JPS5942075B2 - Method for producing dimethyl brassylate - Google Patents

Method for producing dimethyl brassylate

Info

Publication number
JPS5942075B2
JPS5942075B2 JP56080016A JP8001681A JPS5942075B2 JP S5942075 B2 JPS5942075 B2 JP S5942075B2 JP 56080016 A JP56080016 A JP 56080016A JP 8001681 A JP8001681 A JP 8001681A JP S5942075 B2 JPS5942075 B2 JP S5942075B2
Authority
JP
Japan
Prior art keywords
monomethyl
azelaate
adipate
weight
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56080016A
Other languages
Japanese (ja)
Other versions
JPS57198287A (en
Inventor
一則 山高
俊郎 磯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56080016A priority Critical patent/JPS5942075B2/en
Publication of JPS57198287A publication Critical patent/JPS57198287A/en
Publication of JPS5942075B2 publication Critical patent/JPS5942075B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はブラシル酸ジメチルの新規な工業的製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new industrial method for producing dimethyl brassylate.

更に詳しくは、アジピン酸モノメチルとアゼライン酸モ
ノメチルとの交差コルベ電解縮合によりブラシル酸ジメ
チルを製造する方法に関するものである。ブラシル酸ジ
メチルは加水分解することにより容易にブラシル酸に導
くことができる。
More specifically, the present invention relates to a method for producing dimethyl brassylate by cross-Kolbe electrocondensation of monomethyl adipate and monomethyl azelaate. Dimethyl brassylate can be easily converted to brassylic acid by hydrolysis.

これらはムスク香料として極めて重要なエチレンブラシ
レートの製造原料として有用であると共に各種のポリマ
ー、可塑剤等の原料としても極めて広範囲の用途を有す
るものである。ブラシル酸及びそのエステルは、菜種油
中に含まれるエルカ酸をオゾン酸化あるいは過マンガン
酸で酸化する方法によつて製造されている。
These are useful as raw materials for producing ethylene brasylate, which is extremely important as a musk fragrance, and have an extremely wide range of uses as raw materials for various polymers, plasticizers, and the like. Brassylic acid and its esters are produced by a method in which erucic acid contained in rapeseed oil is oxidized with ozone or permanganic acid.

しかしながらこの方法では、酸化反応の収率が低く、且
つ反応によつて種々の化合物が生成し、目的生成物の精
製が大変であり、純度も低いという問題点があつた。ま
た、ブラシル酸を合成する方法としては次の様な方法が
提案されている。
However, this method has problems in that the yield of the oxidation reaction is low, various compounds are produced by the reaction, it is difficult to purify the desired product, and the purity is low. Furthermore, the following methods have been proposed for synthesizing brassylic acid.

ウンデシレン酸メチルにマロン酸ジエチルをジターシヤ
リブチルパーオキシドを用いて付加し、次いでその生成
物を加水分解する方法〔Kirkiacharlan9
Beにdj■Bull、Soc、Chim、Fr、、(
5)、1797(1971)〕。11−ブロモウンデカ
ン酸エチルとシアン酢酸エチルとをジメチルホルムアミ
ド中で加熱反応させ、次いでその生成物を加水分解した
後脱炭酸する方法〔Dudinov、A、A、I2り。
A method of adding diethyl malonate to methyl undecylenate using ditertiary butyl peroxide and then hydrolyzing the product [Kirkiacharlan 9
Be dj Bull, Soc, Chim, Fr, (
5), 1797 (1971)]. A method in which ethyl 11-bromoundecanoate and ethyl cyanacetate are reacted by heating in dimethylformamide, and then the product is hydrolyzed and then decarboxylated [Dudinov, A, A, I2.

Akad.NaukSSSRSer.Khiml974
ラ99(6),1421〜1423〕2−エトキシカル
ボニルシクロドデカノンをジエチレングリコール中水酸
化ナトリウムと加熱し、次いで酸性とする方法〔特公昭
46−34406号公報)。
Akad. NaukSSSSRSer. Khiml974
99(6), 1421-1423] A method of heating 2-ethoxycarbonylcyclododecanone with sodium hydroxide in diethylene glycol and then making it acidic [Japanese Patent Publication No. 46-34406].

2,2′−メチレンビスシクロヘキサノンにハロゲン化
有機溶媒中炭酸アルカリ塩の存在下過酸を作用させて6
,6′−メチレンビス(6−ヘキサノライド)とし、次
いでアルコール溶媒中で金属触媒と酸触媒の存在下、加
圧水素と加熱処理する方法(特開昭55113741号
公報)しかしながらこれらの方法も原料の入手が困難で
あつたり、反応に高価で危険性の高い過酸化物を用いな
ければならない等の理由により、必ずしも工業的方法と
して満足できるものではない。
By reacting 2,2'-methylenebiscyclohexanone with peracid in the presence of an alkali carbonate salt in a halogenated organic solvent, 6
, 6'-methylenebis(6-hexanolide), and then heat-treated with pressurized hydrogen in the presence of a metal catalyst and an acid catalyst in an alcohol solvent (Japanese Patent Application Laid-open No. 55113741). However, these methods also require the availability of raw materials. This method is not always satisfactory as an industrial method because it is difficult and requires the use of expensive and highly dangerous peroxides in the reaction.

また、酵母を用いた発酵法についても提案されている。
即ち、n−アルカンまたはモノカルボン酸を酵母を用い
て二塩基酸にする方法である。しかしながらこの発酵法
も収率的に低く、工業的方法としては未だ十分なものと
は言えない。一方、ブラシル酸ジエステルは炭素数13
個の二塩基酸ジエステルであり、一般的な交差コルベ電
解の考え方からするとアジピン酸モノエステルとアゼラ
イン酸モノエステルとを交差コルベ電解することにより
ブラシル酸ジエステルが得られることは通常考えられる
Furthermore, fermentation methods using yeast have also been proposed.
That is, this is a method of converting n-alkanes or monocarboxylic acids into dibasic acids using yeast. However, this fermentation method also has a low yield and is still not considered to be sufficient as an industrial method. On the other hand, brassylic acid diester has 13 carbon atoms.
Brassylic acid diester is generally considered to be obtained by cross-Kolbe electrolysis of adipic acid monoester and azelaic acid monoester, based on the general concept of crossed Kolbe electrolysis.

しかしながら、アジピン酸モノエステルとアゼライン酸
モノエステルとの交差コルベ電解によつてブラシル酸ジ
エステルを製造するための具体的な条件については全く
知られていない。
However, nothing is known about the specific conditions for producing brassylic acid diester by cross-Kolbe electrolysis of adipic acid monoester and azelaic acid monoester.

なお、アジピン酸モノエステル及びアゼライン酸モノエ
ステルをそれぞれ単独で電解縮合する方法に関しては従
来から検討がなされており、種々の知見が得られている
Note that studies have been made on methods for electrolytically condensing adipic acid monoester and azelaic acid monoester alone, and various findings have been obtained.

即ち、アジピン酸モノメチルからセバシン酸ジメチルを
製造する方法については、先に本発明者らが詳細な工業
的実施技術として特開昭54−152672号公報、特
開昭55−158285号公報、特開昭56−4478
2号公報等に開示した。
That is, regarding the method for producing dimethyl sebacate from monomethyl adipate, the present inventors previously described detailed industrial implementation techniques in JP-A-54-152672, JP-A-55-158285, and JP-A-55-158285. Showa 56-4478
It was disclosed in Publication No. 2, etc.

またアゼライン酸モノエステルからタブシン酸ジエステ
ルを製造する方法については、特公昭38−11116
号公報、油化学,↓?,6−69(1963)等に開示
されている。例えば、セバシン酸ジメチルを製造する場
合、無隔膜で電解を行ない、電解液溶媒としてメタノー
ルを用い、電解液中の水濃度を低い範囲に限定するとい
う条件を設定している。
In addition, regarding the method for producing tabucic acid diester from azelaic acid monoester, Japanese Patent Publication No. 38-11116
No. Publication, Oil Chemistry, ↓? , 6-69 (1963), etc. For example, when producing dimethyl sebacate, conditions are set such that electrolysis is performed without a diaphragm, methanol is used as the electrolyte solvent, and the water concentration in the electrolyte is limited to a low range.

これに対してタブシン酸ジエステルを製造する場合、陽
イオン交換膜を用いて陽極室及び陰極室に分離すること
を必要とし、陽極液中の水濃度についても30〜40重
量%という値に設定にしている。更に、別の文献〔KO
vsman,E.P.;Fraidlln,G.N.;
TarkhamOv,G.A.(USSR)Elect
rOsint.MOnOmerO.49〜73(198
0)〕には、アゼライン酸モノメチルの電解縮合の場合
、陽極上に水及びメタノールには溶け難いポリマー状の
皮膜が生成し、その皮膜が電解の進行とともに厚くなり
、肉眼でも観察されたという記載がある。これらの知見
から推察するとセバシン酸ジエステル及びタブシン酸ジ
エステルをそれぞれ単独に工業的に有利に製造するため
の条件にはかなり大幅な相異があると思われる。以上の
状況にかんがみ、本発明者らは、ブラシル酸及びそのエ
ステルの現在の工業的製造法であるなたね油中に含まれ
るエルカ酸を酸化する方法及び現在までに提案されてい
る種々の方法が持つ種々の問題点を一挙に解決し得る工
業的に有利な製造法を提供すべく鋭意研究を行なつた。
On the other hand, when producing tabsic acid diester, it is necessary to separate it into an anode chamber and a cathode chamber using a cation exchange membrane, and the water concentration in the anolyte is also set at a value of 30 to 40% by weight. ing. Furthermore, another document [KO
vsman, E. P. ;Fraidlln, G.; N. ;
TarkhamOv,G. A. (USSR) Elect
rOsint. MOnOmerO. 49-73 (198
0)] states that in the case of electrolytic condensation of monomethyl azelaate, a polymeric film that is difficult to dissolve in water and methanol was formed on the anode, and that the film became thicker as the electrolysis progressed and was observed with the naked eye. There is. Judging from these findings, it seems that there are quite large differences in the conditions for industrially advantageous production of sebacic acid diester and tabucic acid diester, respectively. In view of the above circumstances, the present inventors have discovered that the current industrial production method for brassylic acid and its esters, a method of oxidizing erucic acid contained in rapeseed oil, and the various methods proposed to date have the potential to We have conducted extensive research in order to provide an industrially advantageous manufacturing method that can solve various problems all at once.

その結果、先に本発明者らが提案したアジピン酸モノメ
チルからセバシン酸ジメチルを製造する際の電解方法を
基礎にし、アジピン酸モノメチルをアゼライン酸モノメ
チルに対して等モル以上の割合で用いて交差コルベ電解
することにより、電流効率を高く維持し且つ電解電圧を
低く維持して交差コルベ電解を行なうことが可能になり
、工業的に極めて有利にブラシル酸ジメチルを製造する
ことができるようになつた。即ち本発明は、アジピン酸
モノメチルとアゼライン酸モノメチルとの混合酸を、そ
れらのアルカリ金属塩を含むメタノール溶液中で、アジ
ピン酸モノメチルをアゼライン酸モノメチルに対して等
モル以上の割合にして電5,旌縮合することを特徴とし
ている。
As a result, based on the electrolytic method previously proposed by the present inventors for producing dimethyl sebacate from monomethyl adipate, we used monomethyl adipate in an equimolar or more ratio to monomethyl azelate to cross-collate. By electrolyzing, it has become possible to perform cross-Kolbe electrolysis while maintaining high current efficiency and low electrolysis voltage, and it has become possible to produce dimethyl brassylate very advantageously industrially. That is, in the present invention, a mixed acid of monomethyl adipate and monomethyl azelaate is prepared in a methanol solution containing an alkali metal salt thereof, and the ratio of monomethyl adipate to monomethyl azelaate is equal to or more than that of monomethyl azelaate. It is characterized by intercondensation.

本発明の市解方法は、上述の様にアジピン酸モノメチル
からセバシン酸ツメチルを製潰する際の電解方法を基礎
にしている。
The commercial processing method of the present invention is based on the electrolytic method for milling trimethyl sebacate from monomethyl adipate as described above.

もちろん特公昭3811116号公報等に記載されてい
るアゼライン酸モノメチルからタプシン酸ジメチルを製
潰する際の電解方法を基礎にすることも可能である。し
かしながら、前者は無隔膜で電解を行なつており、後者
は陽イオン交換膜を用いて陽極室と陰極室に別けて電解
しており、両者を比較した場合、工業的に無隔嘆で電解
することがもし特に問題がなければ有利であることは明
らかである。本発明の電解時におけるアジピン酸モノメ
チルとアゼライン酸モノメチルの割合は、第1表からも
明らかな通り、選択率にはさほど影響は与えないものの
、電解摺電圧及び電流効率に極めて大きな影響を与える
Of course, it is also possible to use the electrolytic method for milling dimethyl thapsate from monomethyl azelaate as described in Japanese Patent Publication No. 3811116 and the like. However, the former performs electrolysis without a diaphragm, while the latter uses a cation exchange membrane to separate the anode and cathode compartments, and when comparing the two, industrially, electrolysis is performed without a diaphragm. It is clear that doing so would be advantageous if there were no particular problems. As is clear from Table 1, the ratio of monomethyl adipate to monomethyl azelate during electrolysis of the present invention does not have much effect on the selectivity, but it has a very large effect on the electrolytic sliding voltage and current efficiency.

参考例1及び2にはそれぞれアジピン酸モノメチル及び
アゼライン酸モノメチル単独の場合の例を示してあるが
、アゼライン酸モノメチル単独の場合、平均電解摺電圧
で1.5倍以上高くなり、電流効率でも150/o程度
悪くなつている。そしてアゼライン酸モノメチルに対し
てアジピン酸モノメチルの割合が増加するに従つて改善
されており、アジピン酸モノメチルがアゼライン酸モノ
メチルに対して等モル以上の割合ではかなり大幅に改善
されている。特に、アジピン酸モノメチルをアゼライン
酸モノメチルに対して2倍石ル以上特には5倍モル以上
用いると、アジピン酸モノメチル単独での電解の場合と
ほとんど変らない状況にまで改善されている。以上の結
果から明らかな様に、アジピン酸モノメチルをアゼライ
ン酸モノメチルに対して等モル以上、好ましくは2倍モ
ル以上、更には5倍モル以上の割合にして電解縮合を行
なうことにより、この交差コルベ電解縮合反応をアジピ
ン酸モノメチル単独の電解縮合反応とほぼ同じようにし
て行なうことができるのである。
Reference Examples 1 and 2 show examples in which monomethyl adipate and monomethyl azelaate are used alone, but when monomethyl azelate is used alone, the average electrolytic sliding voltage is more than 1.5 times higher, and the current efficiency is also 150. /o It's getting worse. As the ratio of monomethyl adipate to monomethyl azelaate increases, the improvement is improved, and when the ratio of monomethyl adipate to monomethyl azelaate is equal to or more than the same molar ratio, the improvement is considerably improved. In particular, when monomethyl adipate is used in moles at least twice as much as monomethyl azelaate, especially at least five times as much, the situation is improved to almost the same as in the case of electrolysis using monomethyl adipate alone. As is clear from the above results, by electrolytically condensing monomethyl adipate in an equimolar or more, preferably twice or more, or even five times mole or more ratio relative to monomethyl azelaate, this cross-corbelization can be achieved. The electrolytic condensation reaction can be carried out in substantially the same manner as the electrolytic condensation reaction of monomethyl adipate alone.

本発明においては、電解縮合によつて目的のブラシル酸
ジメチル以外に、同時にセバシン酸ジメチル及びタプシ
ン酸ジメチルを得ることができる。
In the present invention, in addition to the target dimethyl brassylate, dimethyl sebacate and dimethyl thapsinate can be simultaneously obtained by electrolytic condensation.

しかも各生成物の生成量は原料であるアジピン酸七ツメ
チル及びアゼライン酸モノメチルの反応させる際のモル
割合を変えることによつて調節が可能である。本発明に
おいて電解縮合が行なわれる溶液は、原料であるアジピ
ン酸モノメチル、アゼライン酸モノメチル、それらの中
和塩を含むメタノール溶液であるが、生成物であるセバ
シン酸ジメチル、ブラシル酸ジメチル、タプシン酸ジメ
チル、その他の幅生物を含んでいても良い。
Moreover, the amount of each product produced can be adjusted by changing the molar ratio of the starting materials, heptadmethyl adipate and monomethyl azelate, during the reaction. The solution in which electrolytic condensation is carried out in the present invention is a methanol solution containing the raw materials monomethyl adipate, monomethyl azelate, and their neutralized salts, and the products dimethyl sebacate, dimethyl brassylate, and dimethyl tapsinate. , and other species may also be included.

又、電解縮合は仕込みの原料であるアジピン酸モノメチ
ル及びアゼライン酸モノメチルが実質的になくなる程度
まで回分的に行なつても良く、又、原料カルボン酸を一
定濃度に維持して連続的に行なつても良い。又、一定時
間原料カルボン酸を一定濃度に維持して連続的に行ない
、次いで原料カルボン酸が実質的になくなる程度まで回
分的に行なつてもよい。しかし、後工程における生成物
の分離精製を考慮すると、原料カルボン酸が残留してい
る場合にこれらと生成物の分離操作が煩雑になる。その
ため、電゛解縮合を最初から回分的に行なうか、又は最
初一定時間原料カルボン酸を一定濃度に維持して連続的
に行ない、次いで回分的に行ない、電解縮合の終了時に
原料カルボン酸が実質的になくなる程度まで行なうこと
が好ましい。生成物の純度等を考慮すると、電解液中の
アジピン酸モノメチル及びアゼライン酸モノメチルの濃
度が、1重量%以下になるまで電解縮合を続けることが
好ましい。本発明の電解縮合時のメタノール溶液中の水
濃度は実施例及び比較例にも示した通り、電解縮合の際
の水濃度を極端に減らせると電流効率が極めて悪くなり
、又、水濃度を3.5重量%を越える濃度にした場合も
物質収率及び電流効率が悪くなる。従つて、物質収率及
び電流効率を高く保つためには水濃度を0.15〜3.
5重量%の範囲:こ保持しておくことが必要である。本
発明の電解縮合時の仕込みのアジピン酸モノメチルとア
ゼライン酸モノメチルの混合酸は10〜50重量%で用
いられる。
Further, the electrolytic condensation may be carried out batchwise until the raw materials monomethyl adipate and monomethyl azelaate are substantially eliminated, or it may be carried out continuously while maintaining the raw material carboxylic acid at a constant concentration. It's okay. Alternatively, the reaction may be carried out continuously by maintaining the raw material carboxylic acid at a constant concentration for a certain period of time, and then carried out batchwise until the raw material carboxylic acid is substantially exhausted. However, in consideration of the separation and purification of the product in the post-process, if the raw material carboxylic acid remains, the separation operation between the raw material carboxylic acid and the product becomes complicated. Therefore, electrolytic condensation can be carried out batchwise from the beginning, or it can be carried out continuously by maintaining the raw material carboxylic acid at a constant concentration for a certain period of time, and then carried out batchwise, so that at the end of electrolytic condensation, the raw material carboxylic acid is substantially reduced. It is preferable to carry out the process to the extent that it is completely eliminated. Considering the purity of the product, etc., it is preferable to continue electrolytic condensation until the concentration of monomethyl adipate and monomethyl azelaate in the electrolytic solution becomes 1% by weight or less. Regarding the water concentration in the methanol solution during electrolytic condensation of the present invention, as shown in Examples and Comparative Examples, if the water concentration during electrolytic condensation is extremely reduced, the current efficiency becomes extremely poor. If the concentration exceeds 3.5% by weight, the material yield and current efficiency will also deteriorate. Therefore, in order to keep the material yield and current efficiency high, the water concentration should be 0.15 to 3.
5% by weight range: It is necessary to maintain this range. The mixed acid of monomethyl adipate and monomethyl azelaate used in the electrolytic condensation of the present invention is used in an amount of 10 to 50% by weight.

50重量%より高い濃度では電圧が高くなり、10重量
%より低い濃度では容積効率が悪くなり、更に電流効率
も悪くなる。
At a concentration higher than 50% by weight, the voltage becomes high, and at a concentration lower than 10% by weight, the volumetric efficiency deteriorates, and the current efficiency also deteriorates.

本発明において電解縮合の際の溶液の導電性を高めるた
めに、中和塩基としてリチウム、カリウム、ナトリウム
の水酸化物、炭酸塩、重炭酸塩、メチラート、エチラー
ト又はアミン類が用いられる。
In the present invention, hydroxides, carbonates, bicarbonates, methylates, ethylates or amines of lithium, potassium, sodium are used as neutralizing bases in order to increase the conductivity of the solution during electrolytic condensation.

しかし、アミン類は陽極で酸化されて陽極の消耗を促進
し、リチウム化合物を用いると電流効率が悪くなる。従
つて、ナトリウム、カリウムの水酸化物、炭酸塩、重炭
酸塩、メチラートを用いることが望ましい。又、アジピ
ン酸モノメチルとアゼライン酸モノメチルの混合酸の仕
込みの際の中和度(混合酸を塩基で中和するモル割合と
定義する。)は2〜50モル%が好ましい。中和度が2
モル%未満では電圧が高くなり、50モル%より高い濃
度では電流効率が低くなる。本発明において用いられる
電解槽は有機電解反応において通常用いられるものであ
つて、電解液を両極の間に高流速で通過させることがで
きるようなものであれば良い。
However, amines are oxidized at the anode and accelerate the consumption of the anode, and the use of lithium compounds deteriorates current efficiency. Therefore, it is desirable to use sodium and potassium hydroxides, carbonates, bicarbonates, and methylates. Further, the degree of neutralization (defined as the molar proportion of the mixed acid to be neutralized with a base) during charging of the mixed acid of monomethyl adipate and monomethyl azelaate is preferably 2 to 50 mol%. Neutralization degree is 2
If the concentration is less than mol %, the voltage will be high, and if the concentration is higher than 50 mol %, the current efficiency will be low. The electrolytic cell used in the present invention may be one commonly used in organic electrolytic reactions, as long as it is capable of passing an electrolytic solution between the two electrodes at a high flow rate.

例えば、電解槽:ま陰極板と陽極板とを平行に対向させ
、両極の間に電極間隔を規定するポリプロピレンの板を
置く。このポリプロピレンの板の中央部には電解液が流
通するように開孔部を有している。電解の通電面積はこ
の開孔部の大きさにより、又電極間隔はこの板の厚さに
よつて規定される。
For example, an electrolytic cell: A cathode plate and an anode plate are placed parallel to each other, and a polypropylene plate is placed between the two electrodes to define the electrode spacing. This polypropylene plate has an opening in the center so that the electrolyte can flow therethrough. The electrolytic conduction area is determined by the size of this opening, and the electrode spacing is determined by the thickness of this plate.

電解液は電解槽に設けられた供給口から入り、両極の間
を通過する間に反応が行なわれ、流出口から出て電解液
タンクに循環される。本発明の電解縮合に用いられる電
極材料としては、陽極には白金、ロジウム、ルテニウム
、イリジウムなどが単独又は合金で用いられ、使用形態
は通常メツキとして用いられ、メツキ基板にはチタン、
タンタルなどが用いられる。
The electrolytic solution enters through a supply port provided in the electrolytic cell, undergoes a reaction while passing between the two electrodes, exits through an outlet port, and is circulated to the electrolyte tank. As the electrode material used in the electrolytic condensation of the present invention, platinum, rhodium, ruthenium, iridium, etc. are used alone or in an alloy for the anode, and are usually used as a plating, and the plating substrate is made of titanium, rhodium, iridium, etc.
Tantalum etc. are used.

又、陰極には水素過電圧の低いものが好ましいが、特に
限定されることはなく、白金、鉄、ステンレススチール
、チタン等が用いられる。電解液の電解槽内における流
速は1〜4m/秒が好ましい。
The cathode preferably has a low hydrogen overvoltage, but is not particularly limited, and platinum, iron, stainless steel, titanium, etc. can be used. The flow rate of the electrolytic solution in the electrolytic cell is preferably 1 to 4 m/sec.

1m/秒未満では電流効率が低く、4m/秒より速い流
速では電解槽内の圧損失が大きくなる。
If the flow rate is less than 1 m/sec, the current efficiency will be low, and if the flow rate is faster than 4 m/sec, the pressure loss within the electrolytic cell will increase.

電極の間隔は0.5〜3m71Lが好ましい。0.5m
m.未満では電解槽内の圧損失が大きくなり、3mmよ
り広くすると電圧が高くなる。
The spacing between the electrodes is preferably 0.5 to 3 m71L. 0.5m
m. If it is less than 3 mm, the pressure loss within the electrolytic cell will increase, and if it is wider than 3 mm, the voltage will increase.

電流密度は5〜40A/Dm2が好ましく、5A/Dm
2未満では電流効率が低くなる。電解液の温度は45〜
65℃が好ましい。温度が45℃未満では電流効率が低
く電圧も高くなり場合によつては生成物が析出してくる
。65℃より高い温度は電解液の沸点で制限される。
The current density is preferably 5 to 40 A/Dm2, and 5 A/Dm
If it is less than 2, the current efficiency will be low. The temperature of the electrolyte is 45~
65°C is preferred. If the temperature is lower than 45° C., the current efficiency will be low and the voltage will be high, and in some cases, products will precipitate. Temperatures higher than 65°C are limited by the boiling point of the electrolyte.

電解縮合終了後、電解液からの生成物の精製分離は常法
によつて行なうことができる。
After the electrolytic condensation is completed, the product can be purified and separated from the electrolytic solution by a conventional method.

即ち、電解液からメタノールを除去した後直接油水層に
2層分離するか、又は水を加えて2層分離し油層から蒸
留によつて高純度のセバシン酸ジメチル、ブラシル酸ジ
メチル、タプシン酸ジメチルを得ることができる。以上
詳述した様に、本発明方法は、従来から行なわれている
方法及びその他提案されている種々の方法に比べて次の
様な利点がある。
That is, after removing methanol from the electrolytic solution, it is directly separated into two layers into an oil-water layer, or water is added to separate the two layers, and high-purity dimethyl sebacate, dimethyl brassylate, and dimethyl thapsinate are obtained by distillation from the oil layer. Obtainable. As detailed above, the method of the present invention has the following advantages over conventional methods and various other proposed methods.

第1には、原料の入手が極めて容易であり、しかも安価
であるということである。更にはその他、特殊な薬品や
安全面で問題のあるような薬品は一切用いていない。第
2には、極めて高収率、高電流効率で目的生成物を得る
ことができる。即ち、反応生成物からの目的生成物の精
製が極めて容易であり、且つ高純度のものを得ることが
できる。第3には、目的生成物であるブラシル酸ジメチ
ルの他に、セバシン酸ジメチル及びタプシン酸ジメチル
を同時に得ることができる。これらの物質もまた工業的
に極めて重要なものである。即ち、セバシン酸ジメチル
は可塑剤、潤滑油、ナイロン6・10、プラスチツクス
の光安定剤、接着剤等の原料として広範囲に用いられて
いる。又、タプシン酸ジメチルも大環状ムスク香料の原
料として有用なものである。実施例1〜4、比較例1,
2、参考例1,2電解液タンクに第1表に示した量のア
ジピン酸モノメチル及び/またはアゼライン酸モノメチ
ルを入れ、次にカルボン酸の中和度が8%になる様に水
酸化カリウムを入れ、次にメタノールを入れ最後に仕込
み液中の水濃度が3.0重量%になるように水を加えた
First, raw materials are extremely easy to obtain and are inexpensive. Furthermore, no special chemicals or chemicals that pose safety issues are used. Second, the desired product can be obtained with extremely high yield and high current efficiency. That is, it is extremely easy to purify the target product from the reaction product, and it is possible to obtain a product of high purity. Thirdly, in addition to the target product dimethyl brassylate, dimethyl sebacate and dimethyl thapsinate can be obtained simultaneously. These substances are also of great industrial importance. That is, dimethyl sebacate is widely used as a raw material for plasticizers, lubricating oils, nylon 6/10, plastic light stabilizers, adhesives, and the like. Dimethyl thapsinate is also useful as a raw material for macrocyclic musk fragrances. Examples 1 to 4, Comparative Example 1,
2. Reference Examples 1 and 2 Put monomethyl adipate and/or monomethyl azelaate in the amount shown in Table 1 into an electrolyte tank, and then add potassium hydroxide so that the degree of neutralization of the carboxylic acid is 8%. Next, methanol was added, and finally water was added so that the water concentration in the charging liquid was 3.0% by weight.

この調製液を電解槽に循環した。電解槽は両極とも1。
0?XlOO(1−JモV1の通電面積を有し、陰極は厚
さ2mmのチタン板、陽極は厚さ2mmのチタン板に4
ミクロンの白金メツキをした板を用い、両極の間に通電
面積が1.0CrIL×100?に保持されるように開
孔部を有する厚さ1mmのポリエチレンの板を置いて電
極間隔を1mmに規定した。
This prepared solution was circulated to the electrolytic cell. Both poles of the electrolytic cell are 1.
0? XlOO (has a current carrying area of 1-J mo V1, the cathode is a titanium plate with a thickness of 2 mm, and the anode is a titanium plate with a thickness of 2 mm.
A plate plated with micron platinum is used, and the current carrying area between the two electrodes is 1.0 CrIL x 100? A 1 mm thick polyethylene plate with openings was placed so that the electrodes were held at a distance of 1 mm.

電解槽は液の供給口と流出口を有するものを用いた。両
極間に液を2m/Secの流速で流し、電流密度を20
A/DTrIに、液の温度を50〜52℃に保持して電
解した。電解液をサンプリングしてアジピン酸モノメチ
ルの残存量をガスクロマトグラフ分析で測定しながら電
解を行ない、その濃度が0.1重量%以下になつた時点
を電解終了の目途とした。電解終了後、電解液中の各成
分をガスクロマトグラフ分析で測定した。その結果を第
1表に示す。なお、選択率及び電流効率の計算は、水酸
化カリウムによるアジピン酸モノメチル及びアゼライン
酸モノメチルの中和がそれぞれのカルボン酸の仕込みモ
ル割合で行なわれたとして行なつた。
The electrolytic cell used had a liquid supply port and a liquid outlet. The liquid was flowed between the two electrodes at a flow rate of 2 m/Sec, and the current density was set to 20
Electrolysis was carried out using A/DTrI while maintaining the temperature of the solution at 50 to 52°C. Electrolysis was carried out while sampling the electrolytic solution and measuring the remaining amount of monomethyl adipate by gas chromatography analysis, and the end of electrolysis was determined when the concentration became 0.1% by weight or less. After the electrolysis was completed, each component in the electrolyte was measured by gas chromatography analysis. The results are shown in Table 1. Note that the selectivity and current efficiency were calculated assuming that monomethyl adipate and monomethyl azelaate were neutralized with potassium hydroxide at the charged molar ratio of each carboxylic acid.

又、電流効率は2ファラデー一の電気量より各生成物1
モルが生成するとして求めた。選択率及び電流効率の計
算式は次の通りである。アジピン酸モノメチル基準のセ
バシン酸ジメチルの選択率アジピン酸モノメチル基準(
アゼライン酸モノメチル基準)のブラシル酸ジメチルの
選択率(消費したアゼライン酸モノメチルのモル数)ア
ゼライン酸モノメチル基準のタプシン酸ジメ以降の実施
例、比較例においても同様に行なつた。
In addition, the current efficiency is 1 for each product from 2 Faradays of electricity.
It was calculated assuming that moles are produced. The calculation formulas for selectivity and current efficiency are as follows. Selectivity of dimethyl sebacate based on monomethyl adipate (based on monomethyl adipate)
Selectivity of dimethyl brassylate (based on monomethyl azelate) (number of moles of monomethyl azelaate consumed) Dimethyl brassylate based on monomethyl azelaate The same procedure was carried out in the following Examples and Comparative Examples.

実施例 5 実施例1と同様の電解装置を用い、電解液タンクにアジ
ピン酸モノメチル23511アゼライン酸モノメチル5
9g、メタノール5799を入n1つぎにカルボン酸の
中和度が10%になるように水酸化カリウムを入れ、最
後に液中の水濃度が2.0重量%になるように水を加え
て調製した。
Example 5 Using the same electrolyzer as in Example 1, monomethyl adipate 23511 monomethyl azelate 5 was added to the electrolyte tank.
Prepare by adding 9g of methanol and 5799% of methanol, then adding potassium hydroxide so that the degree of neutralization of the carboxylic acid is 10%, and finally adding water so that the water concentration in the liquid is 2.0% by weight. did.

アジピン酸モノメチル対アゼライン酸モノメチルの仕込
みモル比は5対1であつた。次に、電流密度を11A/
Dm2に変える以外は実施例1と同様の条件に設定し、
且つアジピン酸モノメチル929とアゼライン酸モノメ
チル229との混合液(アジピン酸モノメチル/アゼラ
イン酸モノメチルのモル比で5/1)を電解液タンクに
5.0時間連続的に供給しながら電解縮合を行なつた。
更に2.0時間電解縮合を続けた。電圧は6.8〜6.
6であつた。電解終了後の液量は9009であり、液中
の各成分の濃度はセバシン酸ジメチルが17.0重量%
であり、ブラシル酸ジメチルが6.5重量%であり、タ
プシン酸ジメチルが0.8重量%であり、残存したアゼ
ライン酸モノメチルは0.6重量%であつた。各電解縮
合生成物の選択率と電流効率は次の通りであつた。実施
例 6 実施例1と同様の電解装置を用い、電解液タンクにアジ
ピン酸モノメチル1739、アゼライン酸モノメチル1
079、メタノール6629を入れ、つぎにカルボン酸
の中和度が8.0%になるように水酸化カリウムを入れ
、最後に液中の水濃度が1.2重量%になるように調製
した。
The charging molar ratio of monomethyl adipate to monomethyl azelaate was 5:1. Next, increase the current density to 11A/
The conditions were the same as in Example 1 except for changing to Dm2,
Electrolytic condensation was carried out while continuously supplying a mixed solution of monomethyl adipate 929 and monomethyl azelate 229 (mole ratio of monomethyl adipate/monomethyl azelate 5/1) to the electrolyte tank for 5.0 hours. Ta.
Electrolytic condensation was continued for an additional 2.0 hours. The voltage is 6.8-6.
It was 6. The amount of liquid after electrolysis is 9009, and the concentration of each component in the liquid is 17.0% by weight of dimethyl sebacate.
The dimethyl brassylate was 6.5% by weight, the dimethyl thapsinate was 0.8% by weight, and the remaining monomethyl azelaate was 0.6% by weight. The selectivity and current efficiency of each electrolytic condensation product were as follows. Example 6 Using the same electrolyzer as in Example 1, monomethyl adipate 1739 and monomethyl azelaate 1 were added to the electrolyte tank.
079 and methanol 6629 were added, then potassium hydroxide was added so that the degree of neutralization of the carboxylic acid was 8.0%, and finally the water concentration in the liquid was adjusted to 1.2% by weight.

アジピン酸モノメチル対アゼライン酸モノメチル仕込み
モル比は2対1である。次に、実施例1と同様の条件で
電解液中のアジピン酸モノメチル及びアゼライン酸モノ
メチルの濃度が0.1重量%以下になるま5で2.48
時間電解縮合を行なつた。電圧は12.7〜9.5Vで
あり、平均電圧としては11.1Vであつた。電解縮合
後の液量は8859であり、液中の各成分の濃度はセバ
シン酸ジメチルが7.2重量%であり、ブラシル酸ジメ
チルが7.5重量%であり、タプシン・酸ジメチルが2
.3重量%であり、各電解縮合生成物の選択率と電流効
率は次の通りであつた。実施例 7 実施例1と同様の電解装置を用い、電解液タンクにアジ
ピン酸モノメチル358f11アゼライン酸モノメチル
44g、水酸化ナトリウム9.9g、メタノール548
9を入れ、最後に液中の水濃度が2.5重量%になるよ
うに水を加えて調製した。
The molar ratio of monomethyl adipate to monomethyl azelaate charged is 2:1. Next, under the same conditions as in Example 1, the concentration of monomethyl adipate and monomethyl azelaate in the electrolytic solution was 2.48% by weight or less.
Time electrolytic condensation was carried out. The voltage was 12.7 to 9.5V, and the average voltage was 11.1V. The amount of liquid after electrolytic condensation was 8859, and the concentrations of each component in the liquid were 7.2% by weight for dimethyl sebacate, 7.5% by weight for dimethyl brassylate, and 2% for tapsin/dimethyl acid.
.. 3% by weight, and the selectivity and current efficiency of each electrolytic condensation product were as follows. Example 7 Using the same electrolyzer as in Example 1, the electrolyte tank contained 358 f11 monomethyl adipate, 44 g monomethyl azelate, 9.9 g sodium hydroxide, and 548 g methanol.
9 and finally added water so that the water concentration in the liquid was 2.5% by weight.

アジピン酸モノメチル対アゼライン酸モノメチルの仕込
みモル比は10対1であり、中和度は10%であつた。
The molar ratio of monomethyl adipate to monomethyl azelate was 10:1, and the degree of neutralization was 10%.

次いで電流密度を10A/Dm2に変える以外は実施例
1と同様の条件に設定して電解した。電解液中のアジピ
ン酸モノメチル及びアゼライン酸モノメチルの両方の濃
度が0.1重量%以下になるまで7.70時間電解した
。電圧は7.7Vから5.8まで変化した。電解縮合後
の液量は8839であり、液中の各成分の濃度はセバシ
ン酸ジメチルが19.4重量%であり、ブラシル酸ジメ
チルが4.3重量%であり、タプシン酸ジメチルが0.
2重量%であつた。各電解縮合生成物の選択率及び電流
効率は次の通りであつた。比較例 3 仕込み液中の水濃度を4。
Next, electrolysis was carried out under the same conditions as in Example 1 except that the current density was changed to 10 A/Dm2. Electrolysis was carried out for 7.70 hours until the concentrations of both monomethyl adipate and monomethyl azelaate in the electrolytic solution became 0.1% by weight or less. The voltage varied from 7.7V to 5.8V. The amount of liquid after electrolytic condensation was 8839, and the concentrations of each component in the liquid were 19.4% by weight for dimethyl sebacate, 4.3% by weight for dimethyl brassylate, and 0.0% for dimethyl thapsinate.
It was 2% by weight. The selectivity and current efficiency of each electrolytic condensation product were as follows. Comparative Example 3 Water concentration in the preparation liquid was 4.

5重量%に変える以外は実施例7と全く同様にして電解
縮合を行つた。電解時間は9.04時間であり、電圧は
7.5〜5.6まで変化した。
Electrolytic condensation was carried out in the same manner as in Example 7 except that the amount was changed to 5% by weight. The electrolysis time was 9.04 hours and the voltage varied from 7.5 to 5.6.

電解縮合後の液量は8789であり、液中の各成分の濃
度はセバシン酸ジメチルが17.4重量%であり、ブラ
シル酸ジメチルが3.8重量%であり、タプシン酸ジメ
チルが0.2重量%であつた。各電解縮合生成物の選択
率及び電流効率は次の通りであつた。比侵?14 実施列7において、混合酸を中和するアルカリを水酸化
ナトリウム9.99からナトリウムメチラート13.4
9に変え、且つ仕込み液中の水濃度を0.10重量%に
変える以外は実施例7と全く同様にして電解縮合を行な
つた。
The amount of liquid after electrolytic condensation was 8789, and the concentrations of each component in the liquid were 17.4% by weight for dimethyl sebacate, 3.8% by weight for dimethyl brassylate, and 0.2% by weight for dimethyl thapsinate. It was in weight%. The selectivity and current efficiency of each electrolytic condensation product were as follows. Competitive? 14 In Example 7, the alkali to neutralize the mixed acid ranges from 9.99% sodium hydroxide to 13.4% sodium methylate.
Electrolytic condensation was carried out in exactly the same manner as in Example 7, except that the concentration of water in the charging liquid was changed to 0.10% by weight.

Claims (1)

【特許請求の範囲】 1 アジピン酸モノメチルとアゼライン酸モノメチルと
の混合酸を、それらのアルカリ金属塩を含むメタノール
溶液中で、アジピン酸モノメチルをアゼライン酸モノメ
チルに対して等モル以上の割合にして電解縮合すること
を特徴とするブラシル酸ジメチルの製造方法。 2 アジピン酸モノメチルのアゼライン酸モノメチルに
対して用いる量が2倍モル以上である特許請求の範囲第
1項記載のブラシル酸ジメチルの製造方法。 3 アジピン酸モノメチルのアゼライン酸モノメチルに
対して用いる量が5倍モル以上である特許請求の範囲第
2項記載のブラシル酸ジメチルの製造方法。 4 電解縮合時のメタノール溶液中の水濃度を、0.1
5〜3.5重量%に保持することを特徴とする特許請求
の範囲第1項記載のブラシル酸ジメチルの製造方法。 5 電解縮合時の仕込みのアジピン酸モノメチルとアゼ
ライン酸モノメチルとの混合酸を10〜50重量%にし
、該混合酸をカリウムまたはナトリウムの水酸化物、炭
酸塩、重炭酸塩、メチラート、エチラートから選ばれた
少なくとも一種類の塩基を用いて中和が2〜50モル%
になるように中和し、解槽内における電解液の流速を1
〜4m/sec、電極間隔を0.5〜3mmに設定し、
電流密度を5〜40A/dm^2、電解液の温度を45
〜65℃の範囲にすることを特徴とする特許請求の範囲
第1項記載のブラシル酸ジメチルの製造方法。
[Scope of Claims] 1. A mixed acid of monomethyl adipate and monomethyl azelaate is electrolyzed in a methanol solution containing their alkali metal salts in an equimolar or more ratio of monomethyl adipate to monomethyl azelaate. A method for producing dimethyl brassylate, which is characterized by condensation. 2. The method for producing dimethyl brassylate according to claim 1, wherein the amount of monomethyl adipate used is at least twice the molar amount of monomethyl azelaate. 3. The method for producing dimethyl brassylate according to claim 2, wherein the amount of monomethyl adipate used is at least 5 times the molar amount of monomethyl azelaate. 4 The water concentration in the methanol solution during electrolytic condensation was set to 0.1
The method for producing dimethyl brassylate according to claim 1, wherein the content is maintained at 5 to 3.5% by weight. 5 The mixed acid of monomethyl adipate and monomethyl azelate used during electrolytic condensation is adjusted to 10 to 50% by weight, and the mixed acid is selected from potassium or sodium hydroxide, carbonate, bicarbonate, methylate, and ethylate. neutralization of 2 to 50 mol% using at least one type of base
The flow rate of the electrolyte in the decomposition tank is reduced to 1.
~4m/sec, electrode spacing set to 0.5~3mm,
Current density: 5 to 40 A/dm^2, electrolyte temperature: 45
The method for producing dimethyl brassylate according to claim 1, characterized in that the temperature is in the range of -65°C.
JP56080016A 1981-05-28 1981-05-28 Method for producing dimethyl brassylate Expired JPS5942075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56080016A JPS5942075B2 (en) 1981-05-28 1981-05-28 Method for producing dimethyl brassylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56080016A JPS5942075B2 (en) 1981-05-28 1981-05-28 Method for producing dimethyl brassylate

Publications (2)

Publication Number Publication Date
JPS57198287A JPS57198287A (en) 1982-12-04
JPS5942075B2 true JPS5942075B2 (en) 1984-10-12

Family

ID=13706503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56080016A Expired JPS5942075B2 (en) 1981-05-28 1981-05-28 Method for producing dimethyl brassylate

Country Status (1)

Country Link
JP (1) JPS5942075B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177817U (en) * 1984-10-26 1986-05-24
JPH0664681A (en) * 1991-10-11 1994-03-08 Nitsusee Kk Manufacture of case

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177817U (en) * 1984-10-26 1986-05-24
JPH0664681A (en) * 1991-10-11 1994-03-08 Nitsusee Kk Manufacture of case

Also Published As

Publication number Publication date
JPS57198287A (en) 1982-12-04

Similar Documents

Publication Publication Date Title
US5841002A (en) Process for the commercial production of polyhydroxy alcohols and glycols
EP0032427B1 (en) Preparation of hydroxy compounds by electrochemical reduction
JP4755458B2 (en) Method for producing 2-alkyne-1-acetal
JPS5942075B2 (en) Method for producing dimethyl brassylate
US4235683A (en) Electrolytic preparation of benzaldehydes
US4256550A (en) Method for producing vitamin B1 and its intermediate
JPS5942076B2 (en) Method for producing dimethyl pentadecanedioate
JPS5837397B2 (en) Method for producing n-valeric acid or its esters
EP0097719B1 (en) Process for producing higher dibasic acid dimethyl ester
US3879271A (en) Production of diesters of dicarboxylic acids by electrochemical condensation of monoesters of dicarboxylic acids
JPS6342713B2 (en)
JP2604826B2 (en) Highly selective oxidation of primary alcohols to aldehydes
JPS5950755B2 (en) Production method of dimethyl thapsinate
JPS5950754B2 (en) Method for producing dimethyl dicarboxylate
EP0219484B1 (en) Electrolytic preparation of perfluoroalkanoic acids and perfluoroalkanols
JPS5939513B2 (en) Method for producing dimethyl higher dibasic acid
EP3545121A1 (en) Process
JPS5846552B2 (en) Method for producing 8-oxononanoic acid methyl ester
JP5138499B2 (en) Method for producing aliphatic diketone
JPS5942077B2 (en) Method for producing dimethyl azelaate
US4457814A (en) Process for electrochemical reduction of terephthalic acid
JPH07196561A (en) Production of alkali alkoxide by electrolytic reaction
JPS6136815B2 (en)
JP3653590B2 (en) Process for producing bromo-substituted azetidinone compounds
JPS6044398B2 (en) Method for producing dimethyl higher dibasic acid