JPS58160901A - Optical fiber for infrared ray - Google Patents

Optical fiber for infrared ray

Info

Publication number
JPS58160901A
JPS58160901A JP57044983A JP4498382A JPS58160901A JP S58160901 A JPS58160901 A JP S58160901A JP 57044983 A JP57044983 A JP 57044983A JP 4498382 A JP4498382 A JP 4498382A JP S58160901 A JPS58160901 A JP S58160901A
Authority
JP
Japan
Prior art keywords
light
core
optical fiber
fluoride
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57044983A
Other languages
Japanese (ja)
Inventor
Masabumi Watari
渡 正文
Toshi Ikedo
池戸 才
Hiroshi Tsutsui
博司 筒井
Osamu Yamamoto
理 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57044983A priority Critical patent/JPS58160901A/en
Publication of JPS58160901A publication Critical patent/JPS58160901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To reduce the absorption of intermediate infrared rays of high output especially from CO2 gas laser, to increase the light resistance and to almost prevent the deterioration by using a metallic halide as the material of the core and by forming antireflection films at the ends of the core with a fluoride. CONSTITUTION:The core 2 of an optical fiber is made of a metallic halide such as TlI or a mixed crystal (KRS-5) of TlI, and antireflection films 1, 1' are formed at the ends of the core 2 with a fluoride such as BaF2, PbF2 or ThF4. The core 2 for CO2 gas laser or the like absorbs hardly light having 2-20mum wavelengths, and the fluoride antireflection films have high light transmittance and generate little heat under high output light, so even if heat is generated, the films undergo slight deterioration. In case of different wavelengths of laser light, by properly adjusting the thickness of the films, high transmission efficiency is attained, the diameter of the fiber can be reduced, and a fiber for infrared rays fit for a small-sized laser scalpel device, a working machine, etc. with high operational efficiency is obtd.

Description

【発明の詳細な説明】 本発明は赤外線光ファイバに関するものであり、特に炭
酸ガスレーザなど高出力の中赤外線光(波長2〜20μ
m)のレーザメス装置やレーザ加工機に用いるパワー伝
送用赤外元ファイバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared optical fiber, and particularly to a high-power mid-infrared light (wavelength 2 to 20 μm) such as a carbon dioxide laser.
The present invention relates to an infrared source fiber for power transmission used in a laser scalpel device or a laser processing machine (m).

たとえばレーザメス装置やレーザ加工機に用いる炭酸ガ
スレーザ用赤外線光ファイバは、高出力のレーザ光を減
衰することなく通し、また、大きい光強度(7)え3れ
劣化のない材料が要求される。
For example, an infrared optical fiber for a carbon dioxide laser used in a laser scalpel device or a laser processing machine is required to pass high-output laser light without attenuation, have a high light intensity (7), and be made of a material that does not deteriorate over time.

赤外線光フアイバ材料の中で代表的な金属ハロゲン化物
の一つの沃化タリウムと臭化タリウムの混合結晶(以下
KR8−sとよぶ)の光ファイバは、波長10.6μm
付近において、光減衰の尺度である吸収係数が10cW
L以下と小さく、大きい光強度にも耐え、高出力の炭酸
ガスレーザ用ファイバに適している。
An optical fiber made of a mixed crystal of thallium iodide and thallium bromide (hereinafter referred to as KR8-s), which is one of the typical metal halides among infrared optical fiber materials, has a wavelength of 10.6 μm.
In the vicinity, the absorption coefficient, which is a measure of optical attenuation, is 10 cW.
It is small (less than L) and can withstand high light intensity, making it suitable for fibers for high-output carbon dioxide lasers.

しかし、このKRS −ts、@光学的性質の一つであ
る屈折率が2.37でその結果、同材料を用いた光ファ
イバの入射端面と出射端面での反射損失は合わせて約2
8.4%にもなり、光ファイバの光伝送効率は、この反
射損失で大きく低下する。
However, this KRS-ts has a refractive index of 2.37, which is one of its optical properties, and as a result, the total reflection loss at the input end face and output end face of an optical fiber using the same material is about 2.
The reflection loss is as high as 8.4%, and the optical transmission efficiency of the optical fiber is greatly reduced by this reflection loss.

この反射損失は、光ファイバのコア端面に反射防止膜を
形成することによシ防ぐことが考えられる。しかし、こ
の反射防止膜を通過する光は実際的[20W以上のパワ
ーを、仮に直径0.7簡のコアのファイバに通すとする
と、光強度であるパワー密度が約sKW/c!d以上と
なり、このような大きなパワー密度に耐え得る反射防止
膜が見い出されていなかった。
It is thought that this reflection loss can be prevented by forming an antireflection film on the core end face of the optical fiber. However, the light passing through this anti-reflection film is practical [if a power of 20 W or more is passed through a fiber with a core of 0.7 mm in diameter, the power density, which is the light intensity, will be approximately sKW/c! d or more, and no antireflection film has been found that can withstand such a large power density.

本発明は、コアを金属ハロゲン化物で形成し、反射防止
膜をフッ化物で形成することにより、中赤外線光領域で
反射防止条件が最適でかつ、赤外光吸収を小さくするこ
とを目的としている。
The present invention aims to optimize antireflection conditions in the mid-infrared region and reduce infrared absorption by forming the core with a metal halide and the antireflection film with fluoride. .

以下本発明の詳細な説明する。The present invention will be explained in detail below.

第1図はフッ化物よりなる反射防止膜を両端面に設けた
本発明の実施例における党外光用光ファイバを示す。金
属ハロゲン化物をコアとする光ファイバ2の両端面にそ
れぞれフッ化物よりなる反射防止膜1,1′ が形成さ
れている。同図において入射光3は、入射端での反射損
失なしに光ファイバ2に入射し、光ファイバ2を透過し
、そして、出射端での反射損失なしに、出射光3′が得
られることを示している。
FIG. 1 shows an optical fiber for outside light according to an embodiment of the present invention, in which both end faces are provided with an antireflection film made of fluoride. Antireflection coatings 1 and 1' made of fluoride are formed on both end faces of an optical fiber 2 having a metal halide core, respectively. In the figure, the incident light 3 enters the optical fiber 2 without any reflection loss at the input end, is transmitted through the optical fiber 2, and the output light 3' is obtained without reflection loss at the output end. It shows.

以下上記実施例の赤外光線光ファイバVCおける反射防
止膜の反射防止条件について説明する。第2図に反射防
止膜の構成図と、光の入射9反射。
The antireflection conditions of the antireflection film in the infrared optical fiber VC of the above embodiment will be explained below. Figure 2 shows the configuration of the anti-reflection film and the nine reflections of incident light.

透偽の概念図を示す。光学結晶11の上に、反射防止膜
12が厚みdで形成されている。入射光11は、反射防
止膜12に入射し、その一部I2が反射し、残りの光I
3が光学結晶11の内部へ入って行く。光学結晶11を
屈折率N1膜12の屈折率をN2  とすると入射光1
1 に対し、反射光I2が無く力る反射防止膜12の条
件は理論的には、単層膜において 2−54 d =λ/4N2 (λは入射光11の波長)である。
A conceptual diagram of transparency is shown. An antireflection film 12 is formed on the optical crystal 11 to have a thickness d. The incident light 11 enters the anti-reflection film 12, part of it I2 is reflected, and the remaining light I2 is reflected.
3 enters the inside of the optical crystal 11. If the refractive index of the optical crystal 11 is N1 and the refractive index of the film 12 is N2, then the incident light 1
1, the theoretical condition for the antireflection film 12 to produce no reflected light I2 is 2-54 d =λ/4N2 (λ is the wavelength of the incident light 11) in a single layer film.

先に述べたKR8−5の屈折率は2.37だから、同材
料をコアとする光ファイバの場合、最適な反射防止膜の
屈折率は1,54.厚みは1.72μmとなる。
Since the refractive index of KR8-5 mentioned earlier is 2.37, the optimal refractive index of the anti-reflection film for an optical fiber with the same material as the core is 1.54. The thickness is 1.72 μm.

反射防止膜11は、入射光11 に対し、光吸収の小さ
い材料であることが必要で、強度の高い光が照射された
場合、光吸収による発熱があると反射防止膜やファイバ
端面に劣化が生ずる。
The anti-reflection film 11 needs to be made of a material that has low light absorption with respect to the incident light 11. When irradiated with high-intensity light, heat generation due to light absorption may cause deterioration of the anti-reflection film or the fiber end face. arise.

また、反射防止膜12の材料としては、熱膨張係数が、
光学結晶11と等しいことが望ましい。
In addition, the material of the antireflection film 12 has a thermal expansion coefficient of
It is desirable that it be equal to the optical crystal 11.

接触する光学結晶との熱膨張係数の差が大きい場合、薄
膜である反射防止膜は膜厚が増加するとともに、特に金
属ハロゲン化物は一般の誘電体膜より熱膨張係数は大き
いので温度変化にょシクラノクが発生し易くなる傾向が
ある。このため熱膨張係数は前述の光吸収と合わせて、
反射防止膜の重安な要素である。
If there is a large difference in the coefficient of thermal expansion between the optical crystal and the optical crystal in contact with it, the thickness of the thin anti-reflection coating will increase, and metal halides in particular have a larger coefficient of thermal expansion than ordinary dielectric films, so they will be more susceptible to temperature changes. tends to occur more easily. Therefore, the coefficient of thermal expansion, together with the optical absorption mentioned above, is
It is an important element of anti-reflection coating.

以上を考慮すると、金属ハロゲン化物をコアとする赤外
線光ファイバの反射防止膜材料の要素は次のようになる
Considering the above, the elements of an antireflection coating material for an infrared optical fiber having a metal halide core are as follows.

(12反射防止膜の材料の屈折率および膜厚が適切なこ
と。
(12) The refractive index and film thickness of the material of the anti-reflection film are appropriate.

(2)反射防止膜の材料の熱膨張係数がファイバーコア
材料と一致すること。
(2) The coefficient of thermal expansion of the material of the antireflection film matches that of the fiber core material.

(3)反射防止膜の材料が中赤外線域での光吸収がない
こと。
(3) The material of the anti-reflection film must not absorb light in the mid-infrared region.

本発明者らは、実験の結果上記条件を満たす反射防止膜
の材料として、BaF2.PbF2.ThF4などのフ
ッ化物が最適であることを見い出した一0以下、反射防
止膜についてさらに詳しい実施例を示す。
As a result of experiments, the present inventors found that BaF2. PbF2. More detailed examples of the antireflection film below, in which it has been found that fluorides such as ThF4 are optimal, will be presented.

第3図(a)、(b)はKR8−5に反射防止膜を形成
した場合の膜厚対反射損失の関係を示す。第3図(a)
は反射防止膜としてB a F 2を用いた場合の反射
防止効果について、第3図(b)はPbF2用いた場合
の反射防止効果についてのグラフである。第3図(a)
のB a F 2の場合、膜厚が約1゜7μmまで反射
損失が低下し、その後また反射損失の上昇があり1.7
μm付近で反射損失が最少の約9%になる。
FIGS. 3(a) and 3(b) show the relationship between film thickness and reflection loss when an antireflection film is formed on KR8-5. Figure 3(a)
3 is a graph showing the antireflection effect when B a F 2 is used as the antireflection film, and FIG. 3(b) is a graph about the antireflection effect when PbF 2 is used as the antireflection film. Figure 3(a)
In the case of B a F 2, the reflection loss decreases until the film thickness reaches approximately 1.7 μm, and then the reflection loss increases again to 1.7 μm.
The reflection loss is at its minimum at about 9% near μm.

第3図(b)のPbF2の場合、膜厚が約1.6 、a
mまで反射損失が低下し、その後また反射損失の上昇が
あり1.6μm付近で反射損失が最小の約5%になる。
In the case of PbF2 in Figure 3(b), the film thickness is approximately 1.6, a
The reflection loss decreases up to m, and then increases again until it reaches a minimum of about 5% at around 1.6 μm.

使用するレーザの波長が異なる場合は、前述の反射防止
条件より、適切な膜厚にするとよい。
If the wavelengths of the lasers used are different, it is preferable to set an appropriate film thickness based on the anti-reflection conditions described above.

第4図は、薄いKRS−s結晶板の両面に反射防止膜を
形成した場合のパワー密度に対する透過率の変化を示す
。薄いKR8−s結晶板を用いた理由は、求められた透
過率が、KR8−s結晶のバルクの吸収率が0.1%以
下とほぼ0で熱的影響を受けず、また透過率は反射損失
分の減少のみで、変化は結晶表面に形成された反射防止
膜の光学的変化、すなわち劣化と見なされることによる
FIG. 4 shows the change in transmittance with respect to power density when antireflection films are formed on both sides of a thin KRS-s crystal plate. The reason for using a thin KR8-s crystal plate is that the obtained transmittance is not affected by thermal effects as the bulk absorption rate of the KR8-s crystal is less than 0.1%, which is almost 0, and the transmittance is not affected by reflection. The only change is a decrease in loss, and the change is considered to be an optical change in the antireflection film formed on the crystal surface, that is, deterioration.

第4図(a)はB a F 2による反射防止膜の場合
で、30KW/dまで約91%の透過率である。第4図
(b)はPbF2による反射防止膜の場合で、40 K
W/cdまで約96%の透過率である3、 長さ1mのファイバにKH2−sよりなる光ファイバの
端面に、反射防止膜を形成しB a F 2で伝送効率
90%、入射可能光量20W、PbF2で伝送効率96
%、入射可能光量40Wという結果を得ている。
FIG. 4(a) shows the case of an antireflection film made of B a F 2, which has a transmittance of about 91% up to 30 KW/d. Figure 4(b) shows the case of an antireflection film made of PbF2 at 40 K.
Transmittance of approximately 96% up to W/cd3. An anti-reflection film is formed on the end face of an optical fiber made of KH2-s with a length of 1m, and the transmission efficiency is 90% at B a F2, and the amount of light that can be incident. Transmission efficiency 96 at 20W, PbF2
%, and the amount of light that can be incident is 40W.

また、赤外透明材料のThF4は中赤外領域において、
光吸収が小さく屈折率の値が1.46で、KH2−5用
の最適屈折率−1,64に近く、膜厚dをd=λ/4N
2=10.6/4X1.54=1.83μmとすると炭
酸ガスレーザ光(波長10.6μm)用反射防止膜材料
として、前述のB a F 21 P b F 2と同
様の効果を得ることが可能である。
In addition, in the mid-infrared region, ThF4, an infrared transparent material,
The light absorption is small and the refractive index value is 1.46, which is close to the optimum refractive index for KH2-5 -1.64, and the film thickness d is d = λ/4N.
If 2=10.6/4X1.54=1.83 μm, it is possible to obtain the same effect as the above-mentioned B a F 21 P b F 2 as an antireflection film material for carbon dioxide laser light (wavelength 10.6 μm). It is.

以上のように、本発明は、高出力の炭酸ガスレーザ用等
の光ファイバのコアに2〜20μmの波長における光吸
収の小さな金属ハロゲン化物を用い、かつ反射防止膜と
して、有量力の炭酸ガスレーザ光にも耐えるフッ化物を
用いるもので、光ファイバの高伝送効率化、ひいては、
ファイバの細線化を可能にし、可撓性があり、操作性の
良い小型なし〜ザメス装置、加工機の実現を可能にする
ものである。
As described above, the present invention uses a metal halide with low light absorption at a wavelength of 2 to 20 μm in the core of an optical fiber for high-output carbon dioxide laser, and uses it as an anti-reflection coating for a carbon dioxide laser beam that can be used with a considerable amount of energy. It uses fluoride that is resistant to
This makes it possible to make fibers thinner, flexible, and easy to operate, making it possible to create small-sized devices and processing machines.

本発明の党外線光ファイバは、今後、−酸化炭素ガスレ
ーザー光、炭酸ガスレーザ光などの中赤外線の利用分野
において、広範に活用することができる。
The outside line optical fiber of the present invention can be widely used in the field of mid-infrared rays such as -carbon oxide gas laser light and carbon dioxide laser light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の赤外線光ファイバの一実施例を示す斜
視図、第2図は、反射防止膜への入射光の状態を示す図
、第3図(a)、 (b)はそれぞれB a F 2 
。 PbF2を反射防止膜に用いた場合の膜厚と反射損、失
の関係を示す図、第4図(a) 、 (b)はBaF2
. PbF2を反射防−止膜に用いた場合の炭酸ガスレ
ーザ光照射によるパワー密度と透過率変化の関係を示す
図である。 1.1′  ・・・・・・反射防止膜、2・・2・・・
・光フアイバコア、3・・・・・・入射光、3′ ・・
・・・・出射光、11・・・・・・KH2−s結晶基板
、12・・・・・・反射防止膜、13・・・・・・空気
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
m1 M更 厚(pen) @4  図
FIG. 1 is a perspective view showing an embodiment of the infrared optical fiber of the present invention, FIG. 2 is a diagram showing the state of incident light on the antireflection film, and FIGS. 3(a) and 3(b) are B a F 2
. A diagram showing the relationship between film thickness, reflection loss, and loss when PbF2 is used as an antireflection film. Figures 4 (a) and (b) are for BaF2.
.. FIG. 3 is a diagram showing the relationship between power density and transmittance change due to carbon dioxide laser beam irradiation when PbF2 is used as an antireflection film. 1.1'...Anti-reflection film, 2...2...
・Optical fiber core, 3...Incoming light, 3'...
... Emitted light, 11 ... KH2-s crystal substrate, 12 ... Antireflection film, 13 ... Air. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
m1 M thickness (pen) @4 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)金属ハロゲン化物をコアとし、少なくとも一端面
にフッ化物より力る反射防止膜を形trることを特徴と
する赤外線光ファイバ。
(1) An infrared optical fiber having a metal halide core and an anti-reflection coating made of fluoride on at least one end surface.
(2)反射防止膜がBaF2.PbF2.またはThF
4より成ることを特徴とする特許請求の範囲第1項に記
載の赤外線光ファイバ。
(2) The antireflection film is BaF2. PbF2. or ThF
4. An infrared optical fiber according to claim 1, characterized in that the infrared optical fiber consists of:
JP57044983A 1982-03-19 1982-03-19 Optical fiber for infrared ray Pending JPS58160901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57044983A JPS58160901A (en) 1982-03-19 1982-03-19 Optical fiber for infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57044983A JPS58160901A (en) 1982-03-19 1982-03-19 Optical fiber for infrared ray

Publications (1)

Publication Number Publication Date
JPS58160901A true JPS58160901A (en) 1983-09-24

Family

ID=12706694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57044983A Pending JPS58160901A (en) 1982-03-19 1982-03-19 Optical fiber for infrared ray

Country Status (1)

Country Link
JP (1) JPS58160901A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218405A (en) * 1983-05-27 1984-12-08 Sumitomo Electric Ind Ltd Fiber for transmission of light energy
JPS61132908A (en) * 1984-12-03 1986-06-20 Nippon Telegr & Teleph Corp <Ntt> Antireflection film at end face of optical waveguide
JP2000012933A (en) * 1998-06-23 2000-01-14 Mitsubishi Electric Corp Laser apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218405A (en) * 1983-05-27 1984-12-08 Sumitomo Electric Ind Ltd Fiber for transmission of light energy
JPH058403B2 (en) * 1983-05-27 1993-02-02 Sumitomo Electric Industries
JPS61132908A (en) * 1984-12-03 1986-06-20 Nippon Telegr & Teleph Corp <Ntt> Antireflection film at end face of optical waveguide
JP2000012933A (en) * 1998-06-23 2000-01-14 Mitsubishi Electric Corp Laser apparatus

Similar Documents

Publication Publication Date Title
US5513039A (en) Ultraviolet resistive coated mirror and method of fabrication
US4208636A (en) Laser apparatus
JPS6363005A (en) Infrared fiber
JP3153334B2 (en) Multilayer filter for ultraviolet irradiation equipment
JPS58160901A (en) Optical fiber for infrared ray
CN117239518A (en) Optimization method for film thickness coefficient of laser sum frequency device
JP2002048911A (en) Beam splitter and laser system using the same
JP3153333B2 (en) Multilayer filter for ultraviolet irradiation equipment
US5625638A (en) Sealed crystalline windows for hollow laser fibers
US3660776A (en) Mirror means for laser structures
JP3222546B2 (en) Multilayer reflector of ultraviolet irradiation device and ultraviolet irradiation device
US5741595A (en) Ultraviolet optical part having coat of ultraviolet optical thin film, and wavelength-changing device and ultraviolet light source unit having coat of ultraviolet optical thin film
JPS60247983A (en) Erbium laser oscillator
JP3735975B2 (en) Wavelength conversion element
JPH07140350A (en) Light transmission device
JP2019518984A (en) Compact and effective beam absorber for frequency conversion lasers
KR100360474B1 (en) Second harmonic generator
JPS58195801A (en) Apparatus for attenuating beam of coherent light
JPS60176283A (en) Single polarizing laser oscillator
JPS638601A (en) Optical fiber with anti-reflection coating
JPS64831B2 (en)
JPS6249152B2 (en)
JPS62170906A (en) Optical fiber
JPH07154033A (en) Semiconductor laser pumped second harmonic generating solid state laser
JPS59218405A (en) Fiber for transmission of light energy