JPS58168242A - Plasma oxidizing and depositing device - Google Patents

Plasma oxidizing and depositing device

Info

Publication number
JPS58168242A
JPS58168242A JP57052426A JP5242682A JPS58168242A JP S58168242 A JPS58168242 A JP S58168242A JP 57052426 A JP57052426 A JP 57052426A JP 5242682 A JP5242682 A JP 5242682A JP S58168242 A JPS58168242 A JP S58168242A
Authority
JP
Japan
Prior art keywords
plasma
electrode
pipe
reaction gas
frequency electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57052426A
Other languages
Japanese (ja)
Inventor
Shungo Tsuboi
俊吾 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57052426A priority Critical patent/JPS58168242A/en
Publication of JPS58168242A publication Critical patent/JPS58168242A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a plasma oxidizing and depositing device which accelerates the refreshing of a plasma in a region and can obtain a preferable product with good reproducibility by providing a diffuser of a reaction gas in the vicinity of a workpiece. CONSTITUTION:A reaction gas is not injected direction from a hole of a peripheral wall surface of a feed through coller 2 into a chamber as the conventinal manner, but introduced to a ring-shaped pipe 20 arranged to surround a high frequency electrode 13 in the vicinity of the electrode 13 via a pipe 19 and diffused from a plurality of nozzle holes 21 formed at the peripheral wall opposed to the electrode 13 of the pipe 20. The diameters of the holes of the nozzles are adjusted so that all the reaction gases of the nozzle holes 21 flow in the same amount. This is important to uniformly flow the gas. A shield cylinder 21 is provided between the outer periphery of the electrode 13 and the pipe 20, thereby preventing the voltage distribution of the plasma around the electrode 13 from being disturned by the pipe 20 and generating the plasma only at the surface of a substrate to be machined, on which the electrode 13 is mounted.

Description

【発明の詳細な説明】 この発明はジョセフソン素子の製造などに用いるプラズ
マ酸化・蒸着装置に係り、特にそのガス導入機構の改真
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma oxidation/evaporation apparatus used for manufacturing Josephson devices, and particularly to an improvement of its gas introduction mechanism.

以下ジョセフソン素子の製造に用いる場合を例にとって
説明する。第1図は従来のプラズマ酸化・蒸着装置の一
例を示す模式構成系統図で、IIIF1ペースプレー)
 、i!lは封止部(3)を介してペースプレート(1
)に接続されたフィードスルーカy−1(41は封キ部
(litを介してフィードスルーカラー(2)にi続さ
れ九チャンバー、(61F1ベースプレート(1)の排
気口に設けられた排気用のメインパルプ、(7)は排気
装置、(8)はフィードスルーカラー(2)の周壁を貫
通して内部に連通するパイプ、(9)および(101は
パイプ(8)に設けられたそれぞれストップパルプおよ
びバリアプルリークパルプ、(11)はパイプ(8)を
通して反応ガスを供給する〃ス供給装置、(lfiはチ
ャンバー(41Qの真空W、を調定する真空計、Hはチ
ャンバー(4)内や頂部近くに設けられた高周波電極、
04は(13)・ 高周波電極4#に高周波電力を供給する高周波電源、輛
は高周波電極−に装着された被加工基板、鏝はチャンバ
ー(4)内に被加工基板a駒に対向させて設けられた蒸
発源、(17)は被加工基板−と蒸発源(l−との間に
設けられたシャッターである。
The following will explain the case in which the method is used for manufacturing a Josephson element. Figure 1 is a schematic diagram showing an example of a conventional plasma oxidation/evaporation system.
,i! l is connected to the pace plate (1) through the sealing part (3).
) connected to the feed-through collar (2) (41 is connected to the feed-through collar (2) through the sealing part (lit), and is connected to the feed-through collar (2) through the nine chambers (61F1). Main pulp, (7) is an exhaust device, (8) is a pipe that penetrates the peripheral wall of the feed-through collar (2) and communicates with the inside, (9) and (101) are stop pulps provided in the pipe (8), respectively. and barrier pull leak pulp, (11) is a gas supply device that supplies the reaction gas through the pipe (8), (lfi is the vacuum gauge that adjusts the vacuum W of the chamber (41Q), and H is the inside of the chamber (4). High frequency electrode near the top,
04 is (13). A high-frequency power source that supplies high-frequency power to high-frequency electrode 4#, a trowel is a substrate to be processed attached to the high-frequency electrode, and a trowel is installed in the chamber (4) to face piece A of the substrate to be processed. The evaporation source (17) is a shutter provided between the substrate to be processed and the evaporation source (l-).

この装置の動作はその構成から容易に理解できるので、
詳述は避ける。
The operation of this device can be easily understood from its configuration.
Avoid details.

ところで、この従来の装置では反応ガスはガス供給装置
(川−バリアプルリークパルプ1101−ストップパル
プ(sl)→パイプ(8)−フィトスルーカラー(2)
を通ってチャンバー(4)内へ導入される。第2図は富
1図で一点鎖線円■で囲んだガス導入部の詳細を一部破
断して示す正面図である。(18a)はパイプ(811
1の7ランジ、(xsb)はストップパルプ(8)の7
ランジである。この従来の方式ではパイプ(8)から導
入され九反応ガスはパイプ(8+の送気開口部(導入ポ
ート)管中心にしてチャンバー(4)内へ周囲条件で!
まる70−パターンを描いて広がってゆく、そしてこの
広がつ九反応ガスはペースプレー) li+の排気口か
ら所定割合で排気される。上記フローパターンをきめる
外的条件は導入ガスの流速、チャンバー(4)内の圧力
、排気速度などで、基本的にはガス分子の平均自由行程
、自己拡散係数、そして反応ガスの導入ポートと排気口
の位置関係などによって決められる。グツズ!発生時の
圧力1XIO””テorr、温度!5oOoKにおける
酸素分子の平均自由行程は0.845m 、自己拡散係
数は8’FOOOm”/’;11.  そして0.1秒
の間に酸素分子が拡散する距離の平均は596mである
。これらの数値を考慮すると、従来の反応ガス導入ボー
トと排気口の位置関係は好ましいとは言えない。すなわ
ち、導入ポートから導入された反応ガスは大部分が排気
口に流れ、被加工基板(2)の近くのプラズマにはあt
シあずからない。
By the way, in this conventional device, the reaction gas is supplied to the gas supply device (river - barrier pull leak pulp 1101 - stop pulp (sl) -> pipe (8) - phyto-through collar (2)
and into the chamber (4). FIG. 2 is a partially cutaway front view showing the details of the gas inlet section surrounded by a dashed-dotted line circle (■) in FIG. 1. (18a) is a pipe (811
1 of 7 lunges, (xsb) is stop pulp (8) of 7
It's a lunge. In this conventional method, the nine reactant gases are introduced from the pipe (8) into the chamber (4) with the pipe (8+ air delivery opening (introduction port) in the center at ambient conditions!
The reactant gas spreads out in a complete 70-pattern, and this spreading reaction gas is exhausted at a predetermined rate from the exhaust port of the li+. The external conditions that determine the above flow pattern are the flow rate of the introduced gas, the pressure inside the chamber (4), the exhaust speed, etc. Basically, the mean free path of gas molecules, the self-diffusion coefficient, and the introduction port and exhaust of the reaction gas It is determined by the position of the mouth. Gutszu! Pressure at the time of occurrence 1XIO””teorr, temperature! The mean free path of oxygen molecules at 5oOoK is 0.845 m, and the self-diffusion coefficient is 8'FOOOm"/'; 11. And the average distance that oxygen molecules diffuse in 0.1 seconds is 596 m. These numbers Considering this, the positional relationship between the conventional reaction gas introduction boat and the exhaust port cannot be said to be favorable.In other words, most of the reaction gas introduced from the introduction port flows to the exhaust port, and is located near the substrate to be processed (2). The plasma of
I don't have to worry about it.

すなわち、被加工基I[(至)の近くのプラズマ発生部
分く反応ガスが十分流れこまず、常にプラズマかりフレ
ッシユされることが不十分である。すなわち、被加工基
板(2)の周辺のプラズマを構成するガスは人為的に導
入した反応ガスとチャンバー(4)の器壁からの放出ガ
スである。器壁からの放出ガスに主に水分で、人為的に
導入した反応ガスによる#&場作用に著しい悪影響を与
える。従って、プレ  □ズマ酸化法によるトンネル接
合層などの製造にこのgt来装置を用いた場合重大な特
性上の欠陥を生じるおそれがある。
That is, the reactant gas does not flow sufficiently into the plasma generating area near the substrate I to be processed, and the plasma is not constantly refreshed. That is, the gases constituting the plasma around the substrate to be processed (2) are the artificially introduced reaction gas and the gas released from the wall of the chamber (4). The gas released from the vessel wall is mainly water, which has a significant negative effect on the #& field effect caused by the artificially introduced reactive gas. Therefore, if this GT apparatus is used to manufacture a tunnel junction layer or the like by the plasma oxidation method, there is a possibility that serious defects in characteristics may occur.

この発明は以上のような点に鑑みてなされたもので、反
応ガスの吹き出し口を被加工物の近傍に設けることKよ
って当該領域でのプラズマのりフレッシユを促し、良好
な製品を再現性よく得られるプラズマ酸化・蒸着装置を
得ることを目的としている。
This invention was made in view of the above points, and by providing a reactive gas outlet near the workpiece, it is possible to promote freshness of the plasma in that area and obtain good products with good reproducibility. The aim is to obtain a plasma oxidation/evaporation device that can be used.

第3図はこの発明の一実施例の反応ガス導入部のみを一
部破断して示す正面図で、館4図はその反応ガス峡出し
部のみを一部破断して示す下面図である。従来例と同一
符号は同等部分を示す。この実施例では、従来例のよう
にツイードスルーカラー(2)の周壁面の開口から直接
反応ガスを噴入させてチャンバー(4)内へ流入させる
のではなくて、パイプ(2)によって高周波電極(2)
の近傍において、同電極(至)を取巻くように配設され
たリング状パイプ−に導き、このリング状パイプ(2)
の高周波電極(至)に対向する周壁の複数個所に設けた
ノズル孔@幻から吹き出させるようになってい為。どの
ノズル孔(ロ)からの反応ガスも同一流量になるように
ノズル孔開口径は調整しである。このことは反応ガスの
流れを′均一にするために重畳である。また、高周波電
極llsの外周、リング状パイプ−との間にはシールド
箇−が設けられ、高周波電極011の周辺のグツズiの
電位分布がリング状バイブロ!IKよって乱されるのを
防止し、プラズマが高周波電極(IIの被加工基板(l
@の取り付は面にのみ発生するようにしである。
FIG. 3 is a partially cutaway front view showing only the reaction gas inlet of an embodiment of the present invention, and FIG. 4 is a partially cutaway bottom view showing only the reaction gas outlet. The same symbols as in the conventional example indicate equivalent parts. In this embodiment, instead of injecting the reaction gas directly from the opening in the peripheral wall of the tweed through collar (2) and flowing into the chamber (4) as in the conventional example, the high-frequency electrode is connected to the pipe (2). (2)
In the vicinity of the electrode (2), the ring-shaped pipe (2)
The liquid is emitted from nozzle holes provided at multiple locations on the peripheral wall facing the high-frequency electrode. The opening diameter of the nozzle holes is adjusted so that the flow rate of the reaction gas from all nozzle holes (b) is the same. This is superimposed to make the flow of reactant gas 'uniform'. Also, a shield is provided between the outer periphery of the high-frequency electrode lls and the ring-shaped pipe, so that the potential distribution of the guts i around the high-frequency electrode 11 is changed to a ring-shaped vibro! This prevents the plasma from being disturbed by the IK and directs the plasma to the high frequency electrode (II).
Attachment of @ should occur only on the surface.

一方、導入反応ガス量は人為的に制御できるが、チャン
バー(4)の器壁からの放出ガスの量の制御は非常にむ
つかしい。従って放出ガス量を減少させるためにチャン
バー(4)は十分にベーキングするのが好ましい。
On the other hand, although the amount of introduced reaction gas can be controlled artificially, it is very difficult to control the amount of gas released from the wall of the chamber (4). Therefore, it is preferable to thoroughly bake the chamber (4) in order to reduce the amount of gas released.

以上、ジ日セフー/ン素子の製造に用いる場合について
述べて!!九が、この装置はプラズマ酸化および蒸着に
広く利用できることは言うまでもない。
The above describes the case in which it is used in the manufacture of digital electronic devices. ! However, it goes without saying that this device can be widely used for plasma oxidation and deposition.

上記のように、この発明になるプラズマ酸化・蒸着装置
では被加工基板を装着する高周波電極近傍まで反応ガス
をパイプで導いて供給するようにし九ので、その領域に
おける器壁からの放出ガスに対する反応ガスの比率を高
めることができ、製品の特性の改善と再現性の向上とが
達成できる。
As mentioned above, in the plasma oxidation/evaporation apparatus according to the present invention, the reaction gas is guided and supplied through a pipe to the vicinity of the high-frequency electrode on which the substrate to be processed is attached, so that the reaction to the gas emitted from the chamber wall in that area is The gas ratio can be increased, and improved product properties and improved reproducibility can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

531図は従来のプラズマ酸化・蒸着装置の一例を示す
模式構成系統図、第2図は1117図の一点鎖線円■で
囲んだ反応ガス導入部の詳細を一部破断して示す正面図
、第3図はこの発明の一実施例の反応ガス導入部のみを
一部破断して示す正面図、第4図はその反応ガス吹出し
部のみを一部破断して示す下面図である。 図において、il+はペースプレー)、(!lはフィー
ドスルーカラー、(4)はチャンバー、())は排気装
置、(10は反応ガス供給装置、CtSは高周波電極、
(141は高周波電源、(IIは被加工基板(被加工体
)、091t1反応ガス送給用パイプ、−はリング状パ
イプ、@幻はノズル孔である。 なお、図中同一符号は同一または相嶋部分を示1111
□ す0 代理人  葛 野 信 −(外1名)
Fig. 531 is a schematic configuration diagram showing an example of a conventional plasma oxidation/evaporation device, Fig. 2 is a partially cutaway front view showing the details of the reaction gas introduction part surrounded by the dot-dash line circle ■ in Fig. 1117; FIG. 3 is a partially cut-away front view of only the reactive gas introduction section of an embodiment of the present invention, and FIG. 4 is a partially cut-away bottom view of only the reactant gas blow-off section. In the figure, il+ is a paste spray), (!l is a feed-through collar, (4) is a chamber, ()) is an exhaust device, (10 is a reaction gas supply device, CtS is a high-frequency electrode,
(141 is a high frequency power supply, (II is a substrate to be processed (workpiece), 091t1 is a reaction gas feeding pipe, - is a ring-shaped pipe, and @phantom is a nozzle hole. In addition, the same reference numerals in the figure are the same or Aishima Show part1111
□ Su0 Agent Shin Kuzuno - (1 other person)

Claims (1)

【特許請求の範囲】 +11  所要流量の反応ガスが内部へ供給されるとと
も4CF5’rl!速度で排気されるチャンバー内に設
けられ高周波電力が供給される高周波電極に被加工体を
装着し上記高周波電極の近傍に発生するプラズマによっ
て上記被加工体に酸化または蒸着を施すものにおいて、
上記反応ガスの上記チャンバー内への次き、出し口管上
記被加工体の装着個所の近傍に設けたこと’t−特徴と
するプラズマ酸化・蒸着装置。 (2)吹き出し口は高周波電極のまわりに配設され反応
ガス供給装置に連通ずるリング状パイプの上記高周波電
極に対向する周壁部に穿設された複数個のノズル孔から
なることを特徴とする特許請求の範囲第1項記載のプラ
ズマ酸1ヒ・蒸着装置。
[Claims] +11 When the required flow rate of reaction gas is supplied inside, 4CF5'rl! A workpiece is attached to a high-frequency electrode provided in a chamber that is evacuated at a high speed and supplied with high-frequency power, and the workpiece is oxidized or vapor-deposited by plasma generated near the high-frequency electrode,
A plasma oxidation/evaporation apparatus characterized in that, after the reaction gas enters the chamber, an outlet pipe is provided near a location where the workpiece is attached. (2) The blow-out port is characterized by a plurality of nozzle holes bored in the peripheral wall portion facing the high-frequency electrode of a ring-shaped pipe arranged around the high-frequency electrode and communicating with the reaction gas supply device. A plasma acid vapor deposition apparatus according to claim 1.
JP57052426A 1982-03-29 1982-03-29 Plasma oxidizing and depositing device Pending JPS58168242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57052426A JPS58168242A (en) 1982-03-29 1982-03-29 Plasma oxidizing and depositing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57052426A JPS58168242A (en) 1982-03-29 1982-03-29 Plasma oxidizing and depositing device

Publications (1)

Publication Number Publication Date
JPS58168242A true JPS58168242A (en) 1983-10-04

Family

ID=12914445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57052426A Pending JPS58168242A (en) 1982-03-29 1982-03-29 Plasma oxidizing and depositing device

Country Status (1)

Country Link
JP (1) JPS58168242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111413A (en) * 1983-11-22 1985-06-17 Toshiba Corp Sample processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111413A (en) * 1983-11-22 1985-06-17 Toshiba Corp Sample processing device

Similar Documents

Publication Publication Date Title
JP3073489B2 (en) Semiconductor thin film deposition equipment
KR100782369B1 (en) Device for making semiconductor
TWI385272B (en) Gas distribution plate and apparatus using the same
JP3638415B2 (en) Gas atmosphere soldering equipment
JPS60189928A (en) Vapor growth device under reduced pressure
EP0610392A1 (en) Methods and apparatus for treating a work surface.
CN111029282A (en) Heat treatment apparatus
JPS58168242A (en) Plasma oxidizing and depositing device
JPS61100935A (en) Dry etching equipment
KR100433285B1 (en) Semiconductor device fabrication apparatus having multi-hole angled gas injection system
KR20040014760A (en) Semiconductor device fabrication apparatus having multi-hole angled gas injection system and semiconductor device fabrication method using the same
JPS58197724A (en) Gas introducing tube for vapor growth apparatus
JPS6376880A (en) Thin film forming device
JP2729238B2 (en) Vertical processing equipment
KR0185056B1 (en) Vertical type diffusion furnace
CN117612979B (en) Semiconductor processing apparatus and semiconductor processing method
JP2523938Y2 (en) Diffusion furnace exhaust system
CN117457468B (en) Process chamber and air inlet assembly thereof
JP2938070B1 (en) Atmospheric pressure CVD equipment
KR19980031822A (en) Gas pressure low pressure chemical vapor deposition system
JP2563497B2 (en) Semiconductor device manufacturing equipment
JPS56121627A (en) Spray drying type reaction apparatus
JPS5855561A (en) Carburization apparatus
KR20010076521A (en) A chemical vapor deposition apparatus
JPH03211823A (en) Semiconductor manufacturing equipment