JPS58166639A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS58166639A
JPS58166639A JP57049496A JP4949682A JPS58166639A JP S58166639 A JPS58166639 A JP S58166639A JP 57049496 A JP57049496 A JP 57049496A JP 4949682 A JP4949682 A JP 4949682A JP S58166639 A JPS58166639 A JP S58166639A
Authority
JP
Japan
Prior art keywords
fiber
electrode
phosphoric acid
fuel cell
kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57049496A
Other languages
Japanese (ja)
Inventor
Jinichi Imahashi
甚一 今橋
Kenzo Ishii
石井 謙蔵
Seiji Takeuchi
瀞士 武内
Toshiki Kahara
俊樹 加原
Akio Honchi
章夫 本地
Shinpei Matsuda
松田 臣平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP57049496A priority Critical patent/JPS58166639A/en
Publication of JPS58166639A publication Critical patent/JPS58166639A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve strength of an electrode catalytic layer, by mixing phosphoric acid resistant fiber of matrix material, silicon carbonide fiber, graphite silicon fluorid fiber, etc. in a catalytic active ingredient of a pair of electrodes having a catalytic active gradient. CONSTITUTION:Electrode catalytic powder holding noble metal to carbon powder, matrix material fiber, silicon carbonide fiber, graphite silicon fluorid fiber, etc. are mixed, added with water and kneaded by a kneader or the like. Polytetrafluoroethylene dispersion of an organic binder is added to the above kneaded material again kneaded. This kneaded material is applied to an electrode base material, dried and fired to form an electrode plate. In this way, strength of an electrode catalytic layer can be improved.

Description

【発明の詳細な説明】 本発明は、リン酸を電解質とする燃料電池に係fi、4
11に導電性基材上に触媒活性成分を有する電極の強度
を改普する丸めに触媒活性成分中に耐リン酸性繊維を混
在させた燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell using phosphoric acid as an electrolyte.
Item 11 relates to a fuel cell in which phosphoric acid-resistant fibers are mixed in a catalytically active component to improve the strength of an electrode having a catalytically active component on a conductive base material.

従来、リン酸を電解質とする燃料電池に用いる電極板は
、炭素粉末に活性成分を担持した電極触媒を、結着剤と
して有機バインダであるポリテトラフルオロエチレンと
混合して、導電性基材上に塗布し、焼成することくよシ
形成されていた。塗布された電極触媒は、ポリテトラフ
ルオロエチレンだけの結着力で導電性基材に結着されて
いるので、導電性基材との結着力が弱いため、電極触媒
がはく離したり、炭素粉末粒子間の結着力が弱いことか
ら、電極板触媒層に亀裂が入る欠点があった。
Conventionally, electrode plates used in fuel cells using phosphoric acid as an electrolyte are made by mixing an electrode catalyst in which active ingredients are supported on carbon powder with polytetrafluoroethylene, an organic binder, on a conductive substrate. It was formed by coating and firing. The applied electrode catalyst is bound to the conductive substrate by the binding force of polytetrafluoroethylene alone, so the binding force with the conductive substrate is weak, so the electrode catalyst may peel off or carbon powder particles may form. Since the binding force between the electrode plates is weak, cracks may occur in the electrode plate catalyst layer.

本発明の目的は、電極触媒層の強度を高め九燃料電池を
提供することにある。
An object of the present invention is to provide a fuel cell with improved strength of the electrode catalyst layer.

本発明は、導電性基材上の触媒活性成分中に1耐リン酸
性繊繍を滉大したものである。
The present invention is an enhancement of a phosphoric acid resistant fabric in a catalytically active component on a conductive substrate.

触媒活性成分を有する電極触媒の強度を向上させる物質
としては、耐リン酸性を有するもの、高温(190c〜
200C)のリン酸に足表であること、触媒の活性を阻
害しないこと、電極触媒と親和性があり繊維であ″るこ
とが考えられる。それらの条件を満足する物質を種々検
討した結果、高温でリン酸に耐えるものとしては、炭化
物、酸化物などの6樵の無機物が適していることが判っ
た。
Substances that improve the strength of electrode catalysts containing catalytically active components include those that have phosphoric acid resistance, high temperature (190C ~
It is thought that it is compatible with phosphoric acid (200C), does not inhibit the activity of the catalyst, has an affinity with the electrode catalyst, and is a fiber.As a result of examining various substances that satisfy these conditions, we found that It has been found that inorganic materials such as carbides and oxides are suitable as materials that can withstand phosphoric acid at high temperatures.

その中でも、1トリツクス材料、フッ化黒鉛及び炭化珪
素繊維などが適していることが判った。マトリックス材
料の繊維が電極板触媒層に存在すると触媒層内にも三相
界面ができることが予想され、性能向上にも寄与するこ
とが考えられる。それらのことから、電極触]11KK
耐リン酸性繊繍を添加混線し、導電性基材に塗布、焼成
して電極板を形成することを試み九。その結果、電極板
触媒層の強度及びその電極板の性能も向上した。
Among them, it has been found that 1 trix material, fluorinated graphite, silicon carbide fiber, etc. are suitable. If fibers of the matrix material are present in the catalyst layer of the electrode plate, it is expected that a three-phase interface will also be formed within the catalyst layer, which is thought to contribute to improved performance. For these reasons, electrode contact] 11KK
An attempt was made to form an electrode plate by adding phosphoric acid-resistant woven wire, coating it on a conductive base material, and firing it.9. As a result, the strength of the electrode plate catalyst layer and the performance of the electrode plate were also improved.

実施例 1 電極触媒は、カーボン粉末に貴金属を担持させ次ものを
使用し、その電極触媒粉末8gとマ) IJラックス料
繊維5j141:混合し、それに水を添加してニーダで
十分に混練した。その滉練物に有機バインダのポリテト
ラフロオロエチレンのディスバージ盲ン8gを添加して
ふたたび混練し九、その1111紳物を電極の基材に塗
布し、その後、乾燥、焼成して電極板を得た。従来の方
法は、電極触媒粉末8gにポリテトラフルオロエチレン
flltf14にト水をニーダによ如混線した。その後
の工程は、本発明の方法と同一で行った。第11!!I
に、本発明によって得九電極板と従来法でIj4刺した
電極板の衝撃テストの結果を示す。この衝撃テスト方法
は、電極板を固定しその上に一定の高さから一定重量の
硬球を落下させて脱落した電極触媒の量により強度を比
較した。その計算式を次式に示す。
Example 1 The following electrode catalyst was prepared by supporting noble metals on carbon powder, and 8 g of the electrode catalyst powder was mixed with 5j141 IJ lux fiber, water was added thereto, and the mixture was sufficiently kneaded in a kneader. 8g of organic binder polytetrafluoroethylene dispersion binder was added to the mixture and kneaded again.The 1111 mixture was applied to the base material of the electrode, and then dried and fired to obtain an electrode plate. Ta. In the conventional method, 8 g of electrode catalyst powder was mixed with polytetrafluoroethylene flltf14 and water using a kneader. The subsequent steps were performed in the same manner as the method of the present invention. 11th! ! I
2 shows the results of an impact test of the nine electrode plates obtained according to the present invention and the electrode plates pierced with Ij4 according to the conventional method. In this impact test method, an electrode plate is fixed and a hard ball of a certain weight is dropped onto the plate from a certain height, and the strength is compared based on the amount of electrode catalyst that falls off. The calculation formula is shown below.

第1表に実験の結果を示す。従来法によシ形成した電極
板の重量変化は35%であるのに対して、電極触媒に!
トリックス材料繊維を添加して形成され走電1板の重量
変化は2%と著しく強度が向上した。また、本発明で形
成された電極板と従来法で形成された電極板の性能につ
いて、190rリン酸中にて空気を供給し走時の空気極
としての単極電位を測定して評価した0図は本実施例で
得た電極板の電流密度−゛電位特性を符号iで示し、従
来の方法で得た電極板の電流密度−電位特性を符号2で
示す。この図からも明らかなように、本発明で調製した
電極板を用いると性能が向上することが判った。この性
能が向上する要因としては、マ) IJラックス料繊維
が電極触媒層に含まれているので、その繊維がリン酸を
保持するマ) IJラックス接する面からリン酸を吸収
し、電極触媒層の中に4三相界面ができる丸めであると
考える。
Table 1 shows the results of the experiment. The weight change of the electrode plate formed by the conventional method is 35%, but in the electrode catalyst!
The weight change of the galvanic single plate formed by adding TRIX material fibers was 2%, and the strength was significantly improved. In addition, the performance of the electrode plate formed by the present invention and the electrode plate formed by the conventional method was evaluated by supplying air in 190R phosphoric acid and measuring the monopolar potential as an air electrode during running. In the figure, the symbol i indicates the current density-potential characteristic of the electrode plate obtained in this example, and the symbol 2 indicates the current density-potential characteristic of the electrode plate obtained by the conventional method. As is clear from this figure, it was found that the performance was improved when the electrode plate prepared according to the present invention was used. Factors that improve this performance include (1) IJ lux material fibers are included in the electrode catalyst layer, so the fibers retain phosphoric acid; (4) IJ lux absorbs phosphoric acid from the surface in contact with the electrode catalyst layer It is considered to be a rounding that creates 4 three-phase interfaces within.

実施例 2 電極触媒8gと炭化珪素繊維sgt混合し、それに水を
添加してニーダで十分に混練した債、ポリテトラフルオ
ロエチレンを1g添加して混練した。その値の工程は、
実施例1と同一方法により電極板を得た。上記で得られ
走電極板の衝撃テストの実験を行い、第1表に示す結果
を得た。纂1表から、炭化珪素繊維添加により強度が向
上することが判った。
Example 2 8 g of an electrode catalyst and silicon carbide fiber SGT were mixed, water was added thereto, and 1 g of polytetrafluoroethylene was added and kneaded. The value process is
An electrode plate was obtained by the same method as in Example 1. An impact test was conducted on the running electrode plate obtained above, and the results shown in Table 1 were obtained. From Table 1, it was found that the addition of silicon carbide fibers improved the strength.

第1表 本IA明によれば、以上述べた効果のほかに下記に示す
効果が得られる。
According to the present invention shown in Table 1, in addition to the effects described above, the following effects can be obtained.

すなわち電極触媒にマ) 17ツクス材料繊維、炭化珪
素la#1を添加し走電極板は、従来の方法で得られた
電極板よシも10倍11&も強度が向上し、電池性能が
向上する。
In other words, the strength of the running electrode plate by adding 17Tx material fiber and silicon carbide LA#1 to the electrode catalyst is 10 times stronger than that of the electrode plate obtained by the conventional method, and the battery performance is improved. .

【図面の簡単な説明】[Brief explanation of the drawing]

図は、従来法と本発明の電極板を用いた性能比IIR図
である。 第1頁の続き ■出 願 人 日立化成工業株式会社 東京都新宿区西新宿2丁目1番 1号 177−
The figure is a performance ratio IIR diagram using the conventional method and the electrode plate of the present invention. Continued from page 1 ■ Applicant Hitachi Chemical Co., Ltd. 177-2-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo

Claims (1)

【特許請求の範囲】 t 多孔性導電性基材上に触媒活性成分を有する一対の
電極と、前記電極間に配置された電解質保持マトリック
スとを有する燃料電池において、前記触l5WI性成分
中に耐リン酸性繊維を混在させたことを特徴七する燃料
電池。 2、特許請求の範囲第1項Kかいて、前記耐リン酸性繊
維がマ) IJックメ材料から1khことを特徴とする
燃料電池。 1 特許請求の範囲第131において、前記耐リン酸性
繊維が炭化珪素繊細かもなる。ことを特徴とする燃料電
池。 表 特許請求の範囲第1項において、前記耐リン酸性繊
−がフッ化黒鉛繊繍から1に1仁とを特徴とする燃料電
池。
[Scope of Claims] t. A fuel cell comprising a pair of electrodes having a catalytically active component on a porous conductive substrate and an electrolyte retention matrix disposed between the electrodes, wherein the catalytic component contains a catalytically active component. A fuel cell characterized by mixing phosphoric acid fibers. 2. A fuel cell according to claim 1, wherein the phosphoric acid-resistant fiber is made of an IJ material. 1. In claim 131, the phosphoric acid-resistant fiber is made of silicon carbide. A fuel cell characterized by: Table 1. The fuel cell according to claim 1, wherein the phosphoric acid-resistant fiber is made of fluorinated graphite fiber.
JP57049496A 1982-03-27 1982-03-27 Fuel cell Pending JPS58166639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049496A JPS58166639A (en) 1982-03-27 1982-03-27 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049496A JPS58166639A (en) 1982-03-27 1982-03-27 Fuel cell

Publications (1)

Publication Number Publication Date
JPS58166639A true JPS58166639A (en) 1983-10-01

Family

ID=12832750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049496A Pending JPS58166639A (en) 1982-03-27 1982-03-27 Fuel cell

Country Status (1)

Country Link
JP (1) JPS58166639A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095862A (en) * 1983-10-31 1985-05-29 Toshiba Corp Fuel cell
JPS6124157A (en) * 1984-07-13 1986-02-01 Toshiba Corp Fuel cell
US4898631A (en) * 1988-01-15 1990-02-06 California Institute Of Technology Method for fabricating ceramic filaments and high density tape casting method
US4957673A (en) * 1988-02-01 1990-09-18 California Institute Of Technology Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells and method for fabrication thereof
US5057362A (en) * 1988-02-01 1991-10-15 California Institute Of Technology Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095862A (en) * 1983-10-31 1985-05-29 Toshiba Corp Fuel cell
JPS6124157A (en) * 1984-07-13 1986-02-01 Toshiba Corp Fuel cell
US4898631A (en) * 1988-01-15 1990-02-06 California Institute Of Technology Method for fabricating ceramic filaments and high density tape casting method
US4957673A (en) * 1988-02-01 1990-09-18 California Institute Of Technology Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells and method for fabrication thereof
US5057362A (en) * 1988-02-01 1991-10-15 California Institute Of Technology Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells

Similar Documents

Publication Publication Date Title
US4716087A (en) Platinum-copper alloy electrocatalyst and acid-electrolyte fuel cell electrode using the same
US9786925B2 (en) Fuel cell and fuel cell use gas diffusion electrode
US4822699A (en) Electrocatalyst and fuel cell electrode using the same
JP4938179B2 (en) Polymer electrolyte-gas distribution structure for fuel cell, membrane-electrode unit for this type of battery, polymer electrolyte-fuel cell, and method for manufacturing gas distribution structure
SU791204A3 (en) Method of preparing catalyst for electrochemical hydrogen oxidation or oxygen reduction
JPH0510978B2 (en)
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
AU2016352909B2 (en) Improved electrode for redox flow battery
JPH01189866A (en) Electrode for fuel cell and manufacture thereof
US20010018145A1 (en) Gas diffusion electrode and method for its production
JPS58166639A (en) Fuel cell
JPS6340356B2 (en)
US7682725B2 (en) Gas diffusion electrode and method for its production
JPH05234599A (en) Gas-diffusion electrode for fuel cell and its manufacture
JPH0722020B2 (en) Method for manufacturing gas diffusion electrode
JPH03252058A (en) Electrode catalyst layer for fuel cell
JPS62154464A (en) Electrode catalyst layer for fuel cell
JP2616061B2 (en) Phosphoric acid fuel cell
JPH061700B2 (en) Composite electrode for fuel cell
JPS6240822B2 (en)
JPH04274167A (en) Electrode catalyst layer for fuel cell
JPS6343260A (en) Manufacture of fuel cell
JPH0727777B2 (en) Methanol fuel cell
RU2066900C1 (en) Oxygen electrode catalyst for fuel cell with alkaline electrolyte
JPH01246765A (en) Electrode of fuel cell