JPS58161474A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS58161474A
JPS58161474A JP57039648A JP3964882A JPS58161474A JP S58161474 A JPS58161474 A JP S58161474A JP 57039648 A JP57039648 A JP 57039648A JP 3964882 A JP3964882 A JP 3964882A JP S58161474 A JPS58161474 A JP S58161474A
Authority
JP
Japan
Prior art keywords
substrate
solid
light
wavelength
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57039648A
Other languages
Japanese (ja)
Inventor
Yuichiro Ito
雄一郎 伊藤
Akira Shimohashi
下橋 彰
Shuji Watanabe
渡辺 修治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57039648A priority Critical patent/JPS58161474A/en
Publication of JPS58161474A publication Critical patent/JPS58161474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14875Infrared CCD or CID imagers
    • H01L27/14881Infrared CCD or CID imagers of the hybrid type

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To increase the number of picture elements included in a photodetection area and to improve the resolution without increasing the photodetection area, by forming the photodetection section and the transfer section on separate semiconductor substrates, and incorporating both substrates solidly, relating to a one-dimension or two-dimension solid-state image pickup device. CONSTITUTION:The 1st semiconductor substrate 1' where a Schottky picture element electrode 2 is provided is separated from the 2nd semiconductor substrate 1 where a CCD shift register is provided. Thus, the 1st substrate 1' uses different material from the 2nd substrate 1. For example, in using a P type Germanium (Ge) as the 1st substrate 1', the photosensing wavelength of the Schottky barrier formed through the contact between the Ge and nickel (Ni) is around 10mum, and the light far longer than the photosensing wavelength of 1.2-4.6mum is detected.

Description

【発明の詳細な説明】 (a)  発明の技術公費 本発明は一次元あるいは二次元の一体撮像装置に関し、
特に受光素子を構成する画素が71ツトキーバリヤ構成
となっているものく関する。
[Detailed description of the invention] (a) Technology of the invention Public funding The present invention relates to a one-dimensional or two-dimensional integrated imaging device,
In particular, the present invention relates to those in which the pixels constituting the light-receiving element have a 71-key barrier configuration.

(b)  技術の背景 固体撮像装置、特に赤外線用の一次元あるいは二次元撮
像装置のうちで、受光素子を、例えばシリコン(81)
基板の一主面上に例えばプラチナ(Ft)あるいは金(
ムU)を被着させることによって構成したいわゆるシ膳
ットキーバリャ■光センサがある。この種の光センサす
なわち撮像装置は例えばJournal of 8o1
id −8tate C4rouitsVO1,80−
11,No、 L  February、 197LP
、 189〜146 に発表されたもので、このうち−
次元センサを例にとって見れば、該センサすなわち一体
撮像装置の要部断面図は61図に見られるようなものと
なる。
(b) Background of the technology Among solid-state imaging devices, especially infrared one-dimensional or two-dimensional imaging devices, the light receiving element is made of silicon (81), for example.
For example, platinum (Ft) or gold (
There is a so-called seat key barrier (1) optical sensor which is constructed by depositing a film (U). This type of optical sensor or imaging device is used, for example, in the Journal of 8o1
id -8tate C4rouitsVO1,80-
11, No, L February, 197LP
, 189-146, of which -
Taking a dimensional sensor as an example, a sectional view of a main part of the sensor, that is, an integrated imaging device, is as shown in FIG. 61.

この第1図において、たとえばPlilの半導体基板(
例えば8i)1の一主面上の所定の場所には上述したよ
うに轟あるいは麺を材料とするシ腫ットキー画素電極2
が被着接触されており、低温例えば77@にでは該画素
電極2直下の半導体面には例えば六とPlil劇との組
合わせではα26・マ種度のショットキーバリヤがです
るため、その附近には空乏層8が形成される。但し8は
絶縁膜である。
In FIG. 1, for example, Plil's semiconductor substrate (
For example, at a predetermined location on one main surface of 8i)1, there is a shimato key pixel electrode 2 made of todoroki or noodles as described above.
At a low temperature, for example, 77@, a Schottky barrier with a degree of α26 m is formed on the semiconductor surface directly below the pixel electrode 2, for example, in the combination of 6 and Plil. A depletion layer 8 is formed. However, 8 is an insulating film.

こξで基板lの裏面la側−b)ら矢印イ方向に赤外線
を入射せしめると、咳−赤外線は例えばPmIのシリコ
ン基板中を透過して、上記シ票ットキーバリヤ部分に入
射する。かくすれば上記赤外線が矢印口のように透過す
る際にシ曹ットキーバリャ部分で行われる光電変換によ
って、電子と正孔の対← がシ厘ットキー画素電極2中で作られるのであるが、こ
のうち正孔は空乏層8を横切って矢印へ方向に流れ去り
、その結果、画素電極2中では電子が残されて累積され
てくる。
When infrared rays are made incident in the direction of arrow A from the rear surface la side -b) of substrate l at this point ξ, the infrared rays are transmitted through the silicon substrate of, for example, PmI, and are incident on the cut key barrier portion. In this way, when the above-mentioned infrared rays pass through as shown by the arrow, the photoelectric conversion that takes place in the cylindrical barrier part creates pairs of electrons and holes in the cylindrical pixel electrode 2. The holes flow away in the direction of the arrow across the depletion layer 8, and as a result, electrons are left behind and accumulated in the pixel electrode 2.

ところが上記画素電極2は諒電極2に隣接して形成され
ている基板と逆導電■のn十麿不純物ドープ層6と電気
的に接続されているので、前記の画素電極2中で増加し
た電子(負電荷)は上記不純物ドープ層す中に流れ込む
のであるが、この電子は、等価的には不純物ドープ層6
と基W1との間に形成される空乏層9が有する空乏層容
量Cdと、該空乏層9につながって生じている前記シ1
ットキーバリャ部の空乏層容量CIに蓄積され纂ことに
なる。
However, since the pixel electrode 2 is electrically connected to the substrate and the reverse conductivity n-doped layer 6 formed adjacent to the diagonal electrode 2, the electrons increased in the pixel electrode 2 are (negative charges) flow into the impurity doped layer, but equivalently, these electrons flow into the impurity doped layer 6.
and the depletion layer capacitance Cd of the depletion layer 9 formed between the base W1 and the base W1, and the depletion layer capacitance Cd of the depletion layer 9 formed between the
This will accumulate in the depletion layer capacitance CI in the key barrier section.

この蓄積された電子は、移送ゲート6に、端子18を介
して足の電圧Vtが印加されると、該移送ゲート6直下
にチャンネルが生じるので、矢印二方向に流れ、電荷転
送装置(以下00Dと称する)の転送電極7直下の空乏
層10または電位の井戸中に流入し、端子14を介して
印加される転送電圧ダtによって、上記CODの長手方
向、すなわちws1図では断面に重直な方向に転送され
て読み出される。
When the foot voltage Vt is applied to the transfer gate 6 via the terminal 18, the accumulated electrons flow in the two directions of the arrows because a channel is generated directly under the transfer gate 6, and the electrons flow in the charge transfer device (hereinafter referred to as 00D). The transfer voltage dat flows into the depletion layer 10 or the potential well just below the transfer electrode 7 of the COD and is applied via the terminal 14. direction and read out.

(0)  従来技術と問題点 ところでこのようなシ翼ットキー画素電極2で構成され
た受光部と、シフトレジスタとして働くCODからなる
電荷転送部とを備えた固体撮像装置では、転送部が受光
部と同一半導体表面1ζ配設されているために実質的受
光領域が制限されて少なくなってしまうという欠点があ
る。またそのために例えば画素電極材料がFtであると
すると、そのVWワットー画素の感光波長は1.2〜4
4s11に限定されてしまうという不都合が生じる。
(0) Prior Art and Problems By the way, in a solid-state imaging device that is equipped with a light-receiving section made up of such a shift register pixel electrode 2 and a charge transfer section made up of a COD that works as a shift register, the transfer section is connected to the light-receiving section. Since the same semiconductor surface 1ζ is disposed on the same semiconductor surface as 1ζ, there is a drawback that the actual light-receiving area is limited and reduced. For that reason, for example, if the pixel electrode material is Ft, the photosensitive wavelength of the VW Watt pixel is 1.2 to 4.
This causes the inconvenience of being limited to 4s11.

(d)  発明の目的 本発明は上記従来の欠点に錨みてな−れたもので、受光
面積を大壷くすることなく、その中に含まれる画素数を
増加させて分解能の向上を図ることがで番、しかも受光
部の半導体基板を81以外の材料にして感光波長領域を
種々に変えることもで赤る新規な1体撮像装置を提供す
る仁とを目的とする。
(d) Purpose of the Invention The present invention has been achieved in view of the above-mentioned drawbacks of the conventional technology, and aims to improve resolution by increasing the number of pixels included in the light-receiving area without increasing the area. Another object of the present invention is to provide a novel one-piece imaging device that can be used to change the photosensitive wavelength region by using a material other than 81 for the semiconductor substrate of the light receiving part.

(・) 発明の構成 そしてこの目的は、本発明によれば、複数のシ1ソトキ
ーバリャ構造の受光原子で構成された受光部と、当該受
光部において生じた電荷を転送する電荷転送装置で構成
された転送部とを供えた撮像装置の構成において、上記
受光部と転送部とを別々の半導体基板上に構成し、当該
両基板を立体的に一体化した乙とを特徴とす番一体撮像
装置を提供することによって達成され番。
(・) Structure and object of the invention According to the present invention, there is provided a light-receiving section made up of a plurality of light-receiving atoms having a single soto-key barrier structure, and a charge transfer device that transfers the charges generated in the light-receiving section. An integrated imaging device characterized in that the light receiving section and the transfer section are configured on separate semiconductor substrates, and the two substrates are three-dimensionally integrated. This is achieved by providing a number.

げ)発明の実施例 以下、本発明の実施例を間両によって詳述する。g) Examples of the invention Hereinafter, embodiments of the present invention will be briefly described in detail.

第2図は本発明に係るシ曹ットキー/<リヤ麿の固体撮
像装置の構造を示すWIIW/II爾閣であって、11
1図と一響部位には同一符号を付すOこの本発明の固体
撮像装置が511図の従来のものと異なる主なと乙ろは
、シ曹ットキー画素電極2が配設されている第1の半導
体基板1′は、CCDシフトレジスタが配設されている
第2の半導体基板lと別個にされている点であって、仁
のために上記Illの基板1′は第2の基板lと異なる
材料を用いる仁とがで−る。
FIG. 2 is a WIIW/II diagram showing the structure of a solid-state imaging device according to the present invention.
The same reference numerals as in Fig. 1 are given to the same parts as in Fig. 1. The main difference between the solid-state imaging device of the present invention and the conventional one shown in Fig. The semiconductor substrate 1' is separate from the second semiconductor substrate 1 on which the CCD shift register is disposed, and for the sake of convenience, the substrate 1' is different from the second substrate 1. There are many types using different materials.

例えば上記litの基板1′としてpHのゲルマニウム
(Go)を用いるとすれば、伽と例えばニッケル(姐)
&の接触で形成されるシ璽ットヰーバリャの感光波長は
10pH度となり、前記した1、2〜4.6μ調の感光
波長よりはるかに長波長の光を検出することがで拳る。
For example, if pH germanium (Go) is used as the substrate 1' of the above lit, then nickel (Go) and
The photosensitive wavelength of the shield formed by contact with & is 10 pH degrees, making it possible to detect light with a much longer wavelength than the above-mentioned photosensitive wavelength of 1, 2 to 4.6 microns.

その上、上記亀1の基板1′のシ肩ットキー画素電極2
が配設されている傭の主面にはCCDシフトレジスタを
配設する必要がないので、さらに多くの他あシ璽ットキ
ーー票電極を複数個配設することができ、受光面の利用
効率が著しく向上する。
Moreover, the key pixel electrode 2 of the substrate 1' of the turtle 1 is
Since there is no need to dispose a CCD shift register on the main surface of the screen where the light-receiving surface is disposed, it is possible to dispose a larger number of other shift registers on the main surface, which increases the efficiency of use of the light-receiving surface. Significantly improved.

この固体撮像装置の動作自体は111図に示した従来の
装置番ζおける動作原理と何ら変わらないが画素電極2
中で増加した電荷(電子)は、該電極2の片隅に立てら
れた例えばインジウム(In )を材料とするバンブ2
2を介してtm!不純物ドープ層6中に流入する。そし
て移送ゲート・に端子1sを介して移送ゲート6に電圧
vtが印加されるとやはり咳移送ゲート6の直下に生じ
るチャンネル中を矢印二方向に移送されてCODの転達
電極7直下の空乏層IO中に流入し、CODの長手方向
すなわち紙面に重直な方向に転送されて鏑み出される。
The operation itself of this solid-state imaging device is no different from the operating principle of the conventional device number ζ shown in Fig. 111, but the pixel electrode 2
The increased electric charge (electrons) is transferred to a bump 2 made of, for example, indium (In), which is placed at one corner of the electrode 2.
tm via 2! It flows into the impurity doped layer 6. Then, when a voltage VT is applied to the transfer gate 6 through the terminal 1s of the transfer gate, the COD is transferred in the two directions of the arrows through the channel that is generated directly below the transfer gate 6, and the COD is transferred to the depletion layer immediately below the transfer electrode 7. It flows into the IO, is transferred in the longitudinal direction of the COD, that is, in a direction perpendicular to the plane of the paper, and is scraped out.

なお、この第2図中の$1および第2の基板1′、l中
にそれぞれ設けられているト不純物ドープ層20.21
は電荷増である。そしてまたIllの基板は1光波長が
1.2〜46μmでよいならば、従来どおり81をその
まま用いることもで趣るし、さら−とガリウムインチモ
ン(Garb)を上記第1の基板1′として用いるなら
ば1光波長は1.0〜1.6μmsi度とすることかで
−る。
Note that the impurity doped layers 20 and 21 provided in $1 and the second substrate 1' and l in FIG.
is the charge increase. Moreover, if the wavelength of one light is 1.2 to 46 μm for the substrate of Ill, it is possible to use 81 as it is as before, and furthermore, gallium intimmonium (Garb) can be used for the first substrate 1'. If used as a light beam, the wavelength of one light should be 1.0 to 1.6 μmsi degrees.

億) 発明の効果 以上、詳細に説明したように、本発明に係る固体撮像装
置では第1の半導体基板1′としてGa、 8i 。
Effects of the Invention As described above in detail, the solid-state imaging device according to the present invention uses Ga, 8i as the first semiconductor substrate 1'.

Ga8bなどを自由に選べるので、それによって−光波
長を種々変化させることがで壷る上に、受光面積の利用
効率を高められるので赤外線の実質的検出感度を高める
ことができ、実用上多大の効果が期待できる。
Since we can freely select materials such as Ga8b, we can not only change the wavelength of the light in various ways, but also increase the efficiency of use of the light-receiving area, thereby increasing the actual detection sensitivity of infrared rays, which has a great practical effect. You can expect good results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のショットキーバリヤ型の固体撮像装置の
構造を示す図、第2図は本発明に係るンヨットキーバリ
ャ型固体撮像装置の構造を示す図である。 図面において、■および1′は半導体基板、2はショッ
トキー画素電極、8は絶縁膜、5は不純物ドープ層、6
は移送ゲート、7はCCI)の転送電極、8はショット
キーバリヤ部の空乏層、9は不純物ドープ層周囲の空乏
層、IOはCCUの転送電極角Fの空乏層、20・21
は電荷堰、22はバンプをそれぞれ示す。
FIG. 1 is a diagram showing the structure of a conventional Schottky barrier type solid-state imaging device, and FIG. 2 is a diagram showing the structure of a Schottky barrier type solid-state imaging device according to the present invention. In the drawings, ■ and 1' are semiconductor substrates, 2 is a Schottky pixel electrode, 8 is an insulating film, 5 is an impurity doped layer, and 6 is a semiconductor substrate.
is the transfer gate, 7 is the transfer electrode of CCI), 8 is the depletion layer of the Schottky barrier part, 9 is the depletion layer around the impurity doped layer, IO is the depletion layer of the transfer electrode angle F of CCU, 20 and 21
2 represents a charge weir and 22 represents a bump.

Claims (1)

【特許請求の範囲】[Claims] 複数のショットキーバリヤ構造の受光素子糟構成された
受光部と、当該受光部において生じた電荷を転送す纂電
荷転送装置で構成された転送部とを供えた撮像装置の構
成において、上記受光部と転送部とを別々の半導体基板
上に構成し、嶺該両基板を立体的に一体化したことを特
徴とする一体撮像装置。
In the configuration of an imaging device including a light receiving section configured with a plurality of light receiving elements having a Schottky barrier structure, and a transfer section configured with a wired charge transfer device that transfers charges generated in the light receiving section, the light receiving section What is claimed is: 1. An integrated imaging device characterized in that a transfer section and a transfer section are constructed on separate semiconductor substrates, and the two substrates are three-dimensionally integrated.
JP57039648A 1982-03-12 1982-03-12 Solid-state image pickup device Pending JPS58161474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57039648A JPS58161474A (en) 1982-03-12 1982-03-12 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57039648A JPS58161474A (en) 1982-03-12 1982-03-12 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS58161474A true JPS58161474A (en) 1983-09-26

Family

ID=12558898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57039648A Pending JPS58161474A (en) 1982-03-12 1982-03-12 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS58161474A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278264A (en) * 1985-06-04 1986-12-09 Fuji Electric Co Ltd Contact image sensor for facsimile equipment
JP2015523713A (en) * 2012-05-07 2015-08-13 シリコンファイル テクノロジーズ インコーポレイテッドSiliconFile Technologies Inc. Chip stacked image sensor with heterojunction structure and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278264A (en) * 1985-06-04 1986-12-09 Fuji Electric Co Ltd Contact image sensor for facsimile equipment
JP2015523713A (en) * 2012-05-07 2015-08-13 シリコンファイル テクノロジーズ インコーポレイテッドSiliconFile Technologies Inc. Chip stacked image sensor with heterojunction structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH0135549B2 (en)
US6710370B2 (en) Image sensor with performance enhancing structures
JPS6215854A (en) Optical imager
JPS58138187A (en) Solid-state image sensor
US5101255A (en) Amorphous photoelectric conversion device with avalanche
US6194770B1 (en) Photo receptor with reduced noise
US6163030A (en) MOS imaging device
JP3996719B2 (en) Photoelectric chip
JPS58161474A (en) Solid-state image pickup device
JPS6089967A (en) Photoelectric conversion element
JP2521789B2 (en) Photosensitive unit structure of solid-state imaging device
JP4824241B2 (en) Semiconductor energy detector
JPH1074926A (en) Solid-state image pickup element
TWI715538B (en) Back-side incident type solid-state imaging device
JPS58171849A (en) Solid-state image pickup device
JPS58123760A (en) Solid-state image pickup device
JP2510999B2 (en) Infrared solid-state imaging device
JPH08236741A (en) Solid image pickup element
US4727406A (en) Pre-multiplexed detector array
JPS62299067A (en) Infrared ray detector
JPH06163864A (en) Solid-state image pickup device
JPH033269A (en) Ccd image pickup element
JPH04337667A (en) Solid-state image sensing element
JPS6042989A (en) Solid-state image pickup device
JPH01241161A (en) Solid-state image sensing device