JPS58161784A - Manufacture of dimethyl thapsate - Google Patents

Manufacture of dimethyl thapsate

Info

Publication number
JPS58161784A
JPS58161784A JP57040711A JP4071182A JPS58161784A JP S58161784 A JPS58161784 A JP S58161784A JP 57040711 A JP57040711 A JP 57040711A JP 4071182 A JP4071182 A JP 4071182A JP S58161784 A JPS58161784 A JP S58161784A
Authority
JP
Japan
Prior art keywords
monomethyl
electrolysis
adipate
dodecanoate
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57040711A
Other languages
Japanese (ja)
Other versions
JPS5950755B2 (en
Inventor
Shigeru Tashiro
茂 田代
Kazunori Yamataka
山高 一則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57040711A priority Critical patent/JPS5950755B2/en
Publication of JPS58161784A publication Critical patent/JPS58161784A/en
Publication of JPS5950755B2 publication Critical patent/JPS5950755B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To carry out electrolysis until monomethyl adipate and monomethyl dodecanedioate are practically used up when dimethyl thapsate is manufactured, by electrolytically condensing the compounds, by carrying out electrolysis for a fixed time, adding the former compound, and continuously carrying out electrolysis. CONSTITUTION:A mixture of monomethyl dodecanedioate with 0.5-2.0 times as much monomethyl adipate as monomethyl dodecanedioate by mole is electrolytically condensed in a soln. of alkali metallic salts of the compounds in methanol by a batch system for a fixed time. Monomethyl adipate is then added, and electrolysis is continuously carried out. Thus, a sudden voltage rise which makes the succession of electrolysis impossible is prevented in the latter half of electrolysis. Accordingly, dimethyl thapsate can be manufactured industrially advantageously.

Description

【発明の詳細な説明】 本発明はタブシン酸ジメチルの新規な工業的製造方法に
関するものである。更に詳しくは、アジピン酸モノメチ
ルとドデヵンニ酸モノメチルとの交差コルベ電解縮合に
ょフタプシン酸ジメチルを製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel industrial method for producing dimethyl tabsinate. More specifically, the present invention relates to a method for producing dimethyl niophthapsinate by cross-Kolbe electrolytic condensation of monomethyl adipate and monomethyl dodecanoate.

タブシン酸ジメチルは香料、各種ポリマー、可塑剤等の
原料として極めて広範囲の用途を有するものである。特
に大環状ムスク系香料の原料として惨めて有用なもので
ある。
Dimethyl tabsinate has an extremely wide range of uses as a raw material for perfumes, various polymers, plasticizers, etc. It is particularly useful as a raw material for macrocyclic musk fragrances.

タブシン酸及びそのエステルの製造法としては次の様な
方法が提案されている。シクロヘキサノンとオレフィン
を原料としてフェントン試薬を用いて製造する方法、又
、n−アルカン又はモノカルボン喰を酵母を用いて二塩
基酸にする発酵法等種々の方法が提案されている。しか
しながら、これらの方法はいずれも反応工程が極めて長
かったり、特殊な試薬を用いたり、収率が低い等の問題
があり工業的製造法としては未だ十分なものとは言えな
い。またコルベ電解反応によるアゼライン酸モノエステ
ルからタブシン酸ジエステルを製造する方法が特公昭3
8−11116号公報、油化学。
The following methods have been proposed for producing tabsic acid and its esters. Various methods have been proposed, including a method for producing it using Fenton's reagent using cyclohexanone and olefin as raw materials, and a fermentation method for converting n-alkane or monocarboxylic acid into dibasic acid using yeast. However, all of these methods have problems such as extremely long reaction steps, use of special reagents, and low yields, and are still not sufficient as industrial production methods. In addition, a method for producing tabsic acid diester from azelaic acid monoester by Kolbe electrolytic reaction was published in
No. 8-11116, Oil Chemistry.

12.669(1963)等に開示されている。しかし
ながらこの方法は、陽イオン交換膜を用いて陽極室及び
陰極室に分離jることを必要とし、陽極液中の水濃度に
ついても30〜40重量−という値造法は陽イオン交換
膜を用いるため装置がamになるという問題や電流効率
が著しく低い等の間頑があり工業的製法としてはまだ十
分なものとは言えない。伺アジピン酸モノエステルを電
解縮合する方法に関して社、従来から活発に研究が行な
われておシ種々の知見が得られている。即ち、先に本発
明者ら゛が詳細な工業的実施輝術として、特開昭55−
158285号公報、特開昭56−44782号公報等
に開示している。しかしながらこの技術を率に応用しア
ジピン酸モノメチルとドデカンニ峻モノメチルからタブ
シン酸ジメチルを製造する場合、電解の後半において急
激な電圧の上昇が起り、電解が不可能となり未反応のア
ジピン酸モノメチル及びドデカン−酸モノメチルが多量
に残る。このアジピン酸モノメチル及びドデヵンニ酸モ
ノメチルが存在すると後工程のタブシン酸ジメチルの精
製においてアジピン酸モノメチル及びドデカンニ酸モノ
メチルを分離する丸めの装置が複雑となり、又、アジピ
ン酸モノメチル及びドデヵンニ酸モノメチルの損失、及
びタブシン酸ジメチルの製品純度の低下をまねくという
問題がある。
12.669 (1963), etc. However, this method requires separation into an anode chamber and a cathode chamber using a cation exchange membrane, and a cation exchange membrane is used to create a value for the water concentration in the anolyte of 30 to 40% by weight. Therefore, there are problems such as the device being an AM device and extremely low current efficiency, etc., and it cannot be said to be a sufficient method for industrial production. Research has been actively conducted on methods for electrolytically condensing adipic acid monoester, and various findings have been obtained. That is, the present inventors previously described a detailed industrial implementation method in Japanese Patent Application Laid-Open No.
This method is disclosed in Japanese Patent Application Laid-Open No. 158285, Japanese Patent Application Laid-open No. 56-44782, and the like. However, when applying this technology to produce dimethyl tabsinate from monomethyl adipate and monomethyl dodecane, a sudden voltage rise occurs in the latter half of electrolysis, making electrolysis impossible and unreacted monomethyl adipate and dodecane. A large amount of monomethyl acid remains. The presence of monomethyl adipate and monomethyl dodecanoate complicates the rounding device for separating monomethyl adipate and monomethyl dodecanoate in the purification of dimethyl tabucinate in the subsequent step, and also causes loss of monomethyl adipate and monomethyl dodecanoate. There is a problem in that it leads to a decrease in the product purity of dimethyl tabsinate.

本発明者らは、現在までに提案されている種々の方法が
持つ穐々の問題点を一挙に解決し得る工業的に有利な製
造法を提供すべく鋭意研究を行なった結果、先に本発明
者らが提案したアジピン酸モノメチルからセパシン酸ジ
メチルを製造する際の電解方法を応用し、仕込み液中の
アジピン酸モノメチルをドデカンニ酸モノメチルに対し
て05〜2.0倍モルにし一定時間電解したのちアジピ
ン酸モノメチルを添加し引続き電解することにより、電
解の継続が不可能となる急激な電圧の上昇を防止できる
ことを見出した。
The inventors of the present invention have conducted intensive research to provide an industrially advantageous manufacturing method that can solve all the problems of the various methods proposed to date. Applying the electrolytic method proposed by the inventors for producing dimethyl sepacate from monomethyl adipate, monomethyl adipate in the charging solution was made 05 to 2.0 times the mole of monomethyl dodecanoate and electrolyzed for a certain period of time. It has been found that by subsequently adding monomethyl adipate and continuing electrolysis, it is possible to prevent a sudden rise in voltage that would make it impossible to continue electrolysis.

本発明は以上に述べた知見に基づいてなされたものであ
り、急激な電圧上昇を押え、アジピン学モノメチル及び
ドデカンニ酸モノメチルが実質的になくなるまで電解を
行うことにより工業的に有利にタブシン酸ジメチルを製
造する方法を提供することを目的とするものである。
The present invention has been made based on the above-mentioned knowledge, and it is possible to industrially advantageously produce dimethyl tabsinate by suppressing a sudden voltage increase and carrying out electrolysis until adipic monomethyl and monomethyl dodecanoate are substantially eliminated. The purpose of this invention is to provide a method for manufacturing.

上記目的を達成した本発明のタブシン酸ジメチルを製造
する方法は、ドデヵンヱ酸モノメチルとドデカン三酸モ
ノメチルに対して0.5〜2.0倍モルのアジピン酸モ
ノメチルの混合物をそれらのアルカリ金属塩を含むメタ
ノール溶液中で一定時間回分的に電解縮合し、ついでア
ジピン酸モノメチルを更に添加して電解することを特徴
とするものである。
The method for producing dimethyl tabsinate of the present invention which achieves the above object is to add a mixture of monomethyl dodecanoate and monomethyl adipate in an amount of 0.5 to 2.0 times the mole of monomethyl dodecanetriate to their alkali metal salts. The method is characterized in that electrolytic condensation is carried out in batches for a certain period of time in a methanol solution containing methane, and then monomethyl adipate is further added and electrolyzed.

本発明のアジピン酸モノメチルとドデヵンニ酸モノメチ
ルからタブシン酸ジメチルへ交差コルベ電解縮合する方
法の詳細は次の様なものである。
Details of the method of cross-Kolbe electrolytic condensation of monomethyl adipate and monomethyl dodecanoate to dimethyl tabsinate according to the present invention are as follows.

本発明の仕込時におけるアジピン酸モノメチルとドデカ
ンニ酸モノメチルの割合は電解電圧に大きな影響を与え
る。アジピン酸モノメチルがドデカンニ酸モノメチルに
対して0.5倍モル以下では電解開始後、電圧上昇が起
り電解不可能になる。
The ratio of monomethyl adipate and monomethyl dodecanoate at the time of charging in the present invention has a large effect on the electrolytic voltage. If monomethyl adipate is less than 0.5 times the mole of monomethyl dodecanoate, a voltage rise will occur after the start of electrolysis, making electrolysis impossible.

アジピン酸モノメチルがドデカンニー酸モノメチルに対
して0.5倍モル以上では電圧上昇することなく電解が
行なえる。又アジピン酸モノメチルの割合が増加するこ
とにより電解電圧は下がり好ましい。しかしアジピン酸
モノメチルの割合が増加することにより、副生成物であ
るセバシン酸ジメチルの生成量が増加し、タブシン酸ジ
メチルの生成量が減少する。以上のことからアジピン酸
モノメチルがドデカンニ酸モノメチルに対して0.5倍
モル以上2倍モル以下が必要である。
When monomethyl adipate is 0.5 times mole or more relative to monomethyl dodecanoate, electrolysis can be carried out without voltage increase. Further, as the proportion of monomethyl adipate increases, the electrolytic voltage decreases, which is preferable. However, as the proportion of monomethyl adipate increases, the amount of by-product dimethyl sebacate produced increases, and the amount of dimethyl tabsinate produced decreases. From the above, it is necessary that monomethyl adipate be present in an amount of 0.5 to 2 moles relative to monomethyl dodecanoate.

本発明は前述したアジピン酸モノメチルからセバシン酸
ジメチルを製造する際の電解方法を応用しており、電解
の後半において電圧が急激に上昇し電解の継続が困難に
なることによる未反応アジピン酸モノメチル及びドデカ
ンニ酸モノメチルの残留を防止するために一定時間電解
したのちに電解液にアジピン酸モノメチルを添加しアジ
ピン酸モノメチル及びドデカンニ酸モノメチルが実質的
になくなるまで電解を行うことが必要である。即ち、電
解液中へのアジピン酸モノメチルの添加室電圧が上昇す
る以前に行い引続き電解を行うが電圧上昇後アジピン酸
モノメチルを添加して再度電解を行うこともできる。ア
ジピン酸モノメチルの添加は電圧が上昇する時点のドデ
カンニ酸モノメチル濃度が約2重t%以上において行う
ことが好ドデカンニ酸モノメチル濃度が2重量−以上4
重量−以下で行うことがよシ好ましい。
The present invention applies the above-mentioned electrolysis method for producing dimethyl sebacate from monomethyl adipate, in which unreacted monomethyl adipate and In order to prevent monomethyl dodecanoate from remaining, it is necessary to add monomethyl adipate to the electrolytic solution after electrolysis for a certain period of time and conduct electrolysis until monomethyl adipate and monomethyl dodecanoate are substantially eliminated. That is, the addition of monomethyl adipate into the electrolytic solution is carried out before the chamber voltage rises, and electrolysis is then carried out, but monomethyl adipate may be added after the voltage rises and electrolysis is carried out again. The addition of monomethyl adipate is preferably carried out when the monomethyl dodecanoate concentration is approximately 2% by weight or more at the time the voltage increases.
It is more preferable to carry out the reaction at less than -weight.

本発明のアジピン酸モノメチルの添加量は未反応ドデカ
ンニ酸モノメチル及びそのアルカリ金属塩に対して、添
加後のアジピン酸モノメチル及びそのアルカリ金属塩の
量が3〜8倍モルになるように添加することが好ましく
、5〜7倍モルがより好ましい。3倍モル以下では再度
急激な電圧上昇が起り未反応のドデヵンニ酸モノメチル
及びアジピン酸モノメチルが残る。8倍・1ル以上にお
いては主生成物以外のセバシン酸ジメチルの生成蓋が増
加する。
The amount of monomethyl adipate added in the present invention is such that the amount of monomethyl adipate and its alkali metal salt after addition is 3 to 8 times the mole of unreacted monomethyl dodecanoate and its alkali metal salt. is preferable, and 5 to 7 times the molar amount is more preferable. Below 3 times the mole, a rapid voltage increase occurs again and unreacted monomethyl dodecanoate and monomethyl adipate remain. At 8x/1 liter or more, the production of dimethyl sebacate other than the main product increases.

本発明において電解縮合が行なわれる溶液は、原料であ
るアジピン酸モノメチル及びドデカン二酸モノメチルと
その中和塩を含むメタノール溶液であるが、生成物であ
るタブシン酸ジメチル、セバシン酸ジメチル、ドコサン
ニ酸ジメチル、その他の剛生物を含んでいてもよい。メ
タノール溶液中の水湯[は、電解縮合の際水濃度を極端
に減らせると電流効率が極めて急くなシ、又水濃度を3
.5重量%を越える濃度にした場合も物質収率及び電流
効率が悪くなる。従って、物質収率及び電流効率を高く
保つためには水濃度を0゜15〜3.5重量−の範囲に
保持しておくことが必要である。
The solution in which electrolytic condensation is carried out in the present invention is a methanol solution containing the raw materials monomethyl adipate and monomethyl dodecanedioate and their neutralized salts, and the products dimethyl tabsinate, dimethyl sebacate, and dimethyl docosaniate. , and other rigid organisms. In the case of hot water in a methanol solution, if the water concentration can be extremely reduced during electrolytic condensation, the current efficiency will not be extremely rapid.
.. If the concentration exceeds 5% by weight, the material yield and current efficiency will also deteriorate. Therefore, in order to maintain high material yield and current efficiency, it is necessary to maintain the water concentration in the range of 0.15 to 3.5 wt.

本発明の電解縮合は、仕込み原料であるアジピン酸モノ
メチル及びドデカ/二酸モノメチルを後半において電圧
が上昇する時点まで、あるいは電圧が上昇する前まで回
分的に行なってもよく、又、アジピン酸モノメチル及び
ドデカンニ酸モノメチルを一定時間、一定濃度に維持し
て連続的に行い、次いで後半において電圧が上昇する時
点、あるいは電圧が上昇する前まで回分的に行なっても
よい。
The electrolytic condensation of the present invention may be carried out batchwise for monomethyl adipate and monomethyl dodeca/diaate, which are the raw materials, until the voltage rises in the latter half or before the voltage rises. The concentration of monomethyl dodecanoate and monomethyl dodecanoate may be maintained at a constant concentration for a certain period of time and then carried out continuously, and then carried out batchwise until the time when the voltage increases in the latter half or before the voltage increases.

アジピン酸モノメチル添加後の電解縮合は後工程におけ
る生成物の分離精製を考慮すると、アジピン酸モノメチ
ル及びドデカンニ酸モノメチルの濃度が0.5重量%以
下になるまで続けることが好ましい。
Considering the separation and purification of the product in the subsequent step, the electrolytic condensation after addition of monomethyl adipate is preferably continued until the concentration of monomethyl adipate and monomethyl dodecanoate becomes 0.5% by weight or less.

本発明の電解縮金時の仕込みのアジピン酸モノメチルと
ドデカンニ酸モノメチルの混合酸は10〜50重量悌で
用いられる。50重量−より高い濃度では電圧が高くな
り、10重量−より低い濃度では容積効率が悪くなり、
更に電流効率も悪くなる。
The mixed acid of monomethyl adipate and monomethyl dodecanoate used in the electrolytic reduction of the present invention is used in an amount of 10 to 50 kg by weight. Concentrations higher than 50 wt- will result in higher voltages, concentrations lower than 10 wt- will result in poor volumetric efficiency;
Furthermore, current efficiency also deteriorates.

本発明において電解縮合の際の溶液の導電性を^める丸
めに、中和塩基としてリチウム、カリウム、ナトリウム
の水酸化物、炭酸塩、重炭酸塩、メチラート、エチラー
ト又はアきン類が用いられる。しかし、アミン類は陽極
で酸化されて陽極の消耗を促進し、リチウム化合物を用
いると電流効率が悪くなる。従って、ナトリウム、カリ
ウムの水酸化物、炭酸塩、重炭酸塩、メチラートを用い
ることが望ましい。又、アジピン酸モノメチルとドデカ
ンニ酸モノメチルの混合酸の仕込みの際の中和度(混合
酸を塩基で中和するモル割合と定義する。)は2〜50
モルチが好ましい。中和度が2モル−未満では電圧が尚
〈なり、50モルチより高い濃度では電流効率が低くな
る。
In the present invention, hydroxides, carbonates, bicarbonates, methylates, ethylates, or aquines of lithium, potassium, and sodium are used as neutralizing bases to increase the conductivity of the solution during electrolytic condensation. It will be done. However, amines are oxidized at the anode and accelerate the consumption of the anode, and the use of lithium compounds deteriorates current efficiency. Therefore, it is desirable to use sodium and potassium hydroxides, carbonates, bicarbonates, and methylates. In addition, the degree of neutralization (defined as the molar ratio of the mixed acid to be neutralized with the base) during the preparation of the mixed acid of monomethyl adipate and monomethyl dodecanoate is 2 to 50.
Morti is preferred. If the degree of neutralization is less than 2 molar, the voltage will still be low, and if the concentration is higher than 50 molar, the current efficiency will be low.

本発明において用いられる電解槽は有機電解反応におい
て通常用いられるものでろって、1!解液を両極の間に
高流速で通過させることができるようなものであれば良
い。例えば、電解槽は陰極板と陽極板とを平行に対向さ
せ、両極の間に電極間隔を規定するポリプロピレンの板
を置く。このポリプロピレンの板の中央部には電解液が
流通するように開孔部を有している。
The electrolytic cell used in the present invention is one commonly used in organic electrolytic reactions.1! Any material may be used as long as the solution can be passed between the two electrodes at a high flow rate. For example, an electrolytic cell has a cathode plate and an anode plate facing each other in parallel, with a polypropylene plate between the two electrodes defining the electrode spacing. This polypropylene plate has an opening in the center so that the electrolyte can flow therethrough.

電極の通電面積はとの開孔部の大きさによシ、又電極間
隔はこの板の厚さによって規定される。電解液は電解槽
に設けられた供給口から入り、両極の間を通過する間に
反応が行なわれ、流出口から出て電解液タンクに循環さ
れる。
The current-carrying area of the electrodes depends on the size of the apertures, and the electrode spacing is determined by the thickness of the plate. The electrolytic solution enters through a supply port provided in the electrolytic cell, undergoes a reaction while passing between the two electrodes, exits through an outlet port, and is circulated to the electrolyte tank.

本発明の電解縮合に用いられる電極材料としては、陽極
には白金、ロジウム、ルテニウム、イリジウムなどが単
独又は合金で用いられ、使用形態は通常メッキとして用
いられ、メッキ基板に祉チタン、タフタルなどが用いら
れる。又、陰極に社水素過電圧の低いものが好ましいが
、特に限定されることはなく、白金、鉄、ステンレスス
チール、チタン等が用いられる。
As for the electrode materials used in the electrolytic condensation of the present invention, platinum, rhodium, ruthenium, iridium, etc. are used singly or in an alloy for the anode, and are usually used as plating, and titanium, taftal, etc. are used for the plating substrate. used. Further, the cathode preferably has a low hydrogen overvoltage, but is not particularly limited, and platinum, iron, stainless steel, titanium, etc. can be used.

電解液の電解槽内における流速は1〜4寓/秒4糟/秒
より速い流速では電解槽内の圧゛損失が大きくなる。電
極の間隔は0.5〜3mが好ましい。
The flow rate of the electrolytic solution in the electrolytic cell is 1 to 4 g/sec. If the flow rate is higher than 4 g/sec, the pressure loss in the electrolytic cell increases. The spacing between the electrodes is preferably 0.5 to 3 m.

0.5■未満では電解槽内の圧損失が大きくなり、3■
より広くすると電圧が高くなる。電流密度は5〜40ム
/ d m鵞が好ましく、5A/d−未満では電流効率
が低くなる。電解液の温度は45−65℃が好ましい、
温度が45℃未満では電流効率が低く電圧も高くなり場
合によっては生成物が析出してくる。65℃より高い温
度は電解液の沸点で制限される。
If it is less than 0.5■, the pressure loss inside the electrolytic cell will be large, and if it is less than 3■
The wider it is, the higher the voltage will be. The current density is preferably 5 to 40 m/dm, and if it is less than 5 A/d-, the current efficiency will be low. The temperature of the electrolyte is preferably 45-65°C.
If the temperature is lower than 45° C., the current efficiency will be low and the voltage will be high, and in some cases, products will precipitate. Temperatures higher than 65°C are limited by the boiling point of the electrolyte.

電解縮合終了後、電解液からの生成物のr#製分離は常
法によって行うことが出来る。即ち、電解液からメタノ
ールを除去した後直接油水層に2層分離するか、又は水
を加えて2層分離し、油)−から蒸留によって高純度の
タブシン酸ジメチル、セバシン酸ジメチル、ドコサンニ
酸ジメチルを得ることができる。
After the electrolytic condensation is completed, the product can be separated from the electrolyte by a conventional method. That is, after methanol is removed from the electrolyte, it is directly separated into two oil-water layers, or water is added to separate the two layers, and the oil is distilled to produce high-purity dimethyl tabsinate, dimethyl sebacate, and dimethyl docosaniate. can be obtained.

以上詳述した様に、本発明方法は従来から行なわれてい
る方法及びその他提案されている種々の方法に比べて次
の様な利点がある。第1には、本発明者らが提案しlζ
セバシン酸ジメチルの製造法の技術を応用し、一定時間
電解したのちアジピン酸モノメチルを添加し引続き電解
することKより、ドデカンニ酸モノメチル及びアジピン
酸モノメチルを実質的になくすことができるのでセバシ
ン酸ジメチルの製造法と同様、簡単に製造することがで
きる。第2には電解縮合によって目的のタブシン酸ジメ
チル以外に同時にセバシン酸ジメチル、ドコサンニ酸ジ
メチルが得られる。これらは目的生成物と同様に香料、
各種ポリマー、可塑剤等の原料として極めて広範囲の用
途を有する有用なものである。第3には、特殊な薬品や
安全上問題のある様な薬品は一切用いていない。第4に
は、高電流効率、高物質収率で目的生成物を得ることが
できる。
As detailed above, the method of the present invention has the following advantages over conventional methods and various other proposed methods. First, the inventors proposed lζ
Applying the technology for manufacturing dimethyl sebacate, adding monomethyl adipate after electrolysis for a certain period of time and continuing electrolysis, it is possible to substantially eliminate monomethyl dodecanoate and monomethyl adipate. Like the manufacturing method, it can be easily manufactured. Second, by electrolytic condensation, dimethyl sebacate and dimethyl docosaniate can be simultaneously obtained in addition to the target dimethyl tabsinate. These include target products as well as fragrances,
It is useful as a raw material for various polymers, plasticizers, etc., and has an extremely wide range of uses. Thirdly, no special chemicals or chemicals that pose safety issues are used. Fourth, the desired product can be obtained with high current efficiency and high material yield.

実施例 l 電解液タンクにアジピン酸モノメチル、ドデカンニ酸モ
ノメチル及びそれぞれのカリウム塩、水の嬢度がそれぞ
れ9.84ii11%、15.0重量慢、1.35重量
−11,93重量−13,0重量−で、仕込み液量が1
kになる様にメタノール、水酸化カリウム、水、アジピ
ン酸モノメチル、ドデガンニ酸モノメチルの順で仕込み
、液を調整した。この調整液を電解槽に循環した。
Example 1 Monomethyl adipate, monomethyl dodecanoate and their respective potassium salts were placed in the electrolyte tank, and the water content was 9.84ii11%, 15.0%, 1.35wt - 11.93wt - 13.0wt. Weight -, the amount of prepared liquid is 1
Methanol, potassium hydroxide, water, monomethyl adipate, and monomethyl dodeganate were added in this order to prepare a solution. This adjusted solution was circulated to the electrolytic cell.

電解槽は両極とも1.0clII×10oclIIの通
電面積を有し、陰極は厚さ2■のチタン板、陽極は厚さ
2■のチタン板に4ミクロンの白金メッキをした板を用
い両極の関に通電面積が1−、OcrrIXloocm
に保持されるように開孔部を有する淳さ1=+のポリエ
チレンの板を置いて電極間隔を1mに規定した。
The electrolytic cell has a current-carrying area of 1.0 clII x 10 occlII at both electrodes, and the cathode is a 2-inch thick titanium plate, and the anode is a 2-inch thick titanium plate plated with 4 micron platinum. The energized area is 1-, OcrrIXlookm
A polyethylene plate having a thickness of 1=+ and having an opening was placed so that the electrodes were held at a distance of 1 m.

電解槽は液の供給口と流出口を有するものを用いた。電
極間に液を2m/@@cの流速で流し、電流密度をII
A/a−に、液の温度を48〜52℃に保持して電解を
行なった。又、電解開始と同時に1!解液タンクにアジ
ピン酸モノメチル、ドデヵン二酸モノメチルをそれぞれ
23.”Og/ Hr、 36.8 g/Hrで5時間
連続添加した。添加終了後電解液をサンプリングしてア
ジピン酸モノメチル、ドデカ/二酸モノメチルの残存濃
度をガスクロマトグラフ分析で測定しなから電解を行い
、その濃度が0.52重1%、z、6重量sになった時
点でアジピン酸モノメチルを150g−[に添加し、引
続き電解液をサンプリングしてアジピン酸モノメチル及
びドデカンニ酸モノメチルの残存濃度を測定しながら電
解を行い、そめ濃度が0.03重量−になった時点で電
解を終了した。電解開始から終了までの通電時間は11
.96時間であった。電解電圧は12.8Vから8.9
vまで変化した。又、アジピン酸モノメチルを添加し九
時点で9.5vから10.0Vへ上昇した。
The electrolytic cell used had a liquid supply port and a liquid outlet. The liquid was flowed between the electrodes at a flow rate of 2 m/@@c, and the current density was set to II.
In A/a-, electrolysis was carried out while maintaining the temperature of the liquid at 48 to 52°C. Also, 1 at the same time as electrolysis starts! Add 23% of each of monomethyl adipate and monomethyl dodecanedioate to the solution tank. "Og/Hr, 36.8 g/Hr was added continuously for 5 hours. After the addition was completed, the electrolyte was sampled and the residual concentration of monomethyl adipate and dodeca/monomethyl diaate was measured by gas chromatographic analysis before electrolysis was started. When the concentration reached 0.52 wt 1%, z, 6 wt s, monomethyl adipate was added to 150 g-[, and the electrolyte was subsequently sampled to determine the remaining concentration of monomethyl adipate and monomethyl dodecanoate. Electrolysis was carried out while measuring the amount, and the electrolysis was terminated when the concentration of soybean paste reached 0.03 wt. The energization time from the start to the end of electrolysis was 11
.. It was 96 hours. Electrolysis voltage is 12.8V to 8.9
It changed to v. Furthermore, when monomethyl adipate was added, the voltage increased from 9.5V to 10.0V at 9 points.

終了時の液量は1227gであった。電解終了後、電解
液の各成分をガスクロマトグラフ分析で測定した結果、
タブシン酸ジメチル、ドコサンニ酸ジメチル、セバシン
酸ジメチルのそれぞれの濃度は14.6重量−17,5
9重tチ、11.7重量−であった。
The amount of liquid at the end was 1227 g. After the electrolysis was completed, each component of the electrolyte was measured by gas chromatography, and the results were as follows:
The respective concentrations of dimethyl tabsinate, dimethyl docosaniate, and dimethyl sebacate are 14.6 wt - 17.5
The weight was 9 times and 11.7 times.

各電解縮合生成物の物質収率と電流効率は次の通りであ
った。
The material yield and current efficiency of each electrolytic condensation product were as follows.

(以下余白) 電流効率(*) なお、物質収率及び電流効率の計算は次の計算式にて行
なった。
(Margin below) Current efficiency (*) The material yield and current efficiency were calculated using the following formula.

アジピン酸モノメチル基準のセバシン酸ジメチルの物質
収率アジピン酸モノメチル基準(ドデカンニ酸モノメチ
ル基準)のタブシン酸ジメチルの物質収率 ドデカンニ酸モノメチル基準のドコサンニ酸ジメチルの
物質収率生成したドコサンニ酸ジメチルのモル数×2=
                      −X1
00消費し九ドデカンニ酸モノメチルのモル数但し、電
解終了時のアジピン酸モノメチルのカリウム塩及びドデ
カンニ酸モノメチルのカリウム塩の組成比は、アジピン
酸モノメチル添加後のアジピン酸モノメチル及びドデヵ
ン二鎖モノメチルのモル比とした。又、電流効率は2フ
アラデーの電気量より各生成vlJ1モルが生成すると
して求めた。
Material yield of dimethyl sebacate based on monomethyl adipate Material yield of dimethyl tabsinate based on monomethyl adipate (based on monomethyl dodecanoate) Material yield of dimethyl docosaniate based on monomethyl dodecanoate Number of moles of dimethyl docosaniate produced ×2=
-X1
00 Consumed 9 Moles of monomethyl dodecanoate However, the composition ratio of the potassium salt of monomethyl adipate and the potassium salt of monomethyl dodecanoate at the end of electrolysis is the mole of monomethyl adipate and dodecane double-chain monomethyl after the addition of monomethyl adipate. It was compared. Further, the current efficiency was determined on the assumption that 1 mole of each product vlJ was generated from the amount of electricity of 2 faradays.

以降の実施例においても同様に行なった。The same procedure was carried out in the following Examples.

実施例 2 実施例1と同一仕込み、同一の電解装置及び電解条件で
電解を開始した。電解開始と同時に電解液タンクにアジ
ピン酸モノメチル、ドデカンニ酸モノメチルをそれぞれ
23.0g/Hr、36.8g/Hr、で7時間連続添
加した。添加終了後、実施例1と同様にドデカンニ酸モ
ノメチル及びアジピン酸モノメチルの濃度分析を行いな
がら電解を行い、それぞれの濃度が2.4重量%、0.
48重量−になった時点でアジピン酸モノメチルを20
9g一度に添加し引続き電解を行ないドデヵンニ酸モノ
メチル及びアジピン酸モノメチルの濃度が0.044重
量%なった時点で電解を終了した。通電時間Fiis、
o隅関であった。電解電圧は12.7 Vから9.OV
まで変化した。又、アジピン酸モノメチルを添加した時
点で9.3vから11.OVへ上昇した。電解終了時の
液量は1348gであった。電解終了後、電解液の各成
分をガスクロマトグラフ分析で測定した結果、タブシン
酸ジメチル、ドコサンニ酸ジメチル、セバシン酸ジメチ
ルのそれぞれの濃度は16.2重量%、8.44重量−
114,0重量%であった。各電解縮合生成物の物質収
率と電流効率は次の通りであった。
Example 2 Electrolysis was started using the same preparations, the same electrolyzer, and the same electrolytic conditions as in Example 1. Simultaneously with the start of electrolysis, monomethyl adipate and monomethyl dodecanoate were continuously added to the electrolyte tank at 23.0 g/Hr and 36.8 g/Hr, respectively, for 7 hours. After the addition, electrolysis was performed while analyzing the concentration of monomethyl dodecanoate and monomethyl adipate in the same manner as in Example 1, and the respective concentrations were 2.4% by weight and 0.0% by weight.
When the weight reached 48%, add 20% of monomethyl adipate.
9 g was added at once and electrolysis was continued, and the electrolysis was terminated when the concentration of monomethyl dodecanoate and monomethyl adipate reached 0.044% by weight. Energization time Fiis,
It was o corner check. The electrolytic voltage ranges from 12.7 V to 9. O.V.
changed to. Also, when monomethyl adipate was added, the voltage increased from 9.3v to 11. It rose to OV. The amount of liquid at the end of electrolysis was 1348 g. After the electrolysis was completed, each component of the electrolyte was measured by gas chromatography, and the concentrations of dimethyl tabsinate, dimethyl docosaniate, and dimethyl sebacate were 16.2% by weight and 8.44% by weight, respectively.
It was 114.0% by weight. The material yield and current efficiency of each electrolytic condensation product were as follows.

実施例 3 実施例1と同一の!解装置にアジピン酸モノメチル、ド
デカンニ酸モノメチル及びそれぞれのカリウム塩、水の
濃度がそれぞれ14.8重量1.15.0重tチ、0.
96重量%、0.91重量%、1.0重量−で仕込み液
量がI Kqになる様に実施例1と同様に仕込み実施例
1と同一電解条件で電解を開始した。
Example 3 Same as Example 1! In the decomposition apparatus, the concentrations of monomethyl adipate, monomethyl dodecanoate, their respective potassium salts, and water were 14.8 wt., 1.15.0 wt.
Electrolysis was started under the same electrolytic conditions as in Example 1, with preparations made in the same manner as in Example 1 so that the amounts of the charged liquid were IKq at 96% by weight, 0.91% by weight, and 1.0% by weight.

電解開始と同時に電解液タンクにアジピン酸モノメチル
、ドデカンニ酸モノメチルをそれぞれ28.1g /H
r、 30.0 g / Hrで5時間連続添加した。
At the same time as electrolysis starts, add 28.1g/h of monomethyl adipate and monomethyl dodecanoate to the electrolyte tank.
r, was added continuously for 5 hours at 30.0 g/Hr.

添加終了後電解液をサンプリングしてアジピン酸モノメ
チル、ドデカンニ酸モノメチルの残存濃度をガスクロマ
トグラフ分析で測定しながら電解を行い、その濃度が1
.1重iii%、3.5重量−になつ九時点でアジピ/
酸モノメチル134.0gを一度に添加し引続き電解液
をサンプリングしてアジピン酸モノメチル及びドデカン
ニ酸モノメチルの残存濃度を測定しながら電解を行い、
その濃度が0.03重量%になった時点で終了した。電
解開始から終了までの通電時間は12.61時間であつ
九。電解電圧は13.5Vから9.Ovまで変化した。
After the addition, the electrolyte was sampled and the remaining concentrations of monomethyl adipate and monomethyl dodecanoate were measured by gas chromatography while electrolysis was carried out until the concentration reached 1.
.. 1 weight iii%, 3.5 weight - Ajipi at the time of Natsu 9/
134.0 g of monomethyl acid was added at once, and electrolysis was performed while sampling the electrolytic solution and measuring the residual concentration of monomethyl adipate and monomethyl dodecanoate.
The process was terminated when the concentration reached 0.03% by weight. The energization time from the start to the end of electrolysis was 12.61 hours. Electrolysis voltage is 13.5V to 9. It changed to Ov.

又、アジピン酸モノメチルを添加した時点で9.7vか
ら10.3Vに上昇し友。終了時の液量は1190gで
あった。
Also, when monomethyl adipate was added, the voltage rose from 9.7V to 10.3V. The amount of liquid at the end was 1190 g.

電解終了後、電解液の各成分の分析を行なった結果、タ
ブシン噴ジメチル、ドコサンニ酸ジメチル、セバシン酸
ジメチルのそれぞれの濃度は15.7重量1%、5.7
5重量%、14.6重量%であった。各電解縮合生成物
の物質収率と電流効率は次の通りであった。
After the electrolysis was completed, each component of the electrolyte was analyzed, and the concentrations of dimethyl tabsin, dimethyl docosaniate, and dimethyl sebacate were 15.7% by weight and 5.7% by weight, respectively.
They were 5% by weight and 14.6% by weight. The material yield and current efficiency of each electrolytic condensation product were as follows.

物質収率(チ) 電流効率(%) 実施例 4 実施例1と同一の電解装置にアジピン酸モノメチル、ド
デカンニ酸モノメチル及びそれぞれのカリウム塩、水の
濃度がそれぞれ13.8重f%、30.0重量%、1.
89重量%、3.85重量%3.3重菫膚で仕込み、液
量がl Kgになる様に実施例1と同書1艷み、実施例
1と同一の電解条件で電解を開始し、電圧が上昇するま
で′It解を続は電圧が上昇した時点で−aspsを停
止した。通電時間は6.71時間であった。
Material Yield (H) Current Efficiency (%) Example 4 In the same electrolytic apparatus as in Example 1, monomethyl adipate, monomethyl dodecanoate, their respective potassium salts, and water concentrations were 13.8% by weight and 30%. 0% by weight, 1.
89% by weight, 3.85% by weight 3.3-layer violet was prepared, and the same volume as in Example 1 was prepared so that the liquid volume was 1 kg, and electrolysis was started under the same electrolytic conditions as in Example 1. The 'It solution continued until the voltage rose, and at the point when the voltage rose, -asps was stopped. The current application time was 6.71 hours.

この時点でのアジピン酸モノメチル、ドデカンニ酸モノ
メチルの濃度は0.41重量−12,2重量−であった
。この電解液にアジピン酸モノメチルを103g添加し
再度電解を開始した。電解再開後2.28時間経過した
時点で電圧が急激に上昇した。この時点で電解を終了し
た。電解液量は937.7 gでアジピン酸モノメチル
、ドデカンニ酸モノメチルのそれぞれの濃度は0.02
重量%、0.29重量−であった。又、タプンン酸ジメ
チル、セバシン酸ジメチル、ドコサンニ酸ジメチルのそ
れぞれの濃度はts、O1t襲、8.41重量%、11
.6重量−であった。
At this point, the concentrations of monomethyl adipate and monomethyl dodecanoate were 0.41 weight to 12.2 weight. 103 g of monomethyl adipate was added to this electrolytic solution and electrolysis was started again. The voltage suddenly increased 2.28 hours after restarting electrolysis. At this point, electrolysis was terminated. The amount of electrolyte was 937.7 g, and the concentration of each of monomethyl adipate and monomethyl dodecanoate was 0.02.
% by weight, 0.29% by weight. In addition, the respective concentrations of dimethyl tapunate, dimethyl sebacate, and dimethyl docosaniate were ts, O1t, 8.41% by weight, 11
.. 6 weight.

各電解縮合物の物質収率、電流効率は次の通電であった
The material yield and current efficiency of each electrolytic condensate were as follows.

(以下余ら) 物質収率(チ) 比較例 1 実施例1と同一の電解装置にアジピン酸モノメチル、ド
デカンニ酸モノメチル及びそれぞれのカリウム塩、水の
濃度がそれぞれ5.9重t%、30.0重量−10,8
1重t−13,851([% 3.2’1ffit%に
なるように、実施例1と同様に仕込み液量が1kになる
様に仕込み、実施例1と同一電解条件で電解を開始した
。電解開始と同時に電圧が上昇しはじめ、電解開始後3
分で電圧が急激に上昇し電解の継続が不可能になっ九。
(Remains below) Material Yield (H) Comparative Example 1 Monomethyl adipate, monomethyl dodecanoate, their respective potassium salts, and water concentrations were 5.9% by weight and 30.0% by weight, respectively, in the same electrolytic apparatus as in Example 1. Weight - 10,8
1 weight t-13,851 ([% 3.2'1ffit%, the amount of liquid was charged to 1k as in Example 1, and electrolysis was started under the same electrolytic conditions as Example 1. .At the same time as the electrolysis starts, the voltage starts to rise, and after the electrolysis starts, the voltage starts to rise.
Within minutes, the voltage rose rapidly and it became impossible to continue electrolysis.

特許出願人  旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、 ドデカンニ酸モノメチルとドデカンニ酸モノメチ
ルに対して0.5〜2.0倍モルのアジピン酸モノメチ
ルの混合物をそれらのアルカリ金属塩を含むメタノール
溶液中で一定時間回分的に電解組合し、ついでアジピン
酸モノメチルを東に冷加して電解することを特徴とする
タブシン酸ジメチルの製造法 2、km液中のドデカンニ酸モノメチル濃度が約2重1
チ以上になるまで電解縮合した時点においてアジピン酸
モノメチルを添加する特許請求の範囲第1項記載の方法 3、該ドデカンニ酸モノメチル濃度が約2〜4i1ji
t修の範囲になるまで電解縮合した時点においてアジピ
ン酸モノメチルを添加する特許請求の範囲第2項^C載
の方法 4、一定時間電解縮合したのち添加するアジピン酸モノ
メチルの貴社電解液中の未反応ドデヵン二酸モノメチル
及びそのアルカリ金属塩に対してアジピン酸モノメチル
及びアルカリ金禰塩の量を3〜8倍モルの範囲にする特
許請求の範囲第1項及び第2項記載の方法 5、一定時間電解縮合したのち添加するアジピン酸モノ
メチルの量は電解液中の未反応ドデヵン二酸モノメチル
及びそのアルカリ金属塩に対してアジピン酸モノメチル
及びそのアルカリ金属塩の量を5〜7倍モルの範囲にす
る特許請求の範囲第4項記載の方法、 6、電解縮金時のメタノール溶液中の水濃度を、0.1
5〜3.5重量%に保持することを特徴とする特許請求
の範囲第1項記載の方法
[Claims] 1. A mixture of monomethyl dodecanoate and monomethyl adipate in an amount of 0.5 to 2.0 times the mole of monomethyl dodecanoate is batchwise prepared for a certain period of time in a methanol solution containing an alkali metal salt thereof. A method for producing dimethyl tabsinate, which is characterized by electrolytic combination, followed by electrolysis by cooling monomethyl adipate to the east, and the concentration of monomethyl dodecanoate in the km solution is about 2 times 1
The method 3 according to claim 1, wherein monomethyl adipate is added at the time of electrolytic condensation until the concentration of monomethyl dodecanoate is about 2 to 4.
Claim 2: Adding monomethyl adipate at the time of electrolytic condensation to reach the range of t. Method 5 according to claims 1 and 2, in which the amount of monomethyl adipate and alkali metal salt is in the range of 3 to 8 times the molar amount relative to monomethyl dodecanedioate and its alkali metal salt, constant. The amount of monomethyl adipate to be added after time electrolytic condensation is 5 to 7 times the amount of monomethyl adipate and its alkali metal salt relative to unreacted monomethyl dodecanedioate and its alkali metal salt in the electrolytic solution. 6. The water concentration in the methanol solution during electrolytic shrinkage is 0.1.
The method according to claim 1, characterized in that the amount is maintained at 5 to 3.5% by weight.
JP57040711A 1982-03-17 1982-03-17 Production method of dimethyl thapsinate Expired JPS5950755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57040711A JPS5950755B2 (en) 1982-03-17 1982-03-17 Production method of dimethyl thapsinate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57040711A JPS5950755B2 (en) 1982-03-17 1982-03-17 Production method of dimethyl thapsinate

Publications (2)

Publication Number Publication Date
JPS58161784A true JPS58161784A (en) 1983-09-26
JPS5950755B2 JPS5950755B2 (en) 1984-12-10

Family

ID=12588161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57040711A Expired JPS5950755B2 (en) 1982-03-17 1982-03-17 Production method of dimethyl thapsinate

Country Status (1)

Country Link
JP (1) JPS5950755B2 (en)

Also Published As

Publication number Publication date
JPS5950755B2 (en) 1984-12-10

Similar Documents

Publication Publication Date Title
US3899401A (en) Electrochemical production of pinacols
JPS61170588A (en) Production of quaternary ammonium hydroxide
EP0425582A1 (en) Improved process for preparing quaternary ammonium hydroxides
EP0032427B1 (en) Preparation of hydroxy compounds by electrochemical reduction
US4938854A (en) Method for purifying quaternary ammonium hydroxides
US4235684A (en) Process for producing glyoxalic acid by electrolytic oxidation
JP4755458B2 (en) Method for producing 2-alkyne-1-acetal
US3193479A (en) Electrolytic coupling of an olefinic compound with a ketone
KR100242979B1 (en) The method for preparing aqueous quaternary ammonium hydroxide solution
JPS58161784A (en) Manufacture of dimethyl thapsate
JPS6131192B2 (en)
Baizer et al. Electrolytic Reductive Coupling: XV. Electroreductions of Aqueous Concentrated Solutions of Diethyl Maleate in the Presence of Sodium or Tetraethylammonium Cations
US4076601A (en) Electrolytic process for the preparation of ethane-1,1,2,2-tetracarboxylate esters and related cyclic tetracarboxylate esters
JPS58157980A (en) Manufacture of dimethyl dicarboxylate
JPH04341593A (en) Production of quaternary ammonium hydroxide aqueous solution
US4402805A (en) Electrochemical process to prepare p-hydroxymethylbenzoic acid with a low level of 4-CBA
Minato et al. Electrophilic reaction of allyl acetates with electrogenerated carbanions in the presence of Pd (0)-catalyst.
US3556961A (en) Electrolytic hydrodimerisation
JPS5942075B2 (en) Method for producing dimethyl brassylate
JPS5837397B2 (en) Method for producing n-valeric acid or its esters
JPS5942076B2 (en) Method for producing dimethyl pentadecanedioate
JPH07196561A (en) Production of alkali alkoxide by electrolytic reaction
EP0097719B1 (en) Process for producing higher dibasic acid dimethyl ester
JPS6131191B2 (en)
JP2001220695A (en) Method for preparing ammonium persulfate