for measuring surface shape and thickness of plate-like workpiece
JPH08261734A (en) Shape measuring apparatus
JPH1164719A (en) Microscope equipped with focus detection means and displacement measuring device
JPH06194262A (en) Method and apparatus for meauring radius of curvature of surface
JPH04166786A (en) Optical device for emitting and receiving light
JPH06137827A (en) Optical level difference measuring apparatus
JPS61102510A (en) Noncontact probe
SU754203A1 (en) Photoelectric device for measuring angular turns
Wieland et al. Computer-synchronized 3D triangulation sensor for robot vision