JPS58161860A - Ultrasonic flaw detection of steel pipe - Google Patents

Ultrasonic flaw detection of steel pipe

Info

Publication number
JPS58161860A
JPS58161860A JP57043726A JP4372682A JPS58161860A JP S58161860 A JPS58161860 A JP S58161860A JP 57043726 A JP57043726 A JP 57043726A JP 4372682 A JP4372682 A JP 4372682A JP S58161860 A JPS58161860 A JP S58161860A
Authority
JP
Japan
Prior art keywords
flaw detection
detector
flaw
length
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57043726A
Other languages
Japanese (ja)
Other versions
JPH03576B2 (en
Inventor
Tetsuo Nakano
中野 哲男
Yoshioki Komiya
小宮 善興
Tsuneo Sagawa
佐川 恒雄
Nobuaki Yako
矢光 信明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
JFE Engineering Corp
Original Assignee
Mitsubishi Electric Corp
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, NKK Corp, Nippon Kokan Ltd filed Critical Mitsubishi Electric Corp
Priority to JP57043726A priority Critical patent/JPS58161860A/en
Publication of JPS58161860A publication Critical patent/JPS58161860A/en
Publication of JPH03576B2 publication Critical patent/JPH03576B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/27Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Abstract

PURPOSE:To enable a high speed flaw detection of a steel pipe, tube end work or the like varied in the length by computing the range of the flaw inspection from measured value of the length of the steel pipe to detect flaws. CONSTITUTION:The tube end position of material to be inspected is determined with an alignment device 2 and the material is conveyed to a length detector 3 to measure the length thereof. The measured value is sent to a flaw mechanism arithmetic unit 6 of a flaw detector 5 from a length arithmetic device 4. The arithmetic unit 6 deternines the effective range of a flaw, the starting position of the flaw inspection, end position thereof and the like and simultaneously, the result of the computation is indicated to a driver 7, which moves the detector 8 to be fixed at a span and the position as specified. In the flaw detection, the material 9 being rolled by a roller 10, while the detector 8 is attached to the pipe with a lift 11 and sent straight. A tube is separated from the detector 8 by lifting it with a lift 11.

Description

【発明の詳細な説明】 本発明は鋼管の疵を超音波を使用して検出する鋼管の超
音波探傷方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection method for steel pipes that uses ultrasonic waves to detect flaws in steel pipes.

近年エネルギ資源の見直しが行なわれ、その−環として
石油の発掘、輸送に関連した工事が活発化している。そ
れに伴なって油井用鋼管の需要も増加している。油井用
鋼管の使用環境は深い井戸、高温、低温域、海底、ガス
等の劣悪な虐境が多くなっており、このため疵のないこ
とを始めとして品質的−こ優れた製品が要求されている
In recent years, energy resources have been reviewed, and construction related to oil excavation and transportation has become more active. Along with this, demand for steel pipes for oil wells is also increasing. Steel pipes for oil wells are often used in harsh environments such as deep wells, high and low temperature areas, under the sea, and in gas, and for this reason, there is a demand for products with excellent quality, including the absence of defects. There is.

ところで、油井用鋼管にはドリルパイプ、ケーシング、
チュービング、ラインパイプ等があり、これらの管の長
さについては許容されるレンジは定められているが、特
別な指定がない限り、製造上の制約から定まった長さで
はなく乱尺が認められている。
By the way, steel pipes for oil wells include drill pipes, casings,
There are tubing, line pipes, etc., and the allowable range of the length of these pipes is determined, but unless there is a special specification, due to manufacturing constraints, irregular lengths are allowed instead of fixed lengths. ing.

また、ラインパイプを外いた品種の多くはパイプを接続
するために、ネジ加工をしたアプセット部がある。この
アプセット管1の例を第1図に示すが、加工は一般的に
は両端に行なわれ、複雑な形状となっている。
In addition, many of the models that have the line pipe removed have an upset section with a screw thread to connect the pipe. An example of this upset tube 1 is shown in FIG. 1, but machining is generally performed on both ends, resulting in a complicated shape.

鋼管の品質保証の1つの手段として非破壊検査があるが
、上述のような油井用銅管を高速に探傷精度を高く自動
探傷するには、従来の技術では以下のような問題がある
Nondestructive testing is one means of quality assurance for steel pipes, but conventional techniques have the following problems in automatically detecting oil well copper pipes at high speed and with high accuracy.

従来この種の非破壊検査は、検出器と被探傷材との相対
位置から接触式と非接触式とに分類され、また、検出器
と被探傷材との駆動方法に着目すれば第2図に示される
ように分類される6被探傷材の駆動には直送り、ラセン
送り、回転があり、検出器のそれには直送り、固定、回
転がある。探傷速度すなわち処理能力は、探傷条件によ
って異なるが一般的には同図に示した順位である。
Conventionally, this type of non-destructive testing is classified into contact type and non-contact type based on the relative position of the detector and the material to be tested. There are 6 types of drives for the materials to be tested, such as direct feed, helical feed, and rotation, and for detectors, there are direct feed, fixed, and rotation. The flaw detection speed, that is, the processing capacity varies depending on the flaw detection conditions, but is generally in the order shown in the figure.

乱尺材、管端加工材を従来の探傷方法により探傷した場
合法のような問題がある。
There are similar problems when flaw detection is performed on irregular length materials and tube end processed materials using conventional flaw detection methods.

Ill従来方式方式Bは機構上の制約から管端加工材の
探傷が不可能に近く実用化が困難である。
Ill Conventional Method B Due to mechanical limitations, it is almost impossible to detect flaws in the tube end processed material, making it difficult to put it into practical use.

Ibl方式Cはラモン送りに機構上の制約があり、高速
探傷ができない。
Ibl method C has mechanical limitations on Ramon feed and cannot perform high-speed flaw detection.

lcl実用化されているのは検出器が直進、材料が回転
する方式りである。しかしこの方式は検出器の層管及び
雌管の位置設定及び操作を人が介入する手動方式であり
、以下の問題点がある。
The type of lcl that has been put into practical use is one in which the detector moves in a straight line and the material rotates. However, this method is a manual method in which a person intervenes in positioning and operating the layer tube and female tube of the detector, and has the following problems.

lit操作員が介入する必要があるため、連続自動探傷
ができない。
Continuous automatic flaw detection is not possible because a lit operator must intervene.

Qt)手動操作のために検出器の設置数に峨界があり、
このため高速探傷ができない。□Qii)未探傷領域が
ランダムに発生する。
Qt) There is a limit to the number of detectors installed due to manual operation,
For this reason, high-speed flaw detection is not possible. □Qii) Undetected areas occur randomly.

Qす誤操作に譲り、設備の破損が発生し易い。Q: Equipment is easily damaged due to incorrect operation.

<v>検出器の操作員と探傷器の操作員とを必要とし、
操作員を複数員必要とする。
<v> Requires a detector operator and a flaw detector operator,
Requires multiple operators.

(VD機側操作のため、安全上完全な、設備ではな一本
発明は上述の問題点を解決したものであり、鋼管の長さ
を計測し、次にその計算値から一鋼管の探傷範囲を演算
し、その探傷範囲に複数個の検出器を層管して探傷し、
探傷稜雌管する、ことを特徴とし、長さの異なった鋼管
、管端加工材(アプセット管)等の高速探傷を可能にし
た鋼管の超音波自動探傷方法を提供するものである。な
お、本発明においてはアプセット部分の探傷は行なわな
いものとする。
(Since the VD machine side is operated, it is not a completely safe equipment.) The present invention solves the above-mentioned problem.The length of the steel pipe is measured, and then the flaw detection range of one steel pipe is determined from the calculated value. is calculated, multiple detectors are layered in the flaw detection range, and flaw detection is performed.
This invention provides an automatic ultrasonic flaw detection method for steel pipes, which is characterized in that the flaw detection ridge is a female pipe, and enables high-speed flaw detection of steel pipes of different lengths, pipe end processed materials (upset pipes), etc. Note that, in the present invention, flaw detection of the upset portion is not performed.

第6図は本発明番こ係る探傷方法を実施するための超音
波自動探傷装置の説明図であり、#!4図は同方法の説
1明図である。この第6図及び第4図に基づきながら本
発明に係る探傷方法の一実施例を説明する。
FIG. 6 is an explanatory diagram of an ultrasonic automatic flaw detection device for carrying out the flaw detection method according to the present invention. FIG. 4 is an explanatory diagram of the same method. An embodiment of the flaw detection method according to the present invention will be described based on FIGS. 6 and 4.

超音波自動探傷装置は、アライメント装置2、検尺装置
3、検尺演算器4、探傷装置5、探傷機構演算器6、検
出器駆動装置7、検出器8等から構成されている。
The automatic ultrasonic flaw detection device is composed of an alignment device 2, a measuring device 3, a measuring device 4, a flaw detecting device 5, a flaw detection mechanism calculating device 6, a detector driving device 7, a detector 8, and the like.

被探傷材は先ずアライメント装置2により管端位置が決
められ、検尺装置6へ搬送され、る。検尺装置6は被探
傷材の長さを計測する。計測された値は検尺演算器4か
ら探傷装置5の探傷機構演算器6へ送られる。探傷機構
演算器6では次の演算を行ない、探傷有効範囲、探傷開
始位置、終了位置等を求める。
The tube end position of the material to be inspected is first determined by the alignment device 2, and then conveyed to the measuring device 6. The measuring device 6 measures the length of the material to be inspected. The measured value is sent from the scale calculation unit 4 to the flaw detection mechanism calculation unit 6 of the flaw detection device 5. The flaw detection mechanism calculator 6 performs the following calculations to obtain the flaw detection effective range, flaw detection start position, end position, etc.

探傷有効範囲; Lo−L   (Ae++Ae*l・・・・・・・・・
・・・・・・・・・・・・・・・・・1llLO:  
探傷有効長さ L ; 検尺計測値 A4.□* ; 管端加工部長さ 基準点からの探傷開始位置及び終了位置;d* =AJ
+・・曲間曲・・・曲間・曲・曲間・・・・・曲間・・
(2)d意= DIr +Lo  ・・・曲・・曲・曲
間間開・・曲間・曲131dI:  開始位置 d2;  終了位置 上記の演算は被探傷材が探傷装置5に搬入される前に行
なわれる。
Effective flaw detection range; Lo-L (Ae++Ae*l...
・・・・・・・・・・・・・・・・・・1llLO:
Effective flaw detection length L; measuring value A4. □*; Flaw detection start position and end position from the pipe end length reference point; d* = AJ
+... Between songs... Between songs, songs, Between songs... Between songs...
(2) d meaning = DIr + Lo...Song...Song/Song gap/Song interval/Song 131dI: Start position d2; End position The above calculation is performed before the material to be tested is carried into the flaw detection device 5. It will be held in

探傷装置5の動作説明をする#lご、ここでその処理能
力°を上げるための方法について説明する。
At #l, where we will explain the operation of the flaw detection device 5, we will now explain a method for increasing its throughput.

従来方式C(第2図参照)の探傷速度は次式(4)に示
すように探傷ピッチと被探傷材の回転数とで決まる。
The flaw detection speed of conventional method C (see FIG. 2) is determined by the flaw detection pitch and the rotational speed of the material to be detected, as shown in the following equation (4).

V=NXP・・曲・・・曲間曲間・曲間・四囲曲間14
1V ;探傷速度 P ;探傷ピッチ N ;被探傷材の回転数 しかしながら探傷ピッチは検出能力により、回転数は周
速等により割織される。このため、探傷時間を短縮す伺
こは次式(うりの探傷距離を短くすれば良いことが解る
。従って、検出器の数を増せばよいことが解る。
V=NXP... Song... Between songs, between songs, between songs, between four songs 14
1V; flaw detection speed P; flaw detection pitch N; rotational speed of the material to be detected. However, the flaw detection pitch depends on the detection ability, and the rotational speed depends on the circumferential speed, etc. Therefore, it can be seen that the flaw detection time can be shortened by shortening the flaw detection distance. Therefore, it can be seen that the number of detectors can be increased.

t ” 晴=−・・曲間・・・・四重・・・四曲間曲・
・曲間+57【 ;探傷時間 L ;探傷距離 検出器が多数ある場合は、探傷有効長さとの関係から検
出器のスパン設定につぃそも演算することが必要となる
t ” Sunny=-...Between songs...Quadruple...Between songs...
・Song interval +57 [ ; Flaw detection time L ; Flaw detection distance If there are many detectors, it is necessary to first calculate the span setting of the detectors from the relationship with the effective flaw detection length.

ここで再び第6図に戻り、被探傷材が探傷装置5に搬入
されると、探傷機構演算器6はほぼ同時に検出器駆動装
置7・\演算結果を孔示し、検出器駆動装置7は検出器
8を移動し、指定されたスパン及び位置に合わせる。
Here, returning to FIG. 6 again, when the material to be tested is carried into the flaw detection device 5, the flaw detection mechanism calculator 6 almost simultaneously displays the calculation result of the detector drive device 7, and the detector drive device 7 detects Move the instrument 8 to match the specified span and position.

次に探傷は第4図に示されるように、被探傷材9をター
ニングローラ10によって回転し、検出器8を検出器昇
降装置11により層管し、検出器8を直送することによ
り行なう。
Next, as shown in FIG. 4, flaw detection is carried out by rotating the material 9 to be detected by a turning roller 10, moving the detector 8 through a layer tube by a detector lifting device 11, and directly transporting the detector 8.

検出器8の雌管は、演算された結果番こ基づいた指令に
より検出器昇降装置1°1を用σ)で、検出器8を上昇
せることにより行なわれる。
The female tube of the detector 8 is raised by raising the detector 8 using the detector lifting device 1°1 (σ) in accordance with a command based on the calculated result number.

なお本発明番こおいて層管とは非接触方式の場合は、検
出器を被探傷材の近傍にもっていき、探傷可能な状態に
することをいい、必ずしも検出器と被探傷材とが接触し
た状態にあることを意味するものではない。また、第2
図の方式との関連からいえば、各方式のいずれにも本発
明は適用できるが、処理能力に着目すれば方式C及びD
が好ましい方式であるといえる。
Note that in the case of the non-contact method with layer tubes in this invention, it refers to bringing the detector close to the material to be tested so that it can be detected, and it does not necessarily mean that the detector and the material to be tested are in contact with each other. It does not mean that it is in a current state. Also, the second
In relation to the methods shown in the figure, the present invention can be applied to any of the methods, but if we focus on processing capacity, methods C and D
It can be said that this is the preferable method.

以上の説明から明らかなように、本発明に係る鋼管の超
音波探傷方法は、鋼管の長さを計測し、次にその計測値
から鋼管の探傷範囲を演算し、その探傷範囲に複数個の
検出器を層管して探傷し、探傷後雌管することにしてい
るから、鋼管の長さが異なっている場合、管端加工材の
場合郷であっても未探傷領域を発生させるこさなくその
探傷が可能であり、また検出器が複数個設けられている
から探傷速度が早められ、上述の一連のステップは機械
化できるので無人化が可能となり、従って従来技術の問
題点が全て解決できるという優れた効果が得られている
As is clear from the above explanation, the ultrasonic flaw detection method for steel pipes according to the present invention measures the length of the steel pipe, then calculates the flaw detection range of the steel pipe from the measured value, and detects a plurality of flaws in the flaw detection range. The detector is installed in a layered tube for flaw detection, and then inserted into a female tube after flaw detection, so if the length of the steel tube is different, even if the tube end is processed, there will be no undetected area. The flaw detection is possible, and since multiple detectors are provided, the flaw detection speed is accelerated, and the series of steps mentioned above can be mechanized, making unmanned operation possible, thus solving all the problems of the conventional technology. Excellent effects have been obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアプセット管の説明図、第2図は検出器と被探
傷□、材の駆動方法の分類図、@3図は本発明に係る方
法を実施するための超音波自動探傷装置の説明図、ll
!4図は上記方法の説明図である。 1・・・アプセット管、2・・・アライメント装置、6
・・・検尺装置、4・・・検尺演算器、5・・・探傷−
置、6・・・探傷機構演算器、7・・・検出器駆動装置
、8・・・検出器、9・・・被探傷材、10・・・ター
ニングローラ、11・・・検出器昇降装置。 第1図 [2図 第3図 第4図
Figure 1 is an explanatory diagram of the upset tube, Figure 2 is a classification diagram of the detector, the flaws to be detected, and the method of driving the material, and Figure @3 is an explanation of the automatic ultrasonic flaw detection device for carrying out the method according to the present invention. Figure, ll
! FIG. 4 is an explanatory diagram of the above method. 1... Upset tube, 2... Alignment device, 6
... Measurement device, 4 ... Measurement calculator, 5 ... Flaw detection -
6... Flaw detection mechanism calculator, 7... Detector drive device, 8... Detector, 9... Material to be tested, 10... Turning roller, 11... Detector lifting device . Figure 1 [Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 鋼管の長さを計測し、次にその計測値から鋼管の探傷範
囲を演算し、その探傷範囲に被数個の検出器を層管して
探傷し、探傷發離管することを特徴とする鋼管の超音波
探傷方法。
The method is characterized in that the length of the steel pipe is measured, the flaw detection range of the steel pipe is calculated from the measured value, the flaw detection is carried out by placing several detectors in layers within the flaw detection range, and the flaw detection is completed and the pipe is separated. Ultrasonic flaw detection method for steel pipes.
JP57043726A 1982-03-20 1982-03-20 Ultrasonic flaw detection of steel pipe Granted JPS58161860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57043726A JPS58161860A (en) 1982-03-20 1982-03-20 Ultrasonic flaw detection of steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043726A JPS58161860A (en) 1982-03-20 1982-03-20 Ultrasonic flaw detection of steel pipe

Publications (2)

Publication Number Publication Date
JPS58161860A true JPS58161860A (en) 1983-09-26
JPH03576B2 JPH03576B2 (en) 1991-01-08

Family

ID=12671789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043726A Granted JPS58161860A (en) 1982-03-20 1982-03-20 Ultrasonic flaw detection of steel pipe

Country Status (1)

Country Link
JP (1) JPS58161860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911152A (en) * 2016-06-07 2016-08-31 赵海燕 Detection device and method for end external upset seamless steel tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134952U (en) * 1977-03-31 1978-10-25
JPS5599066A (en) * 1979-01-24 1980-07-28 Sumitomo Metal Ind Ltd Removal of pipe end signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134952U (en) * 1977-03-31 1978-10-25
JPS5599066A (en) * 1979-01-24 1980-07-28 Sumitomo Metal Ind Ltd Removal of pipe end signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911152A (en) * 2016-06-07 2016-08-31 赵海燕 Detection device and method for end external upset seamless steel tube
CN105911152B (en) * 2016-06-07 2018-09-07 赵海燕 The spy checking device and spy detecting method of end external upset (EU) seamless steel pipe

Also Published As

Publication number Publication date
JPH03576B2 (en) 1991-01-08

Similar Documents

Publication Publication Date Title
US9400162B2 (en) Device for measuring an internal or external profile of a tubular component
US20190091811A1 (en) Method and apparatus for measuring a pipe weld joint
US10054425B2 (en) Methods and systems for measurement and inspection of tubular goods
US4906927A (en) Eddy current flaw detecting apparatus and method thereof
JP2001033233A (en) Test method for tubular and bar-like object to be tested
US3535623A (en) Method and apparatus for inspecting a tubular member for inside and outside anomalies utilizing magnetic field detector means positioned on both the inside and outside surfaces
RU2596862C1 (en) Method and device for control of non-uniformity of thickness of walls of inaccessible pipelines
JPS58161860A (en) Ultrasonic flaw detection of steel pipe
CN110006992B (en) Pass-through vortex sensor and detection method
WO2011118681A1 (en) Steel pipe production equipment
Li et al. Helical-contact deformation measuring method in oil-gas pipelines
JP7028080B2 (en) Ultrasonic flaw detection method for welded parts of pipes
JPH0658750A (en) Measuring machine for pipe wall thickness and outer diameter
JP3199417B2 (en) Standard specimen for non-destructive inspection of piping
Bulychev et al. The UMD-104M device for testing reusable oil-well tubing
JPH112626A (en) Automatic judging method for flaw kind of flaw detection
JPS59183312A (en) Inspecting device for filamentous body
Frame Nondestructive Inspection of Tubular Products
JPS58172507A (en) Detecting device for extraordinary form of outer surface of pipe
JP2002090306A (en) Self-diagnostic method for surface inspection device
JPS60135760A (en) Ultrasonic flaw detecting method of tube base material part
JPH0540408Y2 (en)
JP4668629B2 (en) Inspection method and inspection apparatus for armature core
JPH01110248A (en) Defect monitor for inner surface of piping
JPS5928360Y2 (en) Open pipe seam position detection device