JPS58167160A - Manufacture of fiber reinforced metallic compound material - Google Patents

Manufacture of fiber reinforced metallic compound material

Info

Publication number
JPS58167160A
JPS58167160A JP5001482A JP5001482A JPS58167160A JP S58167160 A JPS58167160 A JP S58167160A JP 5001482 A JP5001482 A JP 5001482A JP 5001482 A JP5001482 A JP 5001482A JP S58167160 A JPS58167160 A JP S58167160A
Authority
JP
Japan
Prior art keywords
metal
sheet
sintering
fibers
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5001482A
Other languages
Japanese (ja)
Inventor
佐藤 恭博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5001482A priority Critical patent/JPS58167160A/en
Publication of JPS58167160A publication Critical patent/JPS58167160A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、繊維強化金属複合材料の製法、特に予備焼結
および焼結を組合せた繊維強化金属複合材料の製法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fiber-reinforced metal composite material, and in particular to a method for producing a fiber-reinforced metal composite material by combining preliminary sintering and sintering.

複合材料、例えばFRP (繊維強化プラスチック)に
代表されるような複合材料は、そのすぐれた特性(高強
度、軽量化etc )の点から、今日多方面にわたシ広
く使用されている。しかしFRPの場合、そのマトリッ
クスがプラスチックであるため、耐燃性、耐候性、耐食
性等が十分でなく、また耐用温度限界も150〜200
1:までといわれている。
Composite materials, such as FRP (fiber-reinforced plastic), are widely used in many fields today because of their excellent properties (high strength, light weight, etc.). However, in the case of FRP, since its matrix is plastic, it does not have sufficient flame resistance, weather resistance, corrosion resistance, etc., and its service temperature limit is 150 to 200.
It is said that up to 1:.

このような問題点を解決するために、従来にあっても複
合材のマトリックスを金属としたいわゆるFRM(繊維
強化金属)材料がすでに提案されておシ、そのすぐれた
特性から例えば航空機あるいはロケットの構造材としで
あるいは軽量化を図る必要のある高強度機械部品として
多くの需要が期待されている。
In order to solve these problems, so-called FRM (fiber-reinforced metal) materials, which have a composite matrix of metal, have already been proposed. It is expected to be in great demand as a structural material or as a high-strength mechanical part that needs to be lightweight.

ここに、繊維強化金属材料の製法としては、1)溶浸法
(Infiltration Process )t 
l)拡散接合法(Diffusion Bonding
 Process ) 、 iM)  粉末冶金法(P
owder Metallurgy Method )
 、およびlv)一方向凝固法(Unidireeti
onal 5olidificationProces
s )があシ、そのうち、高温で静的圧力を加える方式
の拡散接合法が現在最も優れた方法といわれている。こ
の拡散接合法はさらに、繊維材料およびマトリックス材
料を積層化してプレス成形する積層プレス法、予め!ト
リックス材料で被覆した繊維をプレス成形するマトリッ
クス被覆プレス法、およびマトリックス箔と繊維とt交
互に重ねてプレス成形する箔−シート法に分けることが
できる。
Here, as a manufacturing method of fiber-reinforced metal material, 1) Infiltration Process t
l) Diffusion bonding method
Process), iM) Powder metallurgy method (P
metallurgy method)
, and lv) unidirectional coagulation method (Unidireeti
onal 5olidificationProces
Of these, the diffusion bonding method, which applies static pressure at high temperature, is currently said to be the most superior method. This diffusion bonding method further includes a laminated press method in which the fiber material and the matrix material are laminated and press-molded. The method can be divided into a matrix coating press method in which fibers coated with a TRIX material are press-molded, and a foil-sheet method in which matrix foils and fibers are alternately stacked and press-molded.

しかしながら、かかる従来の拡散接合法にあっては、複
合化過程がいずれも高温下で行なわれるため(一般に、
ff)リツクス材料の融点付近の温度で行なわれる)、
繊維の損傷劣化および繊維とマトリックス金属が反応し
てしまい、材料の脆化が著しくなる欠点があるとともに
%特に例えば積層プレス法にあっては複合化に際して手
作業によるレイアップ(複合体の履立シよび構成)が製
造工程の大半を占めるため生産性が低く、品質の不均一
化も免かれない等の不利益がみられ丸。
However, in such conventional diffusion bonding methods, the compositing process is performed at high temperatures (generally,
ff) carried out at a temperature near the melting point of the lithics material),
This has the drawback of damaging and deteriorating the fibers and causing reactions between the fibers and the matrix metal, resulting in significant embrittlement of the material. Since the manufacturing process (structure and structure) occupies most of the manufacturing process, there are disadvantages such as low productivity and uneven quality.

なお、前述の粉末冶金法は金属粉末と繊維とを配合、混
合して焼結する非常に能率的で生産性の高い方法である
が、混合上の制約から使用する繊維としては短繊維のみ
が使用されておシ、また粉末の混合操作によって繊維會
マ) IJラックス体に均一に分布させることは困難で
あって得られる製品の品質の不均一化は免かれない。
The powder metallurgy method described above is a very efficient and highly productive method in which metal powder and fibers are blended, mixed, and sintered, but due to mixing constraints, only short fibers can be used. In addition, it is difficult to uniformly distribute the powder in the IJ lax body due to the powder mixing operation, and the quality of the resulting product inevitably becomes uneven.

かくして、本発明の目的は生産性が高く、しかも得られ
る複合化材料の品質が均一となる繊維強化@属複合材料
の製法を提供することである。
Thus, an object of the present invention is to provide a method for producing a fiber-reinforced composite material with high productivity and uniform quality of the resulting composite material.

こ仁に、本発明者らは、長繊維の使用全企図するととも
に、それに伴なって複合化過程における繊維の損傷を防
止し、しかも前述の箔−シート法に比較して複合化接合
強度を高めるべく、鋭意研究の結果、本発明を完成した
ものであって、その要旨とするところは、アルミニウム
、チタンもしくはその合金の粉末に熱可塑性樹脂粉末を
配合し  □て金属−樹脂混合物とする工程、該金属−
樹脂混合物を混線・造粒化して金属−樹脂ペレットとす
る工程、該金属−樹脂ペレットを加熱下で押出成形して
シートとする工程、得られたシート會予備焼結して多孔
質金属シートとする工程、複数の該多孔質金属シートの
間に、予め調製した無機繊維を供給する工程、該無機繊
維を介在させた前記の複数の多孔質金属シートを冷間圧
着して少なくとも3層の複合成形体とする工程、および
該複合成形体を焼結して一体化する工程から成る、繊維
強化金属複合材料の製法である。
Therefore, the present inventors have contemplated the use of long fibers, thereby preventing damage to the fibers during the compositing process, and increasing the composite bonding strength compared to the foil-sheet method described above. The present invention was completed as a result of intensive research in order to improve the quality of the product, and its gist is a process of blending thermoplastic resin powder with aluminum, titanium, or alloy powder to form a metal-resin mixture. , the metal-
A step of mixing and granulating the resin mixture to form metal-resin pellets, a step of extruding the metal-resin pellets under heating to form a sheet, and pre-sintering the obtained sheet to form a porous metal sheet. a step of supplying previously prepared inorganic fibers between a plurality of the porous metal sheets; a step of cold-pressing the plurality of porous metal sheets with the inorganic fibers interposed therebetween to form a composite of at least three layers; This is a method for producing a fiber-reinforced metal composite material, which comprises a step of forming a molded body and a step of sintering and integrating the composite molded body.

本発明において使用するff)9ツクス材料はアルミニ
ウム、チタンまたはそれらの金属の合金であって、その
種類については%に制限されないが、予め還元処理をし
た粒径約100μ以下のものが好ましい。繊維材料とし
ては本発明の条件下で上記金属材料に対しヌレ性を示し
、またこの金属材料と反応して脆化するものでなければ
特に制限されないが、好ましくはSin、およびB繊維
である。
The ff)9x material used in the present invention is aluminum, titanium, or an alloy of these metals, and its type is not limited by percentage, but it is preferably one that has been previously reduced and has a particle size of about 100 μm or less. The fiber material is not particularly limited as long as it exhibits wettability with the metal material under the conditions of the present invention and reacts with the metal material to become brittle, but Sin and B fibers are preferred.

なお本発明にあっては連続した長繊維の利用を可能にす
るが、必要によっていわゆる短繊維を使用してもよい。
Although continuous long fibers can be used in the present invention, so-called short fibers may be used if necessary.

添付図面の第1図は本発明方法の70−ンートを示すも
のであって、工程1において上記金属の粉末と熱可塑性
樹脂が配合混合される。
FIG. 1 of the accompanying drawings shows a 70-step method of the present invention, in which in step 1 the metal powder and thermoplastic resin are mixed together.

熱’T塑性樹脂をバインダとして上記金属粉末に配合す
るのは、粉末をペレット化してシート状に成形するのk
g易にするためであって、特に本発明に係る方法を連続
化するときに有効である。熱Of塑性樹脂としては造粒
時にバインダとして機能し、4ft続の予備焼結時に加
熱によって蒸発消失するものであれば′時に制限されな
いが、取扱いの容易さからポリエチレンおよびポリプロ
ピレン粉末(粒径100μ以下)を使用するのが好まし
い。
The thermoplastic resin is blended into the metal powder as a binder by pelletizing the powder and forming it into a sheet.
This is particularly effective when making the method according to the present invention continuous. The thermoplastic resin is not limited to any time as long as it functions as a binder during granulation and evaporates and disappears when heated during pre-sintering of the 4ft series, but polyethylene and polypropylene powder (particle size of 100 μm or less) is used for ease of handling. ) is preferably used.

金属粉末に対する配合比(重量)は10%以下とする。The blending ratio (weight) to the metal powder is 10% or less.

得られる金属−樹脂温、金物は工程2に送られ、好まし
くは200℃以下の加熱下で、混練・造粒化処理を受け
る。ペレット粒径は1〜3MalJEが好ましい。この
ような造粒は押出し成形時の金楕の偏析を防止するため
に行なうものであって、当業界において良く知られてい
る適宜早成によって例えば約1時間程′度行なって4よ
い。
The obtained metal-resin temperature and hardware are sent to step 2, where they are subjected to kneading and granulation treatment preferably under heating at 200° C. or lower. The pellet particle size is preferably 1 to 3 MalJE. Such granulation is carried out in order to prevent segregation of gold ellipses during extrusion molding, and may be carried out for about 1 hour, for example, by appropriate rapid granulation, which is well known in the art.

このようにして得られた金属−4II脂イレツトは、次
いで工程3の押出成形、工程4の予備焼結、工程5の線
維の供給、そして工程6の冷間圧婢、さらに工程7の焼
結という一連の工程を経て線維と複合化される。工程5
において供給される線維は予め別工程8で調整されたも
のを利用できる。
The metal-4II fat pellet thus obtained is then subjected to extrusion molding in step 3, preliminary sintering in step 4, feeding of fibers in step 5, cold rolling in step 6, and sintering in step 7. It is combined with fibers through a series of steps. Process 5
The fibers supplied in step 8 can be those prepared in advance in a separate step 8.

すなわち、工程3においては、ポリエチレンまたはポリ
プロピレン樹脂を使用したときKは前記金属−樹脂ベレ
ットを必要により200℃程度にまで再度加熱して押出
し、急冷してシート状に成形する。予備焼結を行なう工
程4においてはこのシート状成形体を真空本しくけ不活
性ガス雰囲気下で脱脂とともに予備焼結を行なう。この
ときの温度はアルミニウムまたはその合金では好ましく
は500℃以下であり、またチタンまたはその合金では
好ましくは1100℃以下であり、これはマ) IJラ
ックス属と線維との反応を防止するためである。これに
より熱可塑性樹脂分は除去され、アルミニウム、チタン
または合金から成る一部焼結した多孔質金属シートが得
られる。
That is, in step 3, when polyethylene or polypropylene resin is used, the metal-resin pellet is extruded by heating it again to about 200 DEG C. if necessary, and then rapidly cooled and formed into a sheet. In step 4 of performing preliminary sintering, this sheet-like molded body is vacuum-operated and subjected to degreasing and preliminary sintering in an inert gas atmosphere. The temperature at this time is preferably 500°C or less for aluminum or its alloy, and preferably 1100°C or less for titanium or its alloy, and this is to prevent the reaction between the IJ lux group and the fibers. . As a result, the thermoplastic resin content is removed and a partially sintered porous metal sheet of aluminum, titanium or an alloy is obtained.

かくして得られた予備焼結多孔質金属シートを少なくと
も2枚以上すなわち複数枚用意し、これらの各多孔質金
属シートの間に工程5において別途工程8において用意
した無機線維、好ましくけ直径数10μのSiC、B等
の線維をはさみ込み、つまり各シート間に無機線維を介
在させ、得られた複合成形体を次工程6において冷間圧
延し各材料の機械的結合を図る。金属マトリックスが多
孔質の予備焼結体であるため、そのポーラス面同志の機
械的からまりが促進され、その間の機械的結合は一層強
固になることが分かった。このときの冷間圧延は空孔を
なくす程度の圧下率で行なえばよく、あまり強く圧下す
ると線維が切断してしまう恐れがある。このときの線維
の供給割合はSiCおよびB#I維の場合、複合体材料
全体に対し容積で10〜80%であれば良く、一般には
40〜6゜チである。
At least two or more pre-sintered porous metal sheets obtained in this way are prepared, and inorganic fibers prepared separately in step 8, preferably several tens of microns in diameter, are placed between each of these porous metal sheets in step 5. Fibers such as SiC and B are sandwiched, that is, inorganic fibers are interposed between each sheet, and the resulting composite molded body is cold rolled in the next step 6 to mechanically bond the materials. It was found that because the metal matrix is a porous pre-sintered body, the mechanical entanglement of its porous surfaces is promoted, and the mechanical bond between them becomes even stronger. The cold rolling at this time should be carried out at a reduction rate that eliminates voids; if the rolling is too strong, there is a risk that the fibers will break. In the case of SiC and B#I fibers, the fiber supply ratio at this time may be 10 to 80% by volume of the entire composite material, and is generally 40 to 6 degrees.

ヶい−Cユ。66よゆ、8ようオゆ、5工ゎ7よ   
”おいて本焼結される。焼結後は、従来例と同様に鍛造
その他の加工を行なってもよい。
Kai-C Yu. 66yoyu, 8yooyu, 5works 7yo
After sintering, forging and other processing may be performed in the same manner as in the conventional example.

本発明の好適具体例においては、これら一連の工程を連
続化することによって本発明に係る製法の生産性は著し
く高められる。すなわち、金属−樹脂ベレットの押出成
形はホッパ型押出機によって行ない、ベルトコンベア(
好ましくはステンレス鋼製)上に連続して押出成形され
た連続シートはコンベア上を搬送されて連続加熱炉に供
給され、ここで連続的に脱脂・予備焼結される。この予
備焼結時に前記熱可塑性樹脂は蒸発除去され、多孔質連
続金属シートが得られる、このようにして連続して得ら
れる多孔質連続金属シートを2以上用意し、予め調製し
た連続した無機線維を各シートの間に供給することによ
って、線維材料が全体に均一に分布した複合材が連続し
て得られ、これを次いで冷間圧着によって少なくとも3
層の複合成形体とする。次いでこれらは焼結され、一体
化される。
In a preferred embodiment of the present invention, by making these series of steps continuous, the productivity of the manufacturing method according to the present invention is significantly increased. That is, extrusion molding of metal-resin pellets is performed using a hopper type extruder, and a belt conveyor (
A continuous sheet continuously extruded onto a sheet (preferably made of stainless steel) is conveyed on a conveyor and supplied to a continuous heating furnace, where it is continuously degreased and pre-sintered. During this preliminary sintering, the thermoplastic resin is evaporated and removed, and a porous continuous metal sheet is obtained. Two or more porous continuous metal sheets obtained in this way are prepared, and continuous inorganic fibers prepared in advance are prepared. By feeding between each sheet, a composite with a uniform distribution of fibrous material is obtained in succession, which is then compressed by cold crimping at least three
A composite molded body of layers is formed. These are then sintered and integrated.

かくして、本発明はその好適態様としては、アルミニウ
ム、チタンもしくはその合金の粉末に熱可塑性樹脂粉末
を配合して金属−樹脂混合物とする工程、該金属−樹脂
混合物を混練・造粒化して金属−樹脂4レツトとする工
程、該金属−樹脂ベレットを加熱下で連続的に押出成形
して連続シートとする工程、得られた連続シートを連続
して予備焼結して多孔質連続金属シートとする工程、複
数の該多孔質連続金属シートの間に、予め調整した無機
長縁維を連続して供給する工程、該無機線維を介在させ
た前記の複数の多孔質連続金属シートを冷間圧着して少
なくとも3層の複合成形体とする工程、および該複合成
形体を連続して焼結して一体化する工程から成る、線維
強化金網複合材料の連続した製法である。
Thus, preferred embodiments of the present invention include a step of blending thermoplastic resin powder with powder of aluminum, titanium, or an alloy thereof to form a metal-resin mixture, and a step of kneading and granulating the metal-resin mixture to form a metal-resin mixture. A step of forming resin 4lets, a step of continuously extruding the metal-resin pellet under heating to form a continuous sheet, and continuously pre-sintering the obtained continuous sheet to form a porous continuous metal sheet. a step of continuously supplying pre-adjusted inorganic long-edge fibers between the plurality of porous continuous metal sheets; a step of cold-pressing the plurality of porous continuous metal sheets with the inorganic fibers interposed therebetween; This is a continuous method for manufacturing a fiber-reinforced wire mesh composite material, which comprises a step of forming a composite molded body of at least three layers, and a step of successively sintering and integrating the composite molded body.

なお、上記無機普維として短綾維を用いる場合でも、前
述の多孔質連続金属シートに連続して均一に線維を供給
することにより連続化が可能である。
Note that even when short twill fibers are used as the inorganic fibers, continuity can be achieved by uniformly and continuously supplying the fibers to the above-mentioned porous continuous metal sheet.

本発明におけるその他の具体的加熱条件、混線条件、さ
らには焼結条件は使用する各材料に応じて、当業者であ
れば適宜設定できる。
Other specific heating conditions, cross-wire conditions, and further sintering conditions in the present invention can be appropriately set by those skilled in the art depending on each material used.

以ド、本発明を第2図に示す好適態様にもとずいてさら
に具体的に説明する。第2図は、本発明方法を実施する
だめの装置を略式で小す、W、閉園であり、図示例にあ
っては連続的に7−ト状で嗜維強化複合材料が製造され
る。
The present invention will now be described in more detail based on a preferred embodiment shown in FIG. FIG. 2 schematically shows an apparatus for carrying out the method of the invention, in which a fiber-reinforced composite material is produced continuously in the form of 7-pieces in the illustrated example.

本例では金属粉末としては粒径100μ以下のチタン粉
末を用い、重量比でポリプロピレン樹脂粉末9チを配合
した金属−樹脂混合物を使い、一方、配合無機繊維とし
て直径20μの連続SiC*維を使用し、複合体容積比
40q6で複合化する、まず、上記金属−樹脂混合物を
シグマタイプニーダで粒径1〜3諷にまで造粒したもの
を加熱ヒータ20によってほぼ200℃に加熱されてい
るホッパー型押出成形機21に装入する。押出しグラ/
ツヤ22によってシート状にステンレス製ペルトコ/ペ
ア23上に連続的に押出された金楓−樹脂混合物24は
図中矢印の方向に搬出され、冷却装置25からの衝風冷
却(図中矢印で示す)によって押出成形時に溶融した熱
可塑性樹脂は固化し、自己保持性を示す連続シートとな
る。ベルトコノペアを離れた該連続シートは、次いで好
まし2くけ電気炉である連続加熱炉26に送られる。
In this example, titanium powder with a particle size of 100 μm or less was used as the metal powder, and a metal-resin mixture was used in which 9 cm of polypropylene resin powder was blended by weight, while continuous SiC* fibers with a diameter of 20 μm were used as the blended inorganic fibers. First, the above metal-resin mixture is granulated with a sigma type kneader to a particle size of 1 to 3 mm, and then the mixture is composited at a composite volume ratio of 40q6. The mold is charged into the mold extrusion molding machine 21. Extrusion graph/
The gold maple-resin mixture 24 which is continuously extruded into a sheet shape by the gloss 22 onto the stainless steel Peltoco/Pair 23 is carried out in the direction of the arrow in the figure, and cooled by blast from the cooling device 25 (indicated by the arrow in the figure). ), the thermoplastic resin melted during extrusion molding solidifies into a continuous sheet that exhibits self-retaining properties. The continuous sheet leaving the belt conopiae is then sent to a continuous heating furnace 26, preferably a two-hole electric furnace.

連続加熱炉26は真空もしくけ不活性ガス雰囲気に保持
され、上記連続シートがローラコンベア27(てよって
該加熱炉内を移動するにつれて、脱脂、tなわち前記熱
可塑性樹脂の加熱蒸発および金桟粉末同志の予備焼結が
連続して行なわれる。
The continuous heating furnace 26 is maintained in a vacuum and inert gas atmosphere, and as the continuous sheet is moved through the heating furnace by a roller conveyor 27, it undergoes degreasing, heating evaporation of the thermoplastic resin, and metal crosslinking. Preliminary sintering of the powders takes place continuously.

熱可塑性樹脂の蒸発はほぼ300〜400℃から始まる
っこのときの予備焼結温度はほぼ1100℃であろう粉
末金属としてアルミニウムを使用する場合には約500
℃である。炉内滞留時間は10〜30分である。予備焼
結を経てこの加熱炉を出たときの予備焼結体28は厚さ
ほぼ0.5〜IMである。
Evaporation of the thermoplastic resin begins at approximately 300-400°C, and the pre-sintering temperature at this time would be approximately 1100°C.If aluminum is used as the powder metal, the temperature will be approximately 500°C.
It is ℃. Residence time in the furnace is 10 to 30 minutes. The pre-sintered body 28 when exiting the heating furnace after the pre-sintering has a thickness of approximately 0.5 to IM.

一方、ロール29からはSiC連続嗜維束紐束が連続し
て供給され乙。図示例では31iの複合体のlI!!造
例を示すもので、すでに述べたと同様にして、図面の向
って右側の方向からも予備焼結体28が  。
On the other hand, the SiC continuous fiber bundle is continuously supplied from the roll 29. In the illustrated example, lI! of a complex of 31i! ! This shows an example of the construction, and the preliminary sintered body 28 is also seen from the right side of the drawing in the same manner as described above.

連続的に送られており(図示例では説明の繁雑さ  :
をさせるため省略)、両予備焼結体28の接合面(好ま
しくは押出成形時のベルトコンベア接面に反対の面であ
って、その表面は特にポーラスとなっている)に前記連
続−紐束30が+11給され挟み込まれる。このような
ポーラス面同志の接合によりその間の機械的結合は一層
強固になる。
It is sent continuously (in the illustrated example, the explanation is complicated:
), the continuous string bundle is applied to the joint surface of both preliminary sintered bodies 28 (preferably the surface opposite to the surface that contacts the belt conveyor during extrusion molding, and that surface is particularly porous). 30 is given +11 and is caught. Such bonding of porous surfaces makes the mechanical bond between them even stronger.

このように、無機繊維として連続した長繊維束を使用す
ることからその分布は容易に均一とすることができるに
のようにして得られた3層構造の複合体はロール31に
よって冷間圧延され、40チ圧下されて内部空孔のない
ち密な組織となる。
As described above, since a continuous long fiber bundle is used as the inorganic fiber, the distribution can be easily made uniform. , 40 inches to form a dense structure with no internal pores.

このときの巾は200諺である。The width at this time is 200 proverbs.

給 本発明の場合、績紐束30の供続に引き続いてロール3
1による冷間圧延が行なわれるため、−紐束30に過度
の張力がかかることがなく、それによる−紐束の破断等
も防止できる。この冷間圧延複合体32はロール33を
経て真空下または不活性ガス雰囲気の連続加熱焼結炉(
図示せず)に送られる。このときの焼結温度は前述のよ
うに、チタンで約1100℃、アルミニウムの場合的5
00℃であり、かかる温度では無機繊維と金属マトリッ
クスとの反応は起こらず、したがってそれKよる材料臆
化の問題も生じない。
In the case of the present invention, following the supply of the braided cord bundle 30, the roll 3
Since the cold rolling according to No. 1 is performed, excessive tension is not applied to the string bundle 30, and breakage of the string bundle due to this can be prevented. This cold-rolled composite body 32 passes through rolls 33 and then passes through a continuous heating sintering furnace (under vacuum or in an inert gas atmosphere).
(not shown). As mentioned above, the sintering temperature at this time is approximately 1100°C for titanium and 5°C for aluminum.
00°C, and at this temperature no reaction between the inorganic fibers and the metal matrix occurs, and therefore the problem of material weakening due to K does not occur.

さら忙、本発明によれば、予備焼結体に対して繊維を配
合するのであるが、予備焼結体同志が上記冷間圧延時に
機械的に十分結合されるため、焼結後の最終的複合体に
みられる各材料同志の接合強度も一層改善される。
Furthermore, according to the present invention, fibers are blended into the preliminary sintered body, and since the preliminary sintered bodies are mechanically bonded sufficiently during the cold rolling, the final The bonding strength between the materials found in the composite is also further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る方法のフローシート、および第2
図は本発明に係る方法を実施するための装置の略式説明
図である。 1・・原料を配合する工程、2・・・ペレット化する工
程、3・・・押出成形する工程、4・・・予備焼結する
工程、5・・・繊維を供給する工程、6・・・冷間圧延
する]工程、7・・・焼結する工程、8・・・繊維を調
製する工程。
FIG. 1 shows a flow sheet of the method according to the invention, and FIG.
The figure is a schematic illustration of an apparatus for carrying out the method according to the invention. 1. Step of blending raw materials, 2. Step of pelletizing, 3. Step of extrusion molding, 4. Step of pre-sintering, 5. Step of supplying fibers, 6.・Cold rolling] step, 7... Sintering step, 8... Preparing fiber.

Claims (1)

【特許請求の範囲】[Claims] アルミニウム、チタンもしくはその合金の粉末に熱可塑
性慟脂粉末を配合して金属−樹脂混合物とする工程、該
金属−樹脂混合物を混線、造粒化して金属−樹脂ベレッ
トとする工程、該金属−樹脂ベレン)1−加熱下で押出
成形してシートとする工程、得られたシートラ予備焼結
して多孔質金属シートとする工程、複数の該多孔質金属
シートの間に、予め調製した無機繊維を供給する工程、
該無機繊維を介在させた前記の複数の多孔質金属シート
ラ冷間圧着して少なくとも3層の複合成形体とする工程
、および咳複合成形体を焼結して一体化する工程から成
る、繊維強化金属複合材料の製法。
A process of blending thermoplastic laryngeal powder with powder of aluminum, titanium or its alloy to form a metal-resin mixture, a process of mixing and granulating the metal-resin mixture to form metal-resin pellets, and a process of forming the metal-resin pellet. Beren) 1- Step of extrusion molding under heating to form a sheet, pre-sintering of the obtained sheet to form a porous metal sheet, and inserting pre-prepared inorganic fibers between the plurality of porous metal sheets. supply process,
A fiber-reinforced method comprising a step of cold-pressing the plurality of porous metal sheets with the inorganic fibers interposed therebetween to form a composite molded body of at least three layers, and a step of sintering and integrating the cough composite molded body. Manufacturing method for metal composite materials.
JP5001482A 1982-03-30 1982-03-30 Manufacture of fiber reinforced metallic compound material Pending JPS58167160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5001482A JPS58167160A (en) 1982-03-30 1982-03-30 Manufacture of fiber reinforced metallic compound material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5001482A JPS58167160A (en) 1982-03-30 1982-03-30 Manufacture of fiber reinforced metallic compound material

Publications (1)

Publication Number Publication Date
JPS58167160A true JPS58167160A (en) 1983-10-03

Family

ID=12847134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5001482A Pending JPS58167160A (en) 1982-03-30 1982-03-30 Manufacture of fiber reinforced metallic compound material

Country Status (1)

Country Link
JP (1) JPS58167160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225734A (en) * 1988-03-07 1989-09-08 Mitsubishi Heavy Ind Ltd Manufacture of fiber reinforced metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225734A (en) * 1988-03-07 1989-09-08 Mitsubishi Heavy Ind Ltd Manufacture of fiber reinforced metal

Similar Documents

Publication Publication Date Title
US3606667A (en) Method of fabricating fiber-reinforced articles
US11319256B2 (en) Fiber-reinforced metal-, ceramic-, and metal/ceramic-matrix composite materials and methods therefor
US3615277A (en) Method of fabricating fiber-reinforced articles and products produced thereby
US3538550A (en) Partitioned mold die
CN109423609A (en) Carbon fiber core material is plated with the manufacturing method of the composite wood of alloy film
JPS62188769A (en) Manufacture of composite material by composite thermal spraying method
US3596344A (en) Method of fabricating fiber-reinforced articles
US9779854B2 (en) Method for producing a semifinished product for electrical contacts and contact piece
EP0502900B1 (en) Preparation of sintered composite materials
CN109467809B (en) Continuous glass fiber reinforced polypropylene unidirectional prepreg tape and preparation method thereof
JP6405892B2 (en) Porous aluminum sintered body and method for producing porous aluminum sintered body
US2842440A (en) Process of making structural material by heat bonding wire filaments
JPS58167160A (en) Manufacture of fiber reinforced metallic compound material
EP3541552A1 (en) Method for producing a porous moulded body and porous moulded body
CN115850863A (en) Polypropylene film, preparation method thereof, composite current collector and application
JPH01312008A (en) Production of intermetallic compound alloy material
US3676916A (en) Method for preparing metal molding compositions
EP1685263A1 (en) Method for producing a component provided with a metal matrix and a fibre or particle reinforcement
JP2977841B2 (en) Manufacturing method of metal-ceramic composite material
JP4569053B2 (en) Superconducting wire manufacturing method and superconducting wire
JPS5893834A (en) Manufacture of inorganic fiber reinforced metallic composite material
JPS58104102A (en) Production of fiber reinforced porous composite material
CN115503295B (en) Energy-containing material sandwich fiber composite material rotary cylinder and preparation method thereof
JPS58144440A (en) Method and apparatus for making copper-carbon conjugate fiber
JPS591780B2 (en) Method for manufacturing preliminary metal moldings