JPS58167808A - Mixed pressure turbine - Google Patents

Mixed pressure turbine

Info

Publication number
JPS58167808A
JPS58167808A JP4884482A JP4884482A JPS58167808A JP S58167808 A JPS58167808 A JP S58167808A JP 4884482 A JP4884482 A JP 4884482A JP 4884482 A JP4884482 A JP 4884482A JP S58167808 A JPS58167808 A JP S58167808A
Authority
JP
Japan
Prior art keywords
supply pipe
working fluid
pressure supply
flow path
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4884482A
Other languages
Japanese (ja)
Other versions
JPS6151126B2 (en
Inventor
Tadashi Kobayashi
正 小林
Masafumi Akiba
秋葉 雅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP4884482A priority Critical patent/JPS58167808A/en
Publication of JPS58167808A publication Critical patent/JPS58167808A/en
Publication of JPS6151126B2 publication Critical patent/JPS6151126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To obtain a flow uniform with respect to the tengential direction in order to reduce fluid loss by forming a peripheral flow passage in connection to a low-pressure supply pipe of a mixed pressure turbine and by installing a fluid control member serving as a fluid guide at an entrance part of this peripheral flow passage. CONSTITUTION:A peripheral flow passage 5 is formed in connection to a low- pressure supply pipe 3, while a member 12 that is used concurrently as a guide for the secondary working fluid is formed bent in an arc shape at an entrance part 5b of the peripheral flow passage 5. Owing to the member 12, the secondary working fluid is separated uniformly to join later the primary working fluid passing through a flow passage 11.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は1例えば、地熱タービンプラントに使用される
混圧式タービン(混圧タービンとも呼れる)Kid、特
に、この混圧式タービンにおけるロータ羽根の疲労破損
防止装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a mixed pressure turbine (also referred to as a mixed pressure turbine) Kid used in a geothermal turbine plant, in particular, to reduce fatigue of rotor blades in this mixed pressure turbine. Relating to a damage prevention device.

〔発明の技術的背景〕[Technical background of the invention]

既に提案されているこの種の混圧式タービンは、主とし
て、地熱タービンプラントにおける発電効率を向上させ
るために、高圧の/次作動流体を初段落部へ供給し、低
圧の一次作動流体を中間段落部へ供給するように構成さ
れている。
This type of mixed-pressure turbine, which has already been proposed, mainly supplies high-pressure/secondary working fluid to the first stage and supplies low-pressure primary working fluid to the middle stage, in order to improve power generation efficiency in geothermal turbine plants. It is configured to supply

即ち、既に提案されている上記混圧式タービンは、第1
図及び第JIlIK示されるように、タービンケーシン
グ/flc/次作動流体の流入する高圧供給管(高圧蒸
気供給管)J及び−次作動流体の流入すゐ低圧供給管(
低圧蒸気供給管)Jを設け。
That is, the above-mentioned mixed pressure turbine that has already been proposed has a first
As shown in the figure and No. JIlIK, the turbine casing/flc/high pressure supply pipe (high pressure steam supply pipe) J into which the secondary working fluid flows and the low pressure supply pipe (J) into which the secondary working fluid flows
Low pressure steam supply pipe) J is installed.

この高圧供給管コ及び低圧供給管Jに連通する各濁流路
e、jを形成し、さらに、これらの内周流路e、jK位
置する上記タービンケーシング/のタービン通路ll内
に複数の靜翼ぶ、7.1.すを同心的に配設し、この各
静翼4.7.t、fの位[スる上記タービンケーシング
/にロータ軸IOの羽根10aを配設して回転し得るよ
うKm成したものである。
A plurality of silent blades are formed in the turbine passage ll of the turbine casing located in the inner circumferential flow passages e and jK, respectively, to form respective muddy flow passages e and j that communicate with the high pressure supply pipe J and the low pressure supply pipe J, respectively. 7.1. The stator blades 4.7. The blades 10a of the rotor shaft IO are arranged in the turbine casing at positions t and f, and the blades 10a of the rotor shaft IO are arranged at a distance of Km so as to be able to rotate.

従って、上述し要理圧式タービンは、上記高圧供給管−
から流入した高圧蒸気としての/次作動流体を濁流路ダ
から上記各静翼j、7.#、fの拳に流出しながら、上
記ロータ軸10の羽根10&を回転し、他方、低圧蒸気
としての1次作動流体を上記周流路jから静翼l、すの
J[K流出しながら。
Therefore, the above-mentioned high-pressure turbine has the above-mentioned high-pressure supply pipe.
The working fluid in the form of high-pressure steam flowing from the turbidity flow path to each of the stator vanes j, 7. #, f rotates the blades 10 & of the rotor shaft 10 while flowing out from the circumferential passage j to the stator vanes l, j [K].

上記ロータ軸ioの羽lN10mを回転するようになっ
ている。
The blades lN10m of the rotor shaft io are rotated.

1 特K、上記/次作動流体と上記コ次作動流体とは、上記
濁流路jの出口部(流出部)s*lc形成され九タービ
ン中関段部の上記タービン流路llで合流しながら、第
1図に示されるように、円周方向へ流出するようになっ
ている。
1 Special K, the above/next working fluid and the above second working fluid are formed at the outlet (outflow part) s*lc of the above-mentioned muddy flow path j, and while merging at the above-mentioned turbine flow path ll of the 9th turbine middle stage section. , as shown in FIG. 1, it flows out in the circumferential direction.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上述した混圧式タービンは、上記タービ
ン通路//の外がわに形成された濁流路亭。
However, the above-mentioned mixed pressure turbine has a muddy flow path formed on the outside of the turbine passage.

jKよって、低圧蒸気としての上配コ次流体の一部を靜
9IL1.デの円周方向に偏流するけれど屯、大部分の
4次作動流体は、上記低圧供給管3に連通し九周流路j
の出口部jaに偏倚して流出する結果、上記/次作動流
体とコ次作動流体との合流した後、これらの合流作動流
体は、円周方向にきわめて不均一な流れとなシ、これら
の不均一な合流作動流体が流入する上記タービン中間段
部において、#1体の橋中乱流による瞳損失が増加する
ばか〕でなく、上記ロータ軸10の羽根10ILに流体
励振力が作用するため、疲労破損を生じるおそれがTo
Lタービン効率を低下して長期間の連続運転に対する信
頼性に問題がある。
Therefore, a portion of the upper secondary fluid as low-pressure steam is stored as 9IL1. Although the flow is biased in the circumferential direction, most of the quaternary working fluid is communicated with the low pressure supply pipe 3 and flows through the nine circumferential flow path j.
As a result, after the above/next working fluid and the next working fluid join together, these combined working fluids flow extremely non-uniformly in the circumferential direction. In the middle stage of the turbine where the non-uniform converging working fluid flows in, the pupil loss due to turbulence in the bridge of body #1 increases, but the fluid excitation force acts on the blade 10IL of the rotor shaft 10. , there is a risk of fatigue failure.
L-turbine efficiency is reduced and there is a problem in reliability for long-term continuous operation.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した事情Kllみてなされたもの!あっ
て・タービンケーシングの低圧供給管に連通する濁流路
の入口部に流体案内を兼ねた流体制御部材を付設して円
周方向に均一カ流れを生成して流体の諸損失を低減する
と共に、流体励振力の発生を防止し、併せて、タービン
効率の向上を図って長期運転に対する信頼性の向上を図
ることを目的とする混圧式タービンを提供するものであ
る。
The present invention was made in view of the above-mentioned circumstances! Therefore, a fluid control member that also serves as a fluid guide is attached to the inlet of the turbid flow path that communicates with the low pressure supply pipe of the turbine casing to generate a uniform flow in the circumferential direction and reduce various fluid losses. The present invention provides a mixed pressure turbine that aims to prevent the generation of fluid excitation force, and at the same time, improve turbine efficiency and improve reliability for long-term operation.

〔発明の概要〕[Summary of the invention]

特に1本発明は、タービンケーシングに/次作動流゛体
の流入する高圧供給管及び1次作動流体の流入する低圧
供給管を設け、この低圧供給管に連通して濁流路を形成
し、この濁流路の入口部に流体案内を兼ねた流体制御部
材を設けて構成されるものである。
Particularly, one aspect of the present invention is to provide a turbine casing with a high-pressure supply pipe into which a secondary working fluid flows and a low-pressure supply pipe into which a primary working fluid flows, and to communicate with the low-pressure supply pipe to form a turbid flow path. It is constructed by providing a fluid control member that also serves as a fluid guide at the entrance of the turbid flow path.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明を図示の一実施例について説明する。 The present invention will be described below with reference to an illustrated embodiment.

表お1本発明は、上述し丸具体例と同一構成部材には同
じ符号を付して説明する。
Table 1 The present invention will be described by assigning the same reference numerals to the same constituent members as in the above-mentioned circular embodiment.

第1図乃至第5図において、符号lは、タービンケーシ
ングでありて、このタービンケーシング/には、/次作
動流体の流入する高圧供給管コ及びコ次作動流体の流入
する低圧供給管3が設けられており、この寓圧供給管コ
及び低圧供給管3にはこれに連通する各濁流路Q、jが
形成されている。又、上記内周流路q、5に位置する上
記タービンケーシング/のタービン通路ll内には複数
の静翼4.7.#、デか順に、しかも、同心的に配設さ
れており、この各靜@4.7.1.fの位置する上記タ
ービンケーシングlにはロータ軸IOの羽根101Lが
配設されている。さらに、上記低圧供給管Jに連通する
上記濁流路jの入口部5bにはコ次作動流体の流体案内
を兼ねた流体制御部材/コを円弧状に彎曲して形成して
おシ、しかも、この流体制御部材lコの最大幅り、と上
記濁流路jの入口部jt+の最大幅り、との関係は、第
3図に展開して示されるように。
In FIGS. 1 to 5, reference numeral 1 denotes a turbine casing, and this turbine casing has a high-pressure supply pipe 3 into which the working fluid flows and a low-pressure supply pipe 3 into which the working fluid flows. The low pressure supply pipe 3 and the low pressure supply pipe 3 are provided with flow passages Q and j communicating therewith. In addition, a plurality of stationary blades 4.7. They are arranged concentrically in the order of # and de, and each of these @4.7.1. The blade 101L of the rotor shaft IO is arranged in the turbine casing l where f is located. Further, at the inlet portion 5b of the turbid flow path j communicating with the low pressure supply pipe J, a fluid control member/co which also serves as a fluid guide for the next working fluid is formed in a curved arc shape. The relationship between the maximum width of the fluid control member l and the maximum width of the inlet part jt+ of the turbid flow path j is developed and shown in FIG.

IL”J +Lヨ でTo夛、 L置>Ll になるように構成されることが望壇しい−但し、Llは
濁流路jの入口部jllの最小幅を示す、又、上記流体
制御部材lコの幅は、上記周流路5の入口部jb近傍で
最大wA′Ik形成してお)。
It is desirable that the structure be configured such that IL"J + L, L position > Ll - However, Ll indicates the minimum width of the inlet part jll of the turbid flow path j, and The maximum width wA'Ik is formed near the inlet jb of the circumferential flow path 5).

上記低圧供給管Jから遠ざかるにつれて狭くなるように
形成されている。っまシ、上記低圧供給管3から流入す
る一次作動流体の流路は上記濁流路jの入口部jbで狭
くなシ、上記低圧供給管3がら遠ざかるにつれて広くな
るように形成されている。
It is formed to become narrower as it moves away from the low pressure supply pipe J. The flow path of the primary working fluid flowing from the low-pressure supply pipe 3 is formed to be narrow at the entrance portion jb of the turbid flow path j, and to become wider as it moves away from the low-pressure supply pipe 3.

従って、本発明による王妃高圧供給管−から流入した1
次作動流体は濁流路亭がら上記各静翼4゜7、l、デの
拳に流出しながら、上記ロータ軸10の羽根10 aを
回転し、他方、低圧蒸気としての1次作動流体は上記低
圧供給管−から濁流路J内に流入するけれども、この濁
流路Sの入口部j)K付設され友流体案内を兼ねる上記
流体制御部材/Jによって均一な流れをし、しが虻、周
方向Km回しながらタービン流路//l−流れる上記7
次作動流体と合流してロータ軸10の羽根10aを回転
するよこのように、上記濁流路j K k人する一次作
動流体は、上虻泥体制御部材l−によって、均一に分流
された後、タービン流路//を流れる上記/次作動流体
と合流して仕事をするようになっているから、fi体の
渦やi流にょる一損失を防止できると共に、流体励振力
による疲労破損による弊害を阻止することができる。
Therefore, the 1 inflow from the queen high pressure supply pipe according to the present invention
The next working fluid rotates the blades 10a of the rotor shaft 10 while flowing out from the muddy channel to the stator vanes 4.7, l, and d, while the primary working fluid as low pressure steam Although it flows from the low-pressure supply pipe into the turbidity flow path J, the flow is uniform due to the fluid control member /J attached to the inlet of this turbidity flow path J) K which also serves as a companion fluid guide, and the flow is uniform in the circumferential direction. The above 7 flows through the turbine flow path //l while turning Km.
In this way, the primary working fluid flowing through the muddy flow path jKk is uniformly divided by the upper mud body control member l- so that it merges with the next working fluid and rotates the blade 10a of the rotor shaft 10. , the working fluid flows through the turbine flow path // and works by merging with the above/next working fluid, so it is possible to prevent losses caused by fi body vortices and i flows, and also to prevent fatigue damage caused by fluid excitation force. Harmful effects can be prevented.

次に、第1図に示される実施例は1本発明の他の夷−例
であって、これは、MI流路jの入口部jbに流体制御
部材/コ′を一体的に形成したものであり、上述した具
体例と同じ内容管なすものである。
Next, the embodiment shown in FIG. 1 is another example of the present invention, in which a fluid control member/co' is integrally formed at the inlet part jb of the MI flow path j. This has the same inner tube as the specific example described above.

第7図に示される実施例は、本発明の他の実施例であっ
て、これは、タービンケーシング/にコリ上の低圧供給
’IJを設け、これらに連通する濁流路jの各入口部j
pにコリ上の流体制御部材/Jを付設したものであシ、
上述した具体例と同じ内容をなすものである。  − さらに、第1図に示される実施例は1本発明の他の実施
例であって、これは低圧供給管Jに連通する濁流路Sの
入ロ部jbK各一対を表す流体制御部材l!を、1次作
動流体を分流するようKして設は喪ものでめシ、上述し
た具体例と同一構成をなすものである。
The embodiment shown in FIG. 7 is another embodiment of the present invention, in which the turbine casing/is provided with a low-pressure supply 'IJ on the stiffness, and each inlet section j of the turbid flow path j communicating therewith is provided.
P is attached with a fluid control member/J on the stiffness,
This is the same content as the specific example described above. - Furthermore, the embodiment shown in FIG. 1 is another embodiment of the present invention, which includes fluid control members l! representing each pair of inlets jbK of the turbid flow path S communicating with the low-pressure supply pipe J. It is designed to separate the primary working fluid, and has the same configuration as the specific example described above.

又、第9図及び第7θ図に示される実施例は、本発明の
他の実施例であって、こnは、低圧供給管3に連通する
濁流路jの入口部jbに粗密度のある銅材で構成され九
流体制一部材Iコ1を設け、これによって、一次作動流
体を均一に分流し得るようにしてタービン流路/lの/
次作動流体と合流し得るようにし友ものである。
The embodiment shown in FIG. 9 and FIG. A nine flow system member I made of copper material is provided, which allows the primary working fluid to be uniformly divided into turbine flow paths /l/l.
This makes it possible to merge with the next working fluid.

さらに又、第1/図及び第1−図に示される実施例は、
本発明の他の実施例であって、これは、低圧供給管3に
連通する濁流路Sの入口部j’klに粗密を形成する多
数のピンで構成された流体制御部材lコ“を設け、これ
によりて、−次作動流体を均一に分流してタービン流路
/lの/次作動流体と合流して仕事をし得るようKなり
ていゐ。
Furthermore, the embodiments shown in Fig. 1/ and Fig. 1-
This is another embodiment of the present invention, in which a fluid control member "l" composed of a large number of pins forming a density is provided at the entrance part j'kl of the turbid flow path S communicating with the low pressure supply pipe 3. As a result, the second working fluid can be uniformly divided and merged with the second working fluid in the turbine flow path/l to perform work.

なお、第is図に示されるグラフは、実験結果Kを平均
値Vmで無次元化し、この濁流路jの周方向分布を示し
たものであって1曲線工は従来の混圧式タービンの場合
であり、低圧供給管3の近傍(入口部)のP点では、上
記一次作動流体の速度が平均値の約−倍となりておシ、
一方、低圧供給管3から最も離れ友位置のQ点では殆ど
流入しておらず1円周方向に対して不均一な分布になっ
ている。
The graph shown in Figure IS shows the circumferential distribution of the muddy flow path j by making the experimental result K dimensionless using the average value Vm. At point P near the low-pressure supply pipe 3 (inlet part), the velocity of the primary working fluid is approximately - times the average value.
On the other hand, at point Q, which is the farthest position from the low-pressure supply pipe 3, almost no inflow occurs and the distribution is non-uniform in one circumferential direction.

これに対し、本発明は、曲縁lで示されるように、流入
速度を円嬌方回に一様になっている。次に、第陣図に示
されゐグラフは、一次作動流体の濁流路jの出口部ja
における流れの全圧損失ζを示した4ので61.111
#1mは従来の混圧式タービンであ)1曲線1aは本発
明によるものである。従って、このグラフからも明かな
ように、従来のものは全圧損失は非宵に大きい。これは
、一次作動流体が円周方向に不均一に流入するため、主
流を乱すからである。これに対し、本発明では。
On the other hand, in the present invention, as shown by the curved edge l, the inflow velocity is uniform in the circular direction. Next, the graph shown in Fig.
4, which shows the total pressure loss ζ of the flow at 61.111
Curve #1m is a conventional mixed pressure turbine, and Curve 1a is according to the present invention. Therefore, as is clear from this graph, the total pressure loss in the conventional type is extremely large. This is because the primary working fluid flows non-uniformly in the circumferential direction and disturbs the main flow. In contrast, in the present invention.

−次作動流体が円周方向に均一に流入するため。- Next, the working fluid flows uniformly in the circumferential direction.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、タービンケーシング
/に/次作動流体の流入する高圧供給管コ及び−次作動
流体の流入する低圧供給管3を設け、この低圧供給管3
に連通して両流路5を形成し、この側流路jの入口部j
bに流体案内を兼ねた流体制御部材lコを設けであるの
で、流わの不均一性に伴う全圧損失の増加を防止できる
ばかりでなく、流体動振方の発生を阻止し、併せて、長
期運転に対する信頼性の向上を図ると共に、構成4簡素
であるから、安価に提供できる。
As described above, according to the present invention, the high pressure supply pipe 3 into which the working fluid flows into the turbine casing and the low pressure supply pipe 3 into which the working fluid flows into the turbine casing are provided.
The inlet part j of this side channel j is connected to form both channels 5.
Since a fluid control member (l) which also serves as a fluid guide is provided at (b), it is possible not only to prevent an increase in total pressure loss due to non-uniformity of flow, but also to prevent the occurrence of fluid vibration. , the reliability for long-term operation is improved, and since the configuration is simple, it can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、既に提案されている混圧式タービンの一部を
示す断面図、第1図は、第7図中の鎖線璽−鳳に沿う縦
断面図、第3図は、本発明による混圧式タービンの一部
を示す断面図、第9図は、第3図中の鎖線IV−mVに
沿う縦断面図、第5図は。 本発明に組込まれる流体制御部材の展開図、第4図乃至
第7−図は、本発明の他Ovl施例を示す各図。 第1J図及び第揮図は、J次作動流体の流入速度を示す
各グラフである= /・・・タービンケーシング、コ・・・高圧供給管、J
・・・低圧供給管、j・・・両流路、4.7.r、W・
・・静翼、 10・・・ロータ軸、Iコ・・・流体制御
部材。 出願人代理人  猪  股     清へ− 第1 図 第350 15図 第6図 第7図 第8図 第9図 第11図
FIG. 1 is a sectional view showing a part of a mixed pressure turbine that has already been proposed, FIG. 1 is a longitudinal sectional view taken along the dashed line in FIG. 7, and FIG. FIG. 9 is a cross-sectional view showing a part of the pressure turbine, and FIG. 5 is a longitudinal cross-sectional view taken along the chain line IV-mV in FIG. 3. Developed views of the fluid control member incorporated in the present invention, and FIGS. 4 to 7 are views showing other Ovl embodiments of the present invention. Figure 1J and Figure 1 are graphs showing the inflow velocity of the J-th working fluid.
...Low pressure supply pipe, j...Both channels, 4.7. r, W.
...Stator blade, 10...Rotor shaft, I-co...Fluid control member. To the applicant's agent Kiyoshi Inomata - Figure 1 Figure 350 Figure 15 Figure 6 Figure 7 Figure 8 Figure 9 Figure 11

Claims (1)

【特許請求の範囲】 1、タービンケーシングに/次作動流体の流入する高圧
供給管及び1次作動流体の流入する低圧供給管を設け、
この低圧供給管に連通して濁流路を形成し、この濁流路
の入口部に流体案内を兼ねた流体制御部材を設けえこと
を特徴とする混圧式タービン。 コ、流体制御部材を円弧状に彎曲して形成したことを特
徴とする特許請求の範囲第7項記載O混圧式タービン。 J、タービンケーシングKJ以上の低圧供給管を設け、
これらに連通する濁流路の各入口部KJ以上の流体制御
部材を付設し良ことを特徴とする特許請求の範囲第7項
又は第1項記載O混圧式タービン。 亭、濁流路の入口部K11l!IFのああ鋼材若しくは
多数のビンで構成された流体制御部材を設は良ことを特
徴とする特許請求の範囲第1項、第2項又は第3項記載
の混圧式タービン。
[Claims] 1. A high pressure supply pipe into which the secondary working fluid flows and a low pressure supply pipe into which the primary working fluid flows are provided in the turbine casing,
A mixed pressure turbine characterized in that a turbid flow path is formed in communication with the low pressure supply pipe, and a fluid control member that also serves as a fluid guide is provided at the entrance of the turbid flow path. (h) The O mixed pressure turbine according to claim 7, wherein the fluid control member is curved in an arc shape. J, install a low pressure supply pipe higher than the turbine casing KJ,
The O mixed pressure turbine according to claim 7 or 1, characterized in that a fluid control member may be attached at each inlet portion KJ or higher of the muddy flow path communicating with these. Pavilion, entrance part of the muddy channel K11l! The mixed pressure turbine according to claim 1, 2 or 3, characterized in that a fluid control member made of steel or a large number of bottles can be installed in the IF.
JP4884482A 1982-03-29 1982-03-29 Mixed pressure turbine Granted JPS58167808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4884482A JPS58167808A (en) 1982-03-29 1982-03-29 Mixed pressure turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4884482A JPS58167808A (en) 1982-03-29 1982-03-29 Mixed pressure turbine

Publications (2)

Publication Number Publication Date
JPS58167808A true JPS58167808A (en) 1983-10-04
JPS6151126B2 JPS6151126B2 (en) 1986-11-07

Family

ID=12814557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4884482A Granted JPS58167808A (en) 1982-03-29 1982-03-29 Mixed pressure turbine

Country Status (1)

Country Link
JP (1) JPS58167808A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216092A (en) * 2008-03-10 2009-09-24 General Electric Co <Ge> Connection member for power generation plant
JP2017002838A (en) * 2015-06-11 2017-01-05 三菱日立パワーシステムズ株式会社 Turbine inlet structure and steam turbine using the same
CN109653807A (en) * 2018-11-30 2019-04-19 东方电气集团东方汽轮机有限公司 A kind of filling device
CN112832875A (en) * 2021-02-03 2021-05-25 东方电气集团东方汽轮机有限公司 Steam supplementing cavity structure of steam turbine cylinder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216092A (en) * 2008-03-10 2009-09-24 General Electric Co <Ge> Connection member for power generation plant
US8152437B2 (en) * 2008-03-10 2012-04-10 General Electric Company Interface member for a power plant
JP2017002838A (en) * 2015-06-11 2017-01-05 三菱日立パワーシステムズ株式会社 Turbine inlet structure and steam turbine using the same
CN109653807A (en) * 2018-11-30 2019-04-19 东方电气集团东方汽轮机有限公司 A kind of filling device
CN109653807B (en) * 2018-11-30 2021-12-21 东方电气集团东方汽轮机有限公司 Steam compensating device
CN112832875A (en) * 2021-02-03 2021-05-25 东方电气集团东方汽轮机有限公司 Steam supplementing cavity structure of steam turbine cylinder
CN112832875B (en) * 2021-02-03 2022-08-30 东方电气集团东方汽轮机有限公司 Steam supplementing cavity structure of steam turbine cylinder

Also Published As

Publication number Publication date
JPS6151126B2 (en) 1986-11-07

Similar Documents

Publication Publication Date Title
KR101491971B1 (en) Turbine
DK0897316T3 (en) Process and apparatus for diffusion exchange between immiscible liquids
NO20076537L (en) Fluid inlet device and retrospective modification method
JPS58167808A (en) Mixed pressure turbine
US20040253097A1 (en) Hydropowered turbine system
DE59811236D1 (en) Impeller for a Francis type hydraulic fluid machine
FR3083723B1 (en) TURBINE, FLUID SPRAYING DEVICE, ASSOCIATED INSTALLATION AND MANUFACTURING PROCESS
ES2148780T3 (en) PROCEDURE AND APPARATUS FOR CONTACTING GAS AND LIQUID.
JPH07243596A (en) Mixture flow piping structure
RU2232289C1 (en) Hydroelectric station
JPH07243595A (en) Mixture flow piping structure
Moore Flow trajectories, mixing and entropy fluxes in a turbine cascade
JP2001003710A (en) Exhaust device of steam turbine
JPS56110600A (en) Double flow turbo machine
JPS59128905A (en) Mixed pressure type turbine
JPS5841205A (en) Mixed pressure steam turbine
JPS62279203A (en) Butterfly valve combined with elbow
JP2005171828A (en) Francis type runner
JP2000297735A (en) Stay vane of stay ring for hydraulic machine
JP2004044409A (en) Water turbine and runner therefor
JPH0343427Y2 (en)
SU966254A1 (en) Steam turbine controlled nozzle apparatus
ES2706449B2 (en) HYDROGENERATOR WITH HORIZONTAL REACTION HYDROKINETIC TURBINE
JPS6131603A (en) Turbine nozzle
JPH07243594A (en) Mixture flow piping structure