JPS58164257A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58164257A
JPS58164257A JP4847882A JP4847882A JPS58164257A JP S58164257 A JPS58164257 A JP S58164257A JP 4847882 A JP4847882 A JP 4847882A JP 4847882 A JP4847882 A JP 4847882A JP S58164257 A JPS58164257 A JP S58164257A
Authority
JP
Japan
Prior art keywords
resistors
polycrystalline silicon
resistor
resistance
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4847882A
Other languages
Japanese (ja)
Other versions
JPH0225259B2 (en
Inventor
Kazuo Ogasawara
和夫 小笠原
Giichi Kato
義一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4847882A priority Critical patent/JPS58164257A/en
Publication of JPS58164257A publication Critical patent/JPS58164257A/en
Publication of JPH0225259B2 publication Critical patent/JPH0225259B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Abstract

PURPOSE:To obtain a resistance circuit network which has high integration and high accuracy by alternately arranging the first and second polysilicon resistors insulated from each other on an insulating film of an Si substrate and connecting the resistors equally in number. CONSTITUTION:The first polysilicon unit resistors 5 are formed by a photoetching method on an oxidized film 8 on an Si substrate 10, an oxidized film 9 is covered, and the second polysilicon unit resistors 6 are similarly formed. Accordingly, the resistors of approx. double in number can be formed on the same area. Windows 7 are opened, and lead conductors 1-3 and mutually connecting conductors 4 are then formed. Since the unit resistors are equal in number even if the variation in the resistor is independently produced due to different impurity diffusion amounts of the first and second polysilicons, the ratio of the resistance values can be maintained constantly. The time constant of the CR is controlled by the diffusion of the impurity, thereby forming a CR filter having high integration and high accuracy.

Description

【発明の詳細な説明】 本発明は抵抗回路網を備えてなる半導体装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device including a resistor network.

近年、半導体装置の応用分野の拡大はめざオしいものが
あ〕、従来個別部品、または調整技術を用いて十分な精
度が必要とされる分野への急速に浸透している。
In recent years, the field of application of semiconductor devices has been expanding at a remarkable pace, and semiconductor devices are rapidly penetrating fields that require sufficient precision using conventional individual components or adjustment techniques.

このような−例として、アナログ信号をデジタル信号に
変換すゐアナログ・デジタル変換信号処理の分野につい
て考えてみると、アナログ信号の如き時間連続信号をサ
ンプリングす、ることに時間離散信号(パルス振幅変調
)となした後、振幅を量子化することくよりデジタル信
号に変換することになる。このため、アナログ・デジタ
ル変換回路にしては轟然サンプル・ホールド回路が必要
となる。
As an example of this, consider the field of analog-to-digital conversion signal processing, where analog signals are converted into digital signals. After modulation), the amplitude is converted into a digital signal without being quantized. For this reason, an analog-to-digital conversion circuit requires a sample-and-hold circuit.

アナログ信号をある周期でサンプル・ホールドしデジタ
ル信号に変換する際には、その変換系の精度を確保する
えめに折夛返し歪防止用フィルタを用いて入力されるア
ナログ信号の帯域制限が必要となる。
When converting an analog signal into a digital signal by sampling and holding it at a certain period, it is necessary to limit the band of the input analog signal using a filter to prevent repeat distortion in order to ensure the accuracy of the conversion system. Become.

例えば4幻りのアナログ信号をデジタル信号に変換する
ときにFi、、 ?ンプリング定理によシ、すンプリン
グ周期は128μ5ec(サンプリング周波数gKHz
に相癲)が最小周期となる。すなわち、折ル返し歪をさ
ける丸めには、入力されるアナ■グ信号に対して帯域制
限することが必要である。
For example, when converting a phantom analog signal to a digital signal, Fi...? According to the sampling theorem, the sampling period is 128μ5ec (sampling frequency gKHz
) is the minimum period. That is, for rounding to avoid aliasing distortion, it is necessary to band limit the input analog signal.

この目的のため、半導体装置として用いられてきた技術
は、多結晶シリコンを九は拡散抵抗を抵抗体として用い
、絶縁体を誘電体として用いえ容量によシ、半導体基板
上にCR74ルタを構成するのが通常で6つ九。
For this purpose, the technology that has been used for semiconductor devices is to use polycrystalline silicon, diffused resistors as resistors, insulators as dielectrics, and capacitances. It is normal to do 6 to 9.

01時定数を大きくシ、フィルタ′の動作周波数を低周
波領域まで拡げるためには、抵抗体の抵抗値Rを大きく
するが、容量Cを大きくするしかないことは明らかであ
る。
In order to increase the 01 time constant and extend the operating frequency of the filter to a low frequency range, the resistance value R of the resistor is increased, but it is clear that the only option is to increase the capacitance C.

従来、この目的の九めには抵抗体の面積を大くとル抵抗
値を大きくするか、容量面積を大きくする等が考えられ
、半導体面積を大きくとることが必要であった。これを
さける九めには、多結晶シリコンに拡散する不純物量を
少なくし良紙抗体が考えられるが、このような抵抗体の
シート抵抗は非常に大きな値とな)、この変動を制御す
るのは容易ではない、単位客量値を大きくすゐことは容
量誘電体の膜厚を薄くすれば可能であるが製造時の誤差
を考えればおのずから大きくすゐことに限界があう九。
Conventionally, this objective has been achieved by increasing the area of the resistor to increase the resistance value or increasing the capacitance area, and it has been necessary to increase the semiconductor area. A ninth way to avoid this is to reduce the amount of impurities that diffuse into polycrystalline silicon and use a high-quality paper antibody, but since the sheet resistance of such resistors is extremely large), it is difficult to control this variation. It is not easy to increase the unit volume value.Although it is possible to increase the unit volume value by reducing the thickness of the capacitive dielectric, there is a limit to how much it can be increased if manufacturing errors are taken into account9.

オた。CMO8勢て使用されるPフェル、Nf)−ル勢
の領域を用し良紙抗体も考えられるが、これらの抵抗体
は電圧対抵抗値の係数が大きいこと、オ九接合容量が大
きい友め、周波数特性が劣化する欠点を有してい友。
Ota. It is also possible to use good paper antibodies using the P-fer and Nf)-ru regions used in CMO8, but these resistors have a large voltage-to-resistance coefficient and a large O9 junction capacitance. , which has the disadvantage of deteriorating frequency characteristics.

本発明はかかる欠点のない、半導体面積を最小となし、
比*1の優れ良紙抗体を複数の多結晶シリコンを単位抵
抗体群を用いて構成することが可能となう、半導体装置
の応用分野の拡大に非常に有効である半導体装置を提供
することを目的とする。
The present invention is free from such drawbacks, minimizes semiconductor area,
To provide a semiconductor device which is extremely effective in expanding the field of application of semiconductor devices, in which an excellent paper antibody with a ratio of *1 can be constructed using a plurality of polycrystalline silicon units and a group of unit resistors. With the goal.

本発明は、シリコン基板上に形成された絶縁膜上の第1
多結晶シリコンによ〕構成され良路1抵抗体群と、前記
第1の多結晶シリコンと絶縁属を介して形成された第2
の多結晶シリコンより構成された第2抵抗体群を有し、
第1抵抗体評の関にそれぞれ第2抵抗体群を形成し、相
互接続導体によp相互接続を行ない、第1および第2の
抵抗体群の相互接続本数が同じである合成抵抗体が少な
くとも2組以上有した仁とを特徴とする半導体装置にあ
る。
The present invention relates to a first film on an insulating film formed on a silicon substrate.
a first resistor group made of polycrystalline silicon; and a second resistor group formed with the first polycrystalline silicon via an insulating material.
a second resistor group made of polycrystalline silicon;
A composite resistor is formed in which a second resistor group is formed at each of the first resistor groups, p-interconnection is performed by an interconnection conductor, and the first and second resistor groups have the same number of interconnections. There is a semiconductor device characterized by having at least two or more pairs.

以下実施例を用いて本発911を詳細に説明する。The present invention 911 will be explained in detail below using examples.

本発明は第1抵抗体層とするべき第1多結晶シリ;ンと
、第2抵抗体層とするべき第2多結晶シリ;ンを組合せ
ることにより半導体装置の面積を大幅に減小すると伴に
合成抵抗体の製造に対する変動に対し感度を最小限にで
きることを特徴とするものであシ、その第1の実施例の
説明図を第1図偵)および伽)に示す、第1図(1)は
本発明の第1の実施例の平面図、第1wJΦ)は第1図
(a)におけるX++ X/断面の断面図をそれぞれ示
す。
The present invention significantly reduces the area of a semiconductor device by combining a first polycrystalline silicon to be used as a first resistor layer and a second polycrystalline silicon to be used as a second resistor layer. The first embodiment is characterized in that sensitivity to variations due to manufacturing of the composite resistor can be minimized. (1) is a plan view of the first embodiment of the present invention, and 1wJΦ) is a sectional view of the X++X/ section in FIG. 1(a).

第1図において、シリコン基板10の上に熱駿化勢によ
シ形成された酸化膜8の上に形成された第1多結晶シリ
コン単位抵抗5および第1多結晶シリコン単位抵抗を写
真触刻技術郷を用いてパターン化し熱酸化等で酸化膜9
を形成する。更に第2多結晶シリコン単位抵抗を前記第
1多結晶シリコン単位抵抗と同様に形成する。しかる後
に、コンタクト7を闘け、引き出し導体1.2および3
と相互接続導体4によ〕構成された2本の抵抗の一実施
例である。&お、第1図の説@において第1および第2
多結晶シリコンに不純物拡散を行うとの説明が省略しで
あるが、これは行なっても真いし行なわなくても良い、
ただし、01時定数を制御するためには不純物拡散を行
うのが通常である。
In FIG. 1, a first polycrystalline silicon unit resistor 5 and a first polycrystalline silicon unit resistor formed on an oxide film 8 formed on a silicon substrate 10 by thermal oxidation are photographically engraved. The oxide film 9 is patterned using a technology and thermally oxidized.
form. Furthermore, a second polycrystalline silicon unit resistor is formed in the same manner as the first polycrystalline silicon unit resistor. After that, connect contact 7 and pull out conductors 1.2 and 3.
and an interconnection conductor 4]. &O, in the theory of Figure 1 @, the first and second
The explanation that impurity diffusion is performed in polycrystalline silicon is omitted, but this can be done or not.
However, in order to control the 01 time constant, impurity diffusion is usually performed.

第1図の如き構成とすることにょシ、従来、多結晶シリ
コンを写真触刻技衝等を用いて形成するI4に多結晶シ
リコンのひげ等による短絡を防ぐために必要とされる間
隔が必要なくな〕、半導体装置の面積を大きくとる必要
がないことは明らかである。
By adopting the configuration shown in Figure 1, there is no need for the spacing required to prevent short circuits due to whiskers of polycrystalline silicon, etc., in I4, which is conventionally formed using polycrystalline silicon using a photoengraving technique. Note that it is clear that there is no need to increase the area of the semiconductor device.

すなわち、JIII多結晶シリコンt−岑真触刻技術等
で形成し良後、酸化膜を形成し、第2多結晶シリコンを
形成する友め、第1多結晶シリコンと第2多結晶シリコ
ン間に電気的導通は生じず、この丸め、同−面積内に約
2倍の抵抗を作ることが可能となる。この[明のため#
I1図−)があLJlil多結晶シリコンと第2多結晶
シリ;ンの間には酸化膜が介在する九め、電気的導通は
生じない。
That is, after forming the JIII polycrystalline silicon using the t-crystalline engraving technique or the like, an oxide film is formed to form the second polycrystalline silicon between the first polycrystalline silicon and the second polycrystalline silicon. No electrical continuity occurs, and this rounding makes it possible to create approximately twice the resistance within the same area. For this [Ming #
Since there is an oxide film between the polycrystalline silicon and the second polycrystalline silicon (Fig. I1), no electrical conduction occurs.

更に、第1多結晶シリコンおよび第2多結晶シリ;ンに
それぞれ不純物を拡散し九ときを考えてみても、不純物
拡散の変動によp生ずるそれぞれの層抵抗の変化は独立
に生ずるものの、引き出し導体lおよび2関に形成され
為合成抵抗の抵抗値と、引き出し導体2および3間に形
成される合成抵抗の抵抗値との比は、それぞれの合成抵
抗を形成している第1および112多結晶シリコンの単
位抵抗の本数がそれぞれ等、しいため、層抵抗の変化に
対しても、抵抗値の比は一定に保たれる仁とになる。
Furthermore, even if we consider the case where impurities are diffused into the first polycrystalline silicon and the second polycrystalline silicon, the changes in the resistance of each layer caused by changes in impurity diffusion occur independently, but the The ratio of the resistance value of the combined resistance formed between the conductors 1 and 2 and the resistance value of the combined resistance formed between the lead-out conductors 2 and 3 is determined by Since the number of unit resistors in crystalline silicon is equal to each other, the ratio of resistance values remains constant even when the layer resistance changes.

このため、第1および第2多結晶シリコンに拡散する不
純物量が#Il多結晶シリプンと第2多結晶シリ;ンで
相異している場合においても、合成抵抗の抵抗値比は一
定に保九れるのは明らかであろう。
Therefore, even if the amount of impurities diffused into the first and second polycrystalline silicon is different between the #Il polycrystalline silicon and the second polycrystalline silicon, the resistance value ratio of the combined resistance remains constant. It's obvious that it will go down.

なお本発−のjlllの実施例の説明図社−例として示
し良もので套夛、それぞれの合成抵抗を形成する第1お
よび第2多結晶シリコンによる単位抵抗が同数であれば
第1および111112多結晶シリコン単位抵抗の本数
は何本でありでも良い。
In addition, the illustration of the embodiment of Jllll of this invention is shown as an example.If the number of unit resistors made by the first and second polycrystalline silicon forming each composite resistance is the same, the first and 111112 The number of polycrystalline silicon unit resistors may be any number.

第2図は本発明の第2のlI麹例の平面図による説明図
である。#12m11位第1図と比較して合成艦。
FIG. 2 is an explanatory plan view of a second example of lI koji according to the present invention. #12m11th Composite ship compared to Figure 1.

抗体間の抵抗値比を大きくするのに適し良ものである。It is suitable for increasing the resistance value ratio between antibodies.

第2図は引童出し導体11および120間の合成抵抗を
第1多結晶シリコンのj111単位抵抗15と第2多結
晶シリコンの第1単位抵抗16を相互接続導体とコンタ
クト19によシ相亙接続したものと、1s1多結晶シリ
コンの@2単位抵抗17と第2多結晶シリコンの第8単
位抵抗18をコンタクト20と相互接続導体14によp
引き出し導体12および130間に合成抵抗を構成し九
−例である。
FIG. 2 shows the combined resistance between the lead-out conductors 11 and 120 by connecting the first unit resistor 15 of polycrystalline silicon and the first unit resistor 16 of second polycrystalline silicon to the interconnecting conductor and contact 19. 1s1 polycrystalline silicon@2 unit resistor 17 and a second polycrystalline silicon eighth unit resistor 18 by contact 20 and interconnect conductor 14.
This is an example in which a combined resistance is constructed between the lead-out conductors 12 and 130.

本発明の第2の実施例は前記第1の実施例の利点を受け
つぐとともに、金成抵抗間の抵抗値比の精度は若干低下
するものの抵抗値比の大きな抵抗を第1f)l!施例と
比較して、より小さな面積に実現できるものであ)、抵
抗値比の大きな抵抗が必要なIIK非常に有効な手段を
提供するものである。
The second embodiment of the present invention inherits the advantages of the first embodiment, and uses a resistor with a large resistance value ratio (1f)l!, although the accuracy of the resistance value ratio between the metal resistors is slightly lowered. It can be realized in a smaller area compared to the embodiment), and provides a very effective means for IIK, which requires a resistor with a large resistance value ratio.

以上図面を用いて詳細に説明した如く、本発明の実施例
を用いれば、集積度の高く、比精度の優れ九牛導体装置
が実現でき牛導体装置の応用分野の拡大に有効である。
As described above in detail with reference to the drawings, by using the embodiments of the present invention, a nine-coat conductor device with a high degree of integration and excellent specific accuracy can be realized, which is effective in expanding the field of application of the cow-conductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および伽)は本発明の第1の実施例の平面
説明図および断面説明図、第2図は本発明の第2の実施
例の平面説明図をそれぞれ示す。 1.2.3.11.12.13°・・・・・引き出し導
体、4.14・・・・・・相互接続導体、5・・・・・
・第1多結晶シリコン単位抵抗、6・・・・・・第2多
結晶シリコン単位抵抗、7.19.20・°°・・・コ
ンタクト、8゜9.21・・・・・・酸化膜、10・・
・・・・シリコン基板、15・・・・・・纂1多結晶シ
リコンの第1単位抵抗、16・°・・・・尾2多結晶シ
リコンの第1単位抵抗、17°・・・・・第1多結晶シ
リコンの第2単位抵抗、18°・・°°°第2多結晶シ
リコンの第2単位抵抗。 31:し 1 ’ff1(?々、ン 争1回(ト) り
FIGS. 1(a) and 1) show a plan view and a cross-sectional view of a first embodiment of the present invention, and FIG. 2 shows a plan view of a second embodiment of the present invention. 1.2.3.11.12.13°...Output conductor, 4.14...Interconnection conductor, 5...
・First polycrystalline silicon unit resistance, 6...Second polycrystalline silicon unit resistance, 7.19.20・°°...Contact, 8°9.21...Oxide film , 10...
...Silicon substrate, 15...Birth 1 first unit resistance of polycrystalline silicon, 16...Tail 2 first unit resistance of polycrystalline silicon, 17°... Second unit resistance of first polycrystalline silicon, 18°...°°°Second unit resistance of second polycrystalline silicon. 31: 1 'ff1

Claims (1)

【特許請求の範囲】[Claims] シリコン基板上に形成された絶縁膜上の第1多結晶シリ
コンによ〕構成され良路1抵抗体群と、前記第1の多結
晶シリコンと絶縁膜を介して形成された第2の多結晶シ
リコンよ多構成され九第2抵抗体群とを有し、前記第1
抵抗体群の間にそれぞれ前記第2抵抗体群を形成し、相
互接続導体により相互接続を行ない、前記第1および第
2の抵抗体群の相互接続本数が同じであゐ合成抵抗体が
少なくとも2組以上有したことt−特徴とする半導体装
置。
a first polycrystalline resistor group formed of first polycrystalline silicon on an insulating film formed on a silicon substrate; and a second polycrystalline resistor group formed via the first polycrystalline silicon and the insulating film. a second resistor group made of silicon;
The second resistor groups are respectively formed between the resistor groups, and interconnected by interconnecting conductors, and the first and second resistor groups have the same number of interconnections, and a composite resistor has at least A semiconductor device characterized in that it has two or more sets.
JP4847882A 1982-03-25 1982-03-25 Semiconductor device Granted JPS58164257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4847882A JPS58164257A (en) 1982-03-25 1982-03-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4847882A JPS58164257A (en) 1982-03-25 1982-03-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS58164257A true JPS58164257A (en) 1983-09-29
JPH0225259B2 JPH0225259B2 (en) 1990-06-01

Family

ID=12804487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4847882A Granted JPS58164257A (en) 1982-03-25 1982-03-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58164257A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060760A (en) * 1997-08-13 2000-05-09 Tritech Microelectronics, Ltd. Optimal resistor network layout

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150286A (en) * 1975-06-18 1976-12-23 Matsushita Electric Ind Co Ltd Production method of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150286A (en) * 1975-06-18 1976-12-23 Matsushita Electric Ind Co Ltd Production method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060760A (en) * 1997-08-13 2000-05-09 Tritech Microelectronics, Ltd. Optimal resistor network layout

Also Published As

Publication number Publication date
JPH0225259B2 (en) 1990-06-01

Similar Documents

Publication Publication Date Title
JPS58164257A (en) Semiconductor device
JPH0455342B2 (en)
JPH0225260B2 (en)
JPS59191368A (en) Semiconductor device
JPS6412103B2 (en)
JPS58207664A (en) Semiconductor device
JPS6165464A (en) Manufacture of film resistor in thick film multilayer substrate
JPS5916360A (en) Semiconductor device
JPH0467666A (en) Semiconductor device
JPS62234363A (en) Semiconductor integrated circuit
JPH036858A (en) Master-slice type semiconductor integrated circuit device
JPS59104157A (en) Semicnductor device
JPH01253950A (en) Integrated circuit device equipped with polycilicon resistor
JPS61115345A (en) Integrated capacitor
JPS626702Y2 (en)
JPS5645068A (en) Manufacture of semiconductor
JPH02303001A (en) Thick film element
JPS58182918A (en) Voltage dividing circuit
JPS60167355A (en) Manufacture of semiconductor device
JPS63244860A (en) Extra-high speed semiconductor device
JPS59172247A (en) Manufacture of semiconductor device
JPH03108341A (en) Semiconductor device and manufacture thereof
JPS60214551A (en) Semiconductor capacitor
JPS6194353A (en) Semiconductor device
JPS60134458A (en) Semiconductor device