JPS58168218A - Liquid phase epitaxial growth - Google Patents

Liquid phase epitaxial growth

Info

Publication number
JPS58168218A
JPS58168218A JP57050103A JP5010382A JPS58168218A JP S58168218 A JPS58168218 A JP S58168218A JP 57050103 A JP57050103 A JP 57050103A JP 5010382 A JP5010382 A JP 5010382A JP S58168218 A JPS58168218 A JP S58168218A
Authority
JP
Japan
Prior art keywords
layer
inp
plane
epitaxial growth
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57050103A
Other languages
Japanese (ja)
Inventor
Kazuo Nakajima
一雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57050103A priority Critical patent/JPS58168218A/en
Publication of JPS58168218A publication Critical patent/JPS58168218A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To realize direct liquid phase epitaxial growth of InP layer without generation of melt-back on the In1-XGaXAs layer by setting the growth starting temperature of the InP solution to a temperature equal to/lower than a particular temperature and an excessive cooling degree to a particular temperature using the In1-XGaXAs layer of the 111A plane. CONSTITUTION:This patent is based on, (1) melt-back is very difficult to occur when the InP solution is placed on the InGaAs layer of 111A plane, and (2) melt-back is very sensitive for epitaxial growth temperature and excessive cooling degree of InP solution but the InP layer grows without melt-back when an excessive cooling degree is 10 deg.C or more at a growth temperature of 580 deg.C or less. The InGaAs layer of 111A plane can be obtained through liquid phase epitaxial growth of InGaAs on the InP crystal (InP substrate or InP layer obtained by epitaxial growth on such substrate) of the 111A plane. Morphology of surface of the InP layer formed on the 111A plane is good and defective edge called hillock is not generated. Use of 111A plane is not disadvantage for preparation of light emitting element and light sensible element.

Description

【発明の詳細な説明】 (1)  発鳴O技術分野 本幾―紘■−YJII化会物半導体、より詳細に述べる
ならは、インジクムーリン(Imp)の液相エビタ今V
ヤル成長法に関するものである。
[Detailed Description of the Invention] (1) Technical field of oscillation O - Hiro - YJII compound semiconductors, more specifically, liquid phase Evita of Indicumulin (Imp)
It is about the growth method.

1)  fillOII 長波長光通信用の発光素子および受光素子の材料として
■−V*化舎物亭導体が研究開発されている。譬に、I
mP基1[#1上に格子整合させることので龜ゐIJ−
xGm、ム−で” ”(Lll”IL47ムSはエネル
ギーギヤνデが0.74・Vであp発光波長IJ8ms
が得られるOで、レーデ−中発光〆イオード(LID)
O発光素子あるい紘ホト〆イオー)’(PD)ヤアパラ
ンシ島ホト〆イオーF(APD)0受光嵩子の材料とし
て有望である。こO!ζIA”(L47ムSを発光素子
KMIv@る場合には、ζOImGaAa t−活性層
として、キャリヤー01Rじ込め効果を最も大きくする
ことので龜るlmGaム―Pl!元艙晶中で最もエネル
ギーギヤ、グO大自なImPダツッド層が活性層をはさ
んだダプルヘテl1(DH)構造とすることが望壇しい
1) FillOII ■-V*Kashimonotei conductor is being researched and developed as a material for light-emitting elements and light-receiving elements for long-wavelength optical communications. In parable, I
By lattice matching on mP group 1 [#1, 龜ゐIJ-
xGm, m-de""(Lll"IL47mS), energy gear νde is 0.74・V, p emission wavelength IJ8ms
is obtained, and the light emitting diode (LID) during radar is
It is promising as a material for light-emitting devices or light-receiving devices. Koo! When using ζIA'' (L47MuS as a light emitting element KMIv@), it is used as the ζOImGaAat active layer to maximize the carrier 01R trapping effect, so that it has the highest energy gear among the original crystals, It is desirable to have a double-hetero-I1 (DH) structure in which the active layer is sandwiched between two ImP layers, which are natural in nature.

1九、受光素子KI@いる場合には、このlmGaム−
を光1lIIIiL層とし、その上K1m1’層をウィ
ンド一層兼増倍層が形成されている。このようK lm
GaAs層の上にはImP層が形成されている(it’
llえは、末松、荒井;長波長光過信用光源、電子材料
、V@x。
19. If there is a light-receiving element KI@, this lmGa-
is the optical 1lIIIiL layer, and the K1m1' layer is formed thereon as a window layer and a multiplication layer. K lm like this
An ImpP layer is formed on the GaAs layer (it'
Ille: Suematsu, Arai; Long wavelength optical overconfidence light source, electronic materials, V@x.

18、ム12.P27−34(1G711)、および方
弁、高橋、須崎:長波長光通信用受光素子、電子材料、
VoJ、18 * JK 12 、p 35−89 (
i・79)参照)。
18, Mu12. P27-34 (1G711), and Houben, Takahashi, Susaki: Photodetector for long wavelength optical communication, electronic material,
VoJ, 18 * JK 12, p 35-89 (
i.79)).

(3)  従来技術と問題点 InP層の上K lmGmAm層を波相エピタキシャル
成長させることは容1であるが、そOIi+Gaム一層
の上KImP層を液相エピタキシャル成長させることは
できない、これはlmGaAs層がI馳P溶筐中に溶解
してしまうメルトバックという構象が生じるからである
。このために%  ImP層のエピタキシャル成長開始
温度、冷却速IIおよびLaP濤IIO過冷却度を変え
てみてもlmGaAs層上にはメルトバッタなしにIm
P層を成長させることはできない、そこてLaGaAs
層上にいりたんimGaAaP層をエピタキシャル成長
させてメルFパ、り鋳止層として、この四元層の上KI
nP層を成長させる方法が採用されている。しかしなが
ら、四元層(ImQaAsP層)に少しても欠陥(例え
は、未成長ピット)があれは、+O欠陥箇所からImP
IIilが三元層(lmGaAs層)壇で浸透して、そ
0部分にメルトバックが生じてし壇う、そOえめに、歩
留シ良(ImP層を成長させることは―しい、1また、
機能上かつ構造上からなくても良vs圏元層を成長させ
ることは、牛導体し−デーO場合には今ヤリャーのとじ
込め効果が曇<竜)、受光重子の場合は余分なヘテー界
画が増えることにな〕界面欠陥の九め量子効率が曇(な
るなどOsめに好ましくない。このようなIIP層をl
mGaAs層上に成長させる場合に、従来は■鳳G畠ム
sO結晶は(Zoo)ili又は(111)1画であ〕
、多くの場合K(100)面を用いてい危。
(3) Prior art and problems It is possible to grow a KlmGmAm layer on top of an InP layer by wave phase epitaxial growth, but it is not possible to grow a KImP layer on top of an OIi+Ga layer by liquid phase epitaxial growth. This is because a phenomenon called meltback occurs in which the IchiP melts into the casing. For this reason, even if the epitaxial growth start temperature of the ImP layer, the cooling rate II, and the degree of supercooling of the LaP layer were changed, the ImP layer could not be melted without melt batter on the GaAs layer.
It is not possible to grow a P layer, so LaGaAs
An imGaAaP layer was epitaxially grown on top of this quaternary layer, and then a KI layer was formed on top of this quaternary layer.
A method of growing an nP layer is adopted. However, if there is even a slight defect (for example, an ungrown pit) in the quaternary layer (ImQaAsP layer), ImP
IIil penetrates into the ternary layer (lmGaAs layer) and meltback occurs in the ternary layer (lmGaAs layer). ,
From a functional and structural point of view, it is good to grow the vs sphere original layer, in the case of the cow conductor - De O, the confinement effect of Yariya is cloudy <Ryu), and in the case of the light-receiving element, it is an extra hetian world. This is undesirable as the quantum efficiency of interface defects becomes cloudy.If such an IIP layer is
When grown on an mGaAs layer, conventionally the sO crystal is (Zoo)ili or (111) one stroke.]
, it is dangerous to use K(100) plane in many cases.

←) 発@O■的 本発−の展的は% lm1−、Os、ム易層の上にメル
トバックを生じることな(1ml’層を直IIK液相エ
ピタキシャル成長させる方法を提供することである。
←) The development of this invention is to provide a method for directly growing a 1 ml' layer by direct liquid phase epitaxial growth without causing meltback on the 1 ml layer, Os, and the 1 ml layer. .

φ)脅llo構成 こOS的が、(111)ム面のI+a、−xGaxAs
層を用いて1烏?濤*0*長關麺温置を510℃以下に
しかつ過冷却度を10℃以上にすることを特徴とするl
+aP層の液相エピタキシャル成長法によって達成され
る。
φ) The OS configuration is (111) I+a, -xGaxAs
1 crow using layers?濤*0*long noodles characterized by keeping the temperature at 510°C or lower and the degree of supercooling at 10°C or higher.
This is achieved by liquid phase epitaxial growth of the +aP layer.

本発明は、(1) (111)ムaiOImGmA一層
の上にImp@液を載せたと!にメルトバックが非常に
起夛にくいこと、および(2)メルトバックはエピタキ
シャル成長温度および1ml’1lll[0過冷却直に
非常に敏感であるが、580℃以下の成長温度で10℃
以上の過冷却度であればメルトバックなし4(ImP層
が成長する仁と、を見出したことに基づ−ている。
In the present invention, (1) (111) Imp@ liquid is placed on a single layer of muaiOImGmA! (2) Meltback is very sensitive to epitaxial growth temperatures and supercooling of 1ml'1lll[0];
This is based on the finding that if the degree of supercooling is above, there is no meltback (4) (where the ImpP layer grows).

(111)ム面のlmGaAs層は(111)ム面OI
MP結晶(ImP基板又はその上にエピタキシャル成長
させ九I+aP層)上K lmGaム−を液相エピタキ
シャル成長させれは祷られる。
(111) Mu-plane lmGaAs layer is (111) Mu-plane OI
It is desired to liquid phase epitaxially grow KlmGa on an MP crystal (ImP substrate or an I+aP layer epitaxially grown thereon).

(6)@嘴の実施例 以下、実施例および実験によりて本発−をさらに詳しく
説明する。
(6) Examples of @beak The present invention will be explained in more detail below using examples and experiments.

実施例 ”ncL5M”(L47ムS層上Kl亀P層を次のよう
にして液相工Cり今シャル成長させ良・ (111)ム面OImF基板をトリクロールエチレン、
ア令トン、アルロールの順で十分に脱脂し、次に工、テ
ンダm1m1 (H2BO3:120□:H10■90
:B:i)中にて約3分間エツチングしえ。
Example ``ncL5M'' (L47) The Kl-P layer on the S layer was grown using a liquid phase process as follows.
Thoroughly degrease in the order of Aryoton and Alroll, then work and tender m1m1 (H2BO3:120□:H10■90
:B:i) Etch for about 3 minutes.

!I&デ基板の研磨歪會除くために基板をメルトバック
するIIIImPil箪と、In?基板上に格子整合し
*(111)ム画の”0.ll3GaQ、47ムS層を
成員させるI@GaA@*i[と、成長させたlmGa
As層上にImP層を成長させる第21+aP III
とを得るために、1体鳳科を下記のように秤量した。
! In order to remove the polishing distortion of the I&D board, the IIImPil panel is used to melt back the board, and the In? The grown lmGa is lattice-matched on the substrate and forms a 0.ll3GaQ, 47mmS layer in the *(111) picture.
21st+aP III growing ImpP layer on As layer
In order to obtain the following values, one Fengidae was weighed as follows.

なお、このlmGaム―IItIILは65)℃にて”
O,Si”0.47ムSを成長さiる**であjl、−
tID溶液組成を三元溶液中の各酸分o111子分率で
決わすと次のようKなる。
In addition, this lmGamu-IItIIL is at 65)℃.
Grow O,Si”0.47mmS i** at jl,-
When the tID solution composition is determined by the molecular fraction of each acid component o111 in the ternary solution, K is as follows.

一般に箪相工♂タキシャル成長に使用されているスライ
ド式カーがンが一トに前述OImPInP基板各溶液の
秤量原料をセ、トシた。[れる純水素露囲気ガス中にて
全体を67(1:に昇温し、その温度にて30分間保持
して、舎濤諌原料を均一に@解しえ、そして、0.8t
l:/m1mの冷却遭!IjLKて降温して、648℃
になったと1kK第1ImPill[をInP基板上に
持りて来てかかる基板に振触させ10秒間保持した。こ
のときにInP基板のメルトΔ、りが行なわれる。10
秒経過仮に、第1■−溶液を基板上から除去し、続いて
lmGaAs fhllを基板上に持って来てかかる基
板KJIMtEtIm。、□G1゜、47ムS層を成長
させた。このllGmAm溶液は650Cで飽和するの
で2℃の過冷却状態でエピタキシャル成長が開始された
A sliding car, which is generally used for taxial growth, was used to set and remove the weighed raw materials for each solution of the OImPInP substrate. [The whole body was heated to 67 (1:1) in an open atmosphere of pure hydrogen gas, and held at that temperature for 30 minutes to uniformly decompose the raw material, and then 0.8 t
l:/m1m cooling encounter! IjLK temperature dropped to 648℃
When the temperature was reached, a 1kK first ImPill was brought onto the InP substrate, and the substrate was shaken and held for 10 seconds. At this time, melting Δ of the InP substrate is performed. 10
If a second passes, the first solution is removed from the substrate, and then the lmGaAs fhll is brought onto the substrate KJIMtEtIm. , □G1°, 47mm S layer was grown. Since this llGmAm solution was saturated at 650C, epitaxial growth was started in a supercooled state of 2C.

643℃になったときに、llGmAm溶液をInP基
板上から除去してlmGaAm層のエピタキシャル成長
を終了し、得られたlmGaAm層は厚さが2.9趨で
あり、(111)ム面の結晶であった。
When the temperature reached 643°C, the llGmAm solution was removed from the InP substrate to complete the epitaxial growth of the lmGaAm layer, and the resulting lmGaAm layer had a thickness of 2.9 mm and was a crystal with a (111) plane. there were.

この彼、4℃/n+imの冷却速度にて降温して580
℃になり九ときに、第2 I!IP溶液をInP基板上
に持って来てかかるInP基板に袈触させlmGaAm
 JI上K IaP HIをエピタキシャル成長すせた
。この■nP溶箪は598℃で飽和する溶液テlルI2
)テ18℃の過冷却状態てエピタキシャル成長が開始さ
れた。570℃になっ九ときに11nP溶液を基板上か
ら除去してIaP層の成長を終了し、(111)ム面の
IaP層(犀さa 2.0 μm)が得られた。 In
GaAs層とその上の112層との界面は#A微微振観
察ら非常に明蓚に現われており、また、断面および表面
の**からfGaAs層のメルトパ、りが生じておらず
良好なモ7オロジーを有するIaP層が成長したことが
わかった。なお、との実施例はv1図中での@A”○印
に相当するものである。
This guy cooled down to 580 at a cooling rate of 4℃/n+im.
At 9 o'clock, the second I! Bring the IP solution onto the InP substrate and apply the lmGaAm to the InP substrate.
K IaP HI was epitaxially grown on JI. This ■nP solution has a solution temperature I2 that is saturated at 598℃.
) Epitaxial growth was started in a supercooled state of 18°C. When the temperature reached 570° C., the 11 nP solution was removed from the substrate to complete the growth of the IaP layer, and an IaP layer with a (111) surface (size a 2.0 μm) was obtained. In
The interface between the GaAs layer and the 112th layer above it appears very clearly in the #A microscopic vibration observation, and the cross section and surface ** show that the fGaAs layer has no melt top and is a good model. It was found that an IaP layer with a 7-ology was grown. Note that the examples shown in ``@A'' in the v1 diagram correspond to the ○ marks.

実験1 前述した実施例と同じにInP基板上に(111)A面
のInGaA@15kを成長させた41に、引続いてI
nP層をエピタキシャル成長させる際の冷却速度、エピ
タキシャル成長開始温度ネよび18℃の過冷却度(一定
)となるInP溶液組成を各種設定して112層の成長
を行なった。得られたllIP層を良好に成長した場合
(○印)、少し、メルトパ、りが斗じた場合(Δ印)お
よびメルトパ、りが生じた場合(×印)に分類して、冷
却速度(t: / raim )と成長開始温度(C)
との関係でグラフにしたのが第1図である。第1図から
エピタキシャル成長開始温度が580℃以下でないと良
好な112層を成長させることができないことがわかる
。また、冷却速度が小さくなるほど、成長開始温度は下
げなければいけない・ 実験2 前述した実施例と同じにInP基板上に(111)A面
のlmGmAs It成長させた飯に、引続いてIaP
層をエピタキシャル成長させる際のエピタキシャル成長
開始温度、Impg液の過冷却度および過冷却fK対応
するIaP溶wL組成を各種設定してIaP層の成長を
行なった。冷却速度は6tlml監で一定にした。得ら
れた112層を実験1と同様に○印、Δ〜印、x印の三
種類に分けて、過冷却度(6)と成長開始温1(C)と
の関係でグラフにしたのが第2図である。第2図からI
nP溶液の成長開始時の過冷却度が10℃以上でないと
良好なIaP層を成長させることができないことがわか
る。また、過冷却度を小さくするほど、成長開始温度は
下げなければいけない。
Experiment 1 In the same way as in the previous example, (111)A-plane InGaA@15k was grown on an InP substrate, and then I
A total of 112 layers were grown by setting various cooling rates, epitaxial growth start temperatures, and InP solution compositions that resulted in a constant supercooling degree of 18° C. when epitaxially growing an nP layer. The obtained llIP layer was classified into cases in which it grew well (○ mark), cases in which there was a slight melt-over and abrasion (Δ mark), and cases in which melt-operation and adhesion occurred (x mark), and the cooling rate ( t: / raim ) and growth start temperature (C)
Figure 1 shows a graph of the relationship between It can be seen from FIG. 1 that a good 112 layer cannot be grown unless the epitaxial growth start temperature is 580° C. or lower. In addition, as the cooling rate decreases, the growth starting temperature must be lowered.
The IaP layer was grown by setting various IaP solution wL compositions corresponding to the epitaxial growth start temperature, the degree of supercooling of the Impg liquid, and the supercooling fK when growing the layer epitaxially. The cooling rate was kept constant at 6 tlml. As in Experiment 1, the obtained 112 layers were divided into three types, marked with ○, marked with Δ~, and marked with x, and graphed as the relationship between the degree of supercooling (6) and the growth start temperature 1 (C). FIG. From Figure 2 I
It can be seen that a good IaP layer cannot be grown unless the degree of supercooling at the start of growth of the nP solution is 10° C. or higher. Furthermore, the smaller the degree of supercooling, the lower the growth initiation temperature must be.

(7)発明の効果 本発@1llK係る液相エピタキシャル成長法によって
InGaAs層上に四元層CInGaAsP層)の形成
なしにかつメルトパ、りなしに良好なtnp Jllが
形成できる。また、形成した(111)A面のInP層
の表面モ7オロジーは従来の(100)面のInP層の
ものとはt!同様に良好であり、(111)B面のIn
P層に生じることのあるヒルロツクと呼けれる欠陥は生
じない、さらに、(100)ffiでの成長で間−とな
るような工、デ(・dg・growth )は本発明の
場合には生じない0本発明の場合に1f(111)A面
の結晶成長であるためにへき一方向が互に60℃角度を
なすが、一つのへ11方向のみを用いることによって平
行なへき開面t−禍するようにへき開できるのでレーデ
−の共振面として利用することができる。このために、
発光素子ふよび受光素子の纏造について(111)Ai
のオU用は例の一害にもならない。
(7) Effects of the Invention By the liquid phase epitaxial growth method according to the present invention, a good tnp Jll can be formed on the InGaAs layer without forming a quaternary layer (CInGaAsP layer) and without melt topper or rinsing. Furthermore, the surface morphology of the formed (111) A-plane InP layer is t! different from that of the conventional (100)-plane InP layer! Similarly good, In of the (111)B plane
Defects called hillocks that sometimes occur in the P layer do not occur, and furthermore, in the case of the present invention, defects such as those that occur during growth at (100)ffi do not occur in the case of the present invention. In the case of the present invention, since the crystal growth is on the 1f (111) A plane, the cleavage directions make an angle of 60° with each other, but by using only one direction in the 11th direction, the parallel cleavage planes t-magnetic Since it can be cleaved in such a way that it can be used as a resonant surface for radar. For this,
Regarding assembly of light emitting element and light receiving element (111) Ai
The use of OU does not cause any harm to the example.

【図面の簡単な説明】[Brief explanation of drawings]

縞1図は、InGaA口層上に&相エピタキシャル成長
させたImPHIIの性状をImPJm&長時の冷結装
置とInP朧の成長開始温度との関係で示した図で第1
fgJl;l、I+aGaAs層上に液相エピタキシャ
ル成長させえ111層の性状をIn−1’ill[の過
冷却度とIn2層の成長開始温度との関係で示した図で
ある・ ○・−良好に成長した場合 Δ−少しメルトバックが生じた場合 ×・−メルトバックが生じた場合 特許出願人 富士通株式会社 特許出願式通人 弁理士 官 木    朗 弁理士 西 舘 和 之 弁理士 内 1)幸 男 弁1士  山  口  昭  之 第1耐 InP層の成長開始温度 第2Y!1 1nP層の成長開始温度
Figure 1 shows the properties of ImPHII grown on the InGaA layer by & phase epitaxial growth in terms of the relationship between the ImPJm & long-time cooling device and the growth initiation temperature of InP haze.
This is a diagram showing the properties of the 111 layer grown by liquid phase epitaxial growth on the fgJl;l, I+aGaAs layer in terms of the relationship between the degree of supercooling of In-1'ill and the growth start temperature of In2 layer. When it grows Δ - When a little meltback occurs ×・- When a meltback occurs Patent applicant Fujitsu Ltd. Patent application ceremony Patent attorney Public Patent attorney Akira Ki Kazuyuki Nishidate Patent attorney 1) Yukio The growth starting temperature of the first InP-resistant layer by Akira Yamaguchi, a first-year ben, is the second Y! 1 Growth start temperature of 1nP layer

Claims (1)

【特許請求の範囲】 1、インジウム−ガリウム−に嵩(夏町ψa8ム―)層
上にインジウム−リン(重態P)II箪を接触させてI
mp層を液相エビタ中シャル成畏させる方法KThいて
、前記InGaムajlKは(111)ムwOものを使
用し、前記Ini’1111i[0威長−蛤温駅を58
0℃以下゛にしかつ過冷却度を10℃以上にすることを
特徴とするl1111エビタ會シヤル成長繊。 λ 前記Z聰、−−〜ム・層は(111)ム面OI+a
P基板を利用して、1llIAエビタ今シヤル成長1せ
て形成することを4111とする轡許−求のIIIIl
嬉1項記l!O成長法。 3、前記1 m 1−XQa xム―層は#t[x−0
,47であるI”uJl”(L4μ−であることを特徴
とすJ>41許■求O範■I11項又は第2項記載の成
長法。
[Scope of Claims] 1. I
In the method of forming the mp layer in the liquid phase Evita, the InGa layer is (111) and the InGa layer is (111).
1111 Evita socially grown fiber characterized by having a temperature of 0°C or less and a degree of supercooling of 10°C or more. λ The above Z layer is (111) Mu plane OI+a
4111 request for permission to form 1llIA Evita now using P substrate.
I'm happy! O growth method. 3. The 1 m 1-XQa x layer is #t[x-0
, 47, I"uJl" (L4μ-).
JP57050103A 1982-03-30 1982-03-30 Liquid phase epitaxial growth Pending JPS58168218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57050103A JPS58168218A (en) 1982-03-30 1982-03-30 Liquid phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050103A JPS58168218A (en) 1982-03-30 1982-03-30 Liquid phase epitaxial growth

Publications (1)

Publication Number Publication Date
JPS58168218A true JPS58168218A (en) 1983-10-04

Family

ID=12849736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050103A Pending JPS58168218A (en) 1982-03-30 1982-03-30 Liquid phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPS58168218A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555521A (en) * 1978-10-19 1980-04-23 Fujitsu Ltd Method of epitaxial growth at liquid phase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555521A (en) * 1978-10-19 1980-04-23 Fujitsu Ltd Method of epitaxial growth at liquid phase

Similar Documents

Publication Publication Date Title
EP0194495B1 (en) Method of producing sheets of crystalline material
US5362682A (en) Method of producing sheets of crystalline material and devices made therefrom
JP5678092B2 (en) How to reuse a board
CN101295753B (en) Low temperature Au-In-Au bonding method for III-V family compounds
JPH1131864A (en) Crystal growth of low-migration gallium nitride
US5588994A (en) Method of producing sheets of crystalline material and devices made therefrom
JP2002541673A (en) Single crystal film slicing method using ion implantation
US5328549A (en) Method of producing sheets of crystalline material and devices made therefrom
JP3094965B2 (en) Crystal growth method of gallium nitride thick film
JPH02288288A (en) Manufacture of buried hetero-structure laser diode
JPH0297485A (en) Epitaxial growth method of two-dimensional material onto three-dimensional material
Venkatasubramanian et al. High‐quality eutectic‐metal‐bonded AlGaAs‐GaAs thin films on Si substrates
JPS58168218A (en) Liquid phase epitaxial growth
JPS5997595A (en) Liquid phase epitaxial growing method
JP2658493B2 (en) Method for separating epitaxial layer and substrate
JPH0774109A (en) Compound semiconductor substrate and reuse thereof
JPH02290016A (en) Manufacture of semiconductor device
JPH01120011A (en) Inp semiconductor thin film
JPS59129420A (en) Manufacture of compound semiconductor
JP3609840B2 (en) Manufacturing method of semiconductor light emitting device
Kropewnicki et al. Selective wet etching of lithium gallate
JPS6047237B2 (en) Method for manufacturing optical semiconductor devices
JPS62234319A (en) Forming method for hetero-epitaxial thin-film
JPH1135396A (en) Substrate for gallium nitride based crystal growth and its production and use
JPS61276314A (en) Liquid-phase epitaxial growth method of compound semiconductor