JPS58160831A - Electrostatic capacity type pressure sensor - Google Patents

Electrostatic capacity type pressure sensor

Info

Publication number
JPS58160831A
JPS58160831A JP4327482A JP4327482A JPS58160831A JP S58160831 A JPS58160831 A JP S58160831A JP 4327482 A JP4327482 A JP 4327482A JP 4327482 A JP4327482 A JP 4327482A JP S58160831 A JPS58160831 A JP S58160831A
Authority
JP
Japan
Prior art keywords
electrode
diaphragm
conductive layer
base support
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4327482A
Other languages
Japanese (ja)
Inventor
Toru Ishida
徹 石田
Osamu Makino
治 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4327482A priority Critical patent/JPS58160831A/en
Publication of JPS58160831A publication Critical patent/JPS58160831A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To decrease a secular change by using alumina for a base supporting part and a diaphragm and to reduce the inclination of the output of a pressure sensor with temperature by forming branch-shaped electrodes closely to a sealing member in the middle of the electrode lead-out part of an electrode for detecting electrostatic capacity. CONSTITUTION:An electrode 2 is formed at the base supporting part 1 where when pressure (p) is applied to the diaphragm 4, the diaphragm 4 deforms most, and an electrode 3 is formed where the diaphragm deforms a little against variation in the pressure; and conductive layer of a couple of left and right branch-shaped electrodes 9 and 10 are formed in the middle of the electrode lead-out part 11 of the electrode 2 which senses pressure, said electrode 3 is made concentrically near a glass layer 7, and the electrode lead-out part 12 is formed. When the electrode is formed near the sealing member (glass layer 7), the additional amount of floating capacity from alumina and the glass sealing member as materials constituting a detection capsule part increases in addition to original electrostatic capacity generated between the electrodes under a vacuum.

Description

【発明の詳細な説明】 本発明は静電容量型圧力センサに関するものである。[Detailed description of the invention] The present invention relates to a capacitive pressure sensor.

従来、静電容赦型の圧力センサはダイアフラム及び基台
支持部と、これらダイアフラム及び基台支持部に形成さ
れ相対向するように配置された導1層と、導電層iml
のギャップが一定ギャップになるように且つダイアフラ
ム及び基台支持部周辺をシールするためにダイアフラム
と基台支持部との間に配置されたシール部材から構成さ
れ′Cいる。
Conventionally, an electrostatic tolerance type pressure sensor has a diaphragm and a base support, a conductive layer formed on the diaphragm and the base support and arranged to face each other, and a conductive layer iml.
The sealing member is disposed between the diaphragm and the base support to maintain a constant gap and seal around the diaphragm and the base support.

従つ゛C1静KW量型圧カセンサの圧力検知の原理は、
ダイアフラム側から気体圧力が加わりダイアプラムが変
形することにより導電層間の静電容量錬が変化し、これ
を電気回路により電圧に変換するものである。一般に圧
力センサはその圧力の検′j!1輌度、特に温度による
出力ドリフトが大きな障書となり、高精度の圧力検知装
置が得られにくい実情があ−った。
Therefore, the principle of pressure detection of the C1 static KW type pressure sensor is as follows:
When gas pressure is applied from the diaphragm side and the diaphragm deforms, the capacitance between the conductive layers changes, and this is converted into voltage by an electric circuit. Generally, pressure sensors detect the pressure! In reality, output drift due to temperature, especially temperature, was a major problem, making it difficult to obtain a highly accurate pressure detection device.

静電容量型圧力センサは主として静電容態検知カプセル
部と検知回路部とから構成され”Cいる。
A capacitive pressure sensor is mainly composed of a capacitive sensing capsule section and a sensing circuit section.

第1図は従来の圧力センサの検知カプセル部の構成を示
し′Cおり、同図におい゛C1アルミナの基台支持部o
1 kに設けられた感圧容jIL (Cp) t A 
(2)の導電層とその周辺に設けられた基準容蝋(Cr
)電極(3)C7−)導!Jl+、t、ダイアフラム(
4)面に設けられた共通を極(5)の導電層と対向しC
おり、自書には電極間距離に応じた静[容量Cp、Cr
が生じ、8本のリード線(6)・・・を通し′C得られ
る。又ダイアフラム(4)はセラミック薄板からなり、
基台支持部if)の周辺で、ガラス層(7)によつCシ
ール固定され′Cいる。カプセル部の内部は減圧状態で
半田(8)により封止さ口、ダイアフラム(4)に加わ
る圧力に応じC1共通を極(5)と爲圧谷量電極(2)
との間の距離が変り、圧力に応じた慮圧容量が得られる
Figure 1 shows the configuration of the detection capsule part of a conventional pressure sensor.
1 Pressure-sensitive volume jIL (Cp) t A provided at k
(2) The conductive layer and the reference volume wax (Cr
) Electrode (3) C7-) Conductive! Jl+, t, diaphragm (
4) The common electrode provided on the surface faces the conductive layer of the pole (5) and C
In his own book, the static [capacitance Cp, Cr
occurs, and 'C' is obtained by passing eight lead wires (6)... Also, the diaphragm (4) is made of a ceramic thin plate,
Around the base support part (if), a C seal is fixed by the glass layer (7). The inside of the capsule part is sealed with solder (8) in a reduced pressure state, and depending on the pressure applied to the diaphragm (4), the C1 common terminal is connected to the pole (5) and the pressure valley electrode (2).
The distance between the two changes, and the corresponding pressure capacity can be obtained.

第2図は静電容態型圧力センサの検知回路部の原理を示
す、第2図のCpは検知カプセル部の感圧容量部を、C
rは検知カプセル部の基準谷域部を示す。ここでCpと
Crに充電された[′aが抵抗Rを通じC放電され、9
82図側に示すような曲線で放電される。放電曲線があ
る一定電肚Vrefに達したとき、スイッチが働き、C
pとCrの放電の時間差に比例した幅のパルスが発生す
る。このパルスの幅を全体の族1時間に対して平滑し、
1η流電圧Voに変換する。この原理に従つ゛C出力電
電圧圧力の関係を表現すると次のような式になる。
Figure 2 shows the principle of the detection circuit section of a capacitive pressure sensor.
r indicates the reference valley area of the detection capsule portion. Here, Cp and Cr are charged ['a is discharged through resistor R, and 9
The discharge follows a curve as shown in Figure 82. When the discharge curve reaches a certain voltage Vref, a switch is activated and C
A pulse with a width proportional to the time difference between p and Cr discharges is generated. The width of this pulse is smoothed over the entire family 1 hour,
1η current voltage Vo. According to this principle, the relationship between the output voltage and pressure of C is expressed as follows.

Vou t −A (1−Cr/(p J −J’ P
ここでVoutは出力電圧、A、B1.を定数、Cpは
検知カプセル部の静を容重、Crは検知カプセル部の基
111W重を表わす、第1図(・ゴ)に示す電極形状を
有する検知カプセル部は従来の電極形状で、この電極形
状ではCpとCrの湿度係数は第4図に示すような結果
とf(る。(1−”/Cp)の温度による変化率はCp
とCrの温度係数によって決まり、第1図に示す従来例
の場合、I  Cr/c、の温度変化率は大きく、検知
回#11部と組合わせたとき、第6図すに示す如く漏電
に対し′C検知精イル強く依存し、広いm度範囲に亘つ
C十分な検知イルを保つことはできない、餉6図すの曲
線のように温度に対する出力の傾斜が大きいのは検知カ
プセル部の温1f峙性に起因する。検知カプセル部の温
度特性を回1させること、即ち検知カプセル部の1−C
r/c、の温度特性を向上させるt:めには、CpとC
rの11!pt係数を近づける必要がある。
Vout -A (1-Cr/(p J -J' P
Here, Vout is the output voltage, A, B1 . is a constant, Cp is the static weight of the sensing capsule section, and Cr is the base 111W weight of the sensing capsule section. In terms of shape, the humidity coefficients of Cp and Cr are as shown in Figure 4, and the rate of change of f(ru.(1-''/Cp) due to temperature is Cp.
In the case of the conventional example shown in Fig. 1, the temperature change rate of I Cr/c is large, and when combined with the detection circuit #11, the leakage occurs as shown in Fig. 6. On the other hand, it is not possible to maintain sufficient C detection illumination over a wide range of m degrees, and the large slope of the output with respect to temperature, as shown in the curve in Figure 6, is due to the fact that the detection capsule part This is due to temperature 1f resistance. To change the temperature characteristics of the detection capsule part by 1 times, that is, 1-C of the detection capsule part.
To improve the temperature characteristics of r/c, Cp and C
11 of r! It is necessary to bring the pt coefficients closer together.

今、CpとCrの温度係数を各々α、βとし、7M度の
変化域を△Tとすると、△Tの温度変化で理岩的にαキ
βとするならばICr/C9の値は温度が変化し′Cも
全く変らないこととなる。本発明はCpとCrの温度係
数をできるだけ近い値にすることを実現するために為さ
れたもので、電気絶縁性を有する一対の基台支持部及び
ダイアフラムと、これら基台支持部及び・ダイアフラム
に形成された第1、第2.第8の導電層と、基台支持部
とダイアフラムとの間に介在されたシール部材とから構
成され、前記第1の導電層と第2.第8の導電層が相対
回しほつ前記シール部材にょっC一定ギャップに保rコ
れ、前記第2の導N層は前記シール部近傍の枝状導[層
とそれに連なる電極取出し部をaし、第8の導電層は第
2の導電層から切り離されC弔2の導電l−を取り囲む
ように輪状に形成され電極取出し部を有したものである
Now, if the temperature coefficients of Cp and Cr are α and β, respectively, and the range of change of 7M degrees is △T, then if the temperature change of △T is α x β, the value of ICr/C9 is the temperature will change, and 'C will not change at all. The present invention was made in order to make the temperature coefficients of Cp and Cr as close as possible. The first, second . an eighth conductive layer, and a sealing member interposed between the base support and the diaphragm, the first conductive layer and the second conductive layer. The eighth conductive layer is rotated relative to the sealing member to maintain a constant gap, and the second conductive layer is attached to the branched conductive layer near the sealing part and the electrode lead-out part connected thereto. However, the eighth conductive layer is separated from the second conductive layer and formed in a ring shape so as to surround the conductive layer 1- of the C part 2, and has an electrode extraction part.

以下本宅明を実施の一例を示す図面に基づいC脱調する
0本発明による静電四縁型圧力センサでは横用θブセル
部の縦断面は第1図に示す従来例と同じであり、電極構
造を第8図(U)に示すように構成しである。尚図中第
1図と同一部材は同−符ff ヲ用いC示しCいる。即
ち、ダイアフラム(4)に圧力pか加わったとき、最も
り゛イアフラム(4)の変形が大きくfCるところに基
台支持mlり(1)に形成したvl、極(2)とLト刀
の変化に対しCあまり変形しないところに基曾支持部竜
りに形成した電極(3)とから構成され、第8図(])
に示す如く、仕方を感する゛電極(2)の電極取出し部
uOの途中に左右一対の枝状電極(9)ul O) 4
 !−が形成され、更に圧力によつCあまり変化しない
部分に形成された電極(3)はガラス層(7)iこ近い
位置に同8円状に形成され、やはり電極収出(7部(1
4が形成されCいる。
In the electrostatic four-edge pressure sensor according to the present invention, the vertical section of the horizontal θ bushel part is the same as that of the conventional example shown in FIG. The structure is as shown in FIG. 8(U). In the drawings, the same members as in FIG. 1 are indicated by the same symbols ff and C. That is, when a pressure p is applied to the diaphragm (4), the diaphragm (4) is deformed the most at the point where the deformation of the diaphragm (4) is the greatest fC, and the VL, pole (2) and L edge formed on the base support (1) are It consists of an electrode (3) formed on the base support part curvature in a place where C does not deform much due to changes in C, and is shown in Fig. 8 (]).
As shown in Figure 4, a pair of left and right branch-like electrodes (9) ul O) are placed in the middle of the electrode extraction part uO of the electrode (2).
! - is formed, and furthermore, the electrode (3) formed in the part where C does not change much due to pressure is formed in the same 8-circle shape at a position close to the glass layer (7). 1
4 is formed and C is present.

ここで、圧力によつCダイアフラム14)の変形が大き
い部分に形成された電極(2)は圧力によ・つCダイア
フラム(4)側の電極(5)との間に発生する静wL谷
NtCpを検知するために設けられたもので、Cp電極
と称する。−万、圧力の変化に対しCあまり変形しない
部分に設けられた輪状電極(3)は基準容量Cr用のも
ので、Cr市極と称する。
Here, the electrode (2) formed in the part of the C diaphragm 14) where the deformation is large due to pressure is the static wL valley that occurs between it and the electrode (5) on the C diaphragm (4) side. It is provided to detect NtCp and is called a Cp electrode. -10,000, The ring-shaped electrode (3) provided in the part where C does not deform much due to changes in pressure is for the reference capacitance Cr, and is called the Cr city pole.

本発明の構成で、従来例の!極刑状と異1.17.点は
Cp″#L繕取出し部途中に設けられた枝状車線191
 tlJにある。検知カプセル部にこの枝状[tJli
 +91 udを形成【7、作成した試料のC「とCp
の温度係数を測)(シた結果を第6図に示す、この図か
ら明らかffように、第4図のCr、Cpの温度係数に
比べCpの温If係数が大きくなりsCrの温度係数と
より接近し′Cいる。このことは、lCr//c、の温
度変化という観点から考えたとき、より小さな温度変化
(7かホさないことを窟味し、圧力検知#4F1Fの温
度による影響を考λたときより好ましい方向である。C
p電極(2)に枝状電極1111) (111を形成す
ることにより、 Cpの温間係数が大きくなる方向にシ
フトし、crの温度係数に近づく理由は次のことで説明
できる。、即ちvt、極がシール部材rガラス側(7)
〕の近傍に形成された場合、本来の真空を介しC相対向
する!極間に発生する静tr谷曖の他に、検知カプセル
部を構成する材料であるアルミナやガラスシール部材か
らの浮遊容蝦の付加tが大きくなる。この付加されt:
静を谷鰺の温関係数は本来の理想的に発生した静電谷歇
の温度係数に比べて大きい、従つCCpl[極(2)の
南極取出し部Oυ途中にあり1つシール部材〔ガラス層
(7)〕に近い位置に枝増大市fIiIi1113叫を
形成することによりCpの温度係数は枝状[極19) 
[113のないものに比べC大きくなる。その結果、C
pの〃ず係数はCry)温度係数に近づくことになる。
With the configuration of the present invention, the conventional example is improved! Difference from capital punishment letter 1.17. The dot is the branch lane 191 installed in the middle of the Cp''#L repair takeout section.
It is in tlJ. This branch shape [tJli
+91 ud is formed [7, C' and Cp of the prepared sample
The results are shown in Figure 6.As is clear from this figure, the temperature If coefficient of Cp is larger than the temperature coefficients of Cr and Cp in Figure 4, and the temperature coefficient of sCr is When considered from the perspective of the temperature change of lCr//c, this means that there is a smaller temperature change (not less than 7), and the influence of the temperature on pressure sensor This is a more preferable direction when considering λ.C
By forming the branch electrode 1111) (111) on the p-electrode (2), the reason why the warm coefficient of Cp shifts in the direction of increasing and approaches the temperature coefficient of cr can be explained as follows. That is, vt , the pole is on the glass side of the seal member r (7)
], C faces each other through the original vacuum! In addition to the static troughs and troughs that occur between the poles, the additional amount t of floating shrimp from the alumina and glass sealing members that constitute the sensing capsule section increases. This added t:
The temperature coefficient of static electricity is larger than that of the original ideally generated electrostatic change. Therefore, CCpl [There is one sealing member [glass By forming a branch increase city fIiIi1113 in a position close to layer (7)], the temperature coefficient of Cp becomes branch-like [pole 19]
[C is larger than the one without 113. As a result, C
The coefficient of p approaches the temperature coefficient of Cry.

以にの説明から、Cp市極(2)に枝状電、極(9)(
10を形成することによりCrとCpの温関係数は略近
い値を取るようになり、出力Voutに比例する値1−
Cr/Cpの濁lf変化を小さくすることを6丁能にす
るものである。尚Cp’li極(2)に付加される枝状
電#j 19) tllはその位置が基台支持部+11
の周辺に近いことにより効果が得られるものであり、枝
状′#It極+9) filの形拭や配置の位置関係に
ついCは、枝状電極が基台支持部+1)の周辺に位置す
る限りにおいてはその効果は失われるものではない。基
台支持部(1)及びダイアフラム(4〉の材質としては
、化学的2機械的に安定な性質を有し且つ電気的絶縁性
に優れたものが良い0例えば、酸化物系セラミックスや
ガラスのような材質が優れ°Cおり、これらの材質を用
いることにより安定した特性が得られると同時に特性の
経時変化が極めC小さい。とりオ)け、アルミナは化学
的1機械的に極めて安定な材料であるとともに簡単に入
手できることから、静II@量型汁カセンサの基台支持
部it)及びダイアフラム(4)の材料とし°C優れた
ものである。
From the above explanation, we can see that the Cp city pole (2) has a branched electrode, and the pole (9) (
By forming 10, the temperature relationship coefficient between Cr and Cp becomes approximately close to each other, and the value 1- is proportional to the output Vout.
It is possible to reduce the turbidity lf change of Cr/Cp. In addition, the branched electrode #j19) tll added to the Cp'li pole (2) is located at the base support part +11.
The effect can be obtained by being close to the periphery of the branch-shaped electrode, and regarding the positional relationship of the shape and arrangement of the branch-like electrode 1), the branch-shaped electrode is located near the base support part + 1). As far as this goes, the effect will not be lost. The material for the base support part (1) and the diaphragm (4) should preferably be one that has chemically and mechanically stable properties and excellent electrical insulation. Alumina is an extremely stable material both chemically and mechanically. Since it is easy to obtain, it is an excellent material for the base support part (it) and diaphragm (4) of the static II@quantity type liquid sensor.

次に本発明の具体例についC#l明する。基台支持部1
1)及びシ゛イアフラム(4)の材料としてアルミナを
使用する。共通電極+5)の形成されているダイアフラ
ム(4)の径は88ff、厚みは0.5ffであり、基
台支持a 11)の径は881m+、j!I!みは6寵
であった。ダイアフラム(4)には共通電極(5)とし
てAu−Pt系の薄膜電極を形成し、径25flの円形
電極を形成する。−万、基台支持sf! u)には中心
部にCp用の円形電極(2)を形成し、且つ電極取出し
一91途中にはCrと同じ円周りの位−に中心から80
’の角度の広がりのある枝状電極(9)叫を形成する。
Next, a specific example of the present invention will be explained in C#. Base support part 1
Alumina is used as the material for 1) and the diaphragm (4). The diameter of the diaphragm (4) on which the common electrode +5) is formed is 88ff and the thickness is 0.5ff, and the diameter of the base support a11) is 881m+, j! I! Mi was 6 favors. An Au--Pt thin film electrode is formed as a common electrode (5) on the diaphragm (4), and a circular electrode with a diameter of 25 fl is formed. -10,000, base support SF! In u), a circular electrode (2) for Cp is formed in the center, and in the middle of the electrode extraction point 91, there is a circular electrode (2) at the same circumference as the Cr.
Form a branch-shaped electrode (9) with a wide angle.

又Cr用のjL極(3)としC1基台支持部+t) l
ll11辺に同心円状に形成され外側径はガラス層(7
)から1wxllJれている。これら電極12) (3
)(川明の位Ilf関係は第8図(ロ)に示すものと同
じである。上記のように、電極の形成された基台支持部
(1)涜びダイアフラム(4)をシール部祠としCのガ
ラス層(7)を介し′C接着する。尚シール部材1ガラ
ス層(7)〕の材質とし′CはPb、、−B20.系の
低融点ガラスを使用し、基台支持部+1)とダイアフラ
ム(4)との闇のギヤ゛ンブは20μmとなるように作
製した。このギYツブ内を真空封止した後リード線(6
)・・・を接続しa’JJセンサ用の検知カプセル部と
した。この検知θブセル部のCp、Crの温関係数を測
定したところ、船6図に示す如く関係を示し、CpとC
rの温度の係数は極めC近い値を取った。この検知カプ
セル部を検知回路部に接続したときの温度特性を第6図
aの曲線に示す、第6図には枝状tmを形成しない場合
の温度特性も示し、その曲線はbである。
Also, as jL pole (3) for Cr, C1 base support +t) l
It is formed concentrically on 11 sides, and the outer diameter is a glass layer (7
) from 1wxllJ. These electrodes 12) (3
) (The relationship between Ilf and Kawaaki is the same as that shown in Figure 8 (b). As mentioned above, the base support part (1) on which the electrode is formed is removed, and the diaphragm (4) is removed from the seal part shrine. The material of the glass layer (7) of the sealing member 1 is Pb, -B20. low melting point glass is used for the base support part. +1) and the diaphragm (4) were manufactured so that the distance between them was 20 μm. After vacuum-sealing the inside of this gear Y-tube, the lead wire (6
)... was connected to form the detection capsule section for the a'JJ sensor. When we measured the temperature relationship coefficient between Cp and Cr in this detection θ bushel part, we found a relationship as shown in Figure 6 of the ship.
The temperature coefficient of r took a value extremely close to C. The temperature characteristic when this sensing capsule section is connected to the sensing circuit section is shown by the curve in FIG. 6a. FIG. 6 also shows the temperature characteristic when the branch shape tm is not formed, and the curve is b.

第6図の温度特性は設定中心値からの出力電圧のドリフ
ト量をwllHlで表現したもので、圧力としては46
0flHgの場合について示したものeあろ 又、設定
は25℃で行なったもので、26°Cでのドリフトは0
である。この図から明らかなように枝状tI極19) 
Q13を形成することにより圧力センサの出力の温度に
よる傾斜は極めて小さいことが分る。
The temperature characteristics shown in Figure 6 are the amount of drift of the output voltage from the set center value expressed in wllHl, and the pressure is 46
What is shown for the case of 0flHg? Also, the settings were made at 25°C, and the drift at 26°C is 0.
It is. As is clear from this figure, the branched tI pole19)
It can be seen that by forming Q13, the slope of the output of the pressure sensor due to temperature is extremely small.

扶上述べたよ5に、本発明による静電容量型圧力センサ
は極めC優れた温度係数を有し、1つ基台支持部及びダ
イアフラムの材料として例えばアルミナを使用すること
により経時変化の面でも優れた特性を示すことから、工
業上極めて有利な静電容量型圧力センサを提供するもの
である。
As mentioned above, the capacitive pressure sensor according to the present invention has an extremely excellent temperature coefficient, and also has excellent resistance to aging due to the use of alumina, for example, as the material for the base support and the diaphragm. The present invention provides a capacitive pressure sensor that is industrially extremely advantageous because it exhibits excellent characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)及び(ロ)は従来の静電容量型圧力センサ
に用いる検知カプセル部の縦断面図及び横断面図、第2
図(4)及び(ロ)は検知回路部の原理を示す同略図及
び放電状態曲線図、第3図(6)伎び(ロ)は本発明の
実施の一例における検知カプセル部の縦断面図及び横断
面図、第4図はCpの電極取出し部途中に枝状電極を形
成しない場合のCpとCrの温度係数と圧力の関係を示
すグラフ、1@6図はCpの電極取出し部途中に枝状電
極を形成した場合の温度係数と圧力の関係を示すグラフ
、第6図は枝状電極のある場合とない場合の検’III
″bブセル部を検知回路部にM−したときの温度特性を
示すグラフである。 (1)・・・基台支持部、 (り (3)・・・電極、
(4)・・・ダイアフラム、16)・・・共通電1fi
 、 +7)・・・ガラス聯、19>(1G・・・枝状
電極、 (111(ロ)・・・電場取出し部代珊人 森
本義弘 第f図 (/1) (ロノ 第2図 (4) (口2
Figures 1 (a) and (b) are longitudinal and cross-sectional views of the detection capsule used in a conventional capacitive pressure sensor, and Figure 2
Figures (4) and (B) are schematic diagrams and discharge state curve diagrams showing the principle of the detection circuit section, and Figures (6) and (B) are longitudinal cross-sectional views of the detection capsule section in an example of implementation of the present invention. Figure 4 is a graph showing the relationship between the temperature coefficient and pressure of Cp and Cr when no branch electrode is formed in the middle of the electrode lead-out part of Cp. A graph showing the relationship between temperature coefficient and pressure when branched electrodes are formed. Figure 6 is a graph showing the relationship between temperature coefficient and pressure when branched electrodes are formed.
It is a graph showing the temperature characteristics when the ``b cell part is set as the detection circuit part. (1)... Base support part, (ri)... Electrode,
(4)...Diaphragm, 16)...Common electric 1fi
, +7)...Glass connection, 19>(1G...branch electrode, (111(b)...Electric field extraction section Yoshihiro Morimoto Fig. f(/1) (Rono Fig. 2(4) ) (mouth 2

Claims (1)

【特許請求の範囲】 1、 電気絶縁性を有する一対の基台支持部及びダイア
フラふと、これら基台支持部及びダイアフラムに形成さ
れた第1.、第2.第8(J)導電層と、基台支持部と
ダイアフラムとの闇に介在されたシール部材とから構成
され、前記第1の導電層と第2.第8の導電層が相対向
し且つ前記シール部材によつ°C一定ギャップに保たれ
、前記第2の導電層は前記シール部匠傍の枝状導電層と
それに連なる電極取出し部を有し、第8の導電層は第2
の導電層から切り離されて第2の導電層を取り囲むよう
に輪状に形成され電極取出し部を有した静電容量型圧力
センサ。 2、 基台支持部及びダイアフラムの材質をアルミナと
した特許請求の範囲第1項記載の静電容量型圧力センサ
。 8、 シール部内部の気体を取り除いた特許請求の範囲
第1項記載の静電谷型型圧力センサ。
[Scope of Claims] 1. A pair of base support parts and a diaphragm foot having electrical insulation properties, and a first base support part and a diaphragm foot formed on the base support parts and the diaphragm. , 2nd. The eighth (J) is composed of a conductive layer, and a sealing member interposed between the base support portion and the diaphragm, and the eighth (J) conductive layer includes the first conductive layer and the second conductive layer. The eighth conductive layer faces each other and is maintained at a constant gap of °C by the seal member, and the second conductive layer has a branch-like conductive layer near the seal portion and an electrode lead-out portion connected thereto. , the eighth conductive layer is the second conductive layer
A capacitance type pressure sensor having an electrode extraction portion that is separated from the second conductive layer and formed in a ring shape so as to surround the second conductive layer. 2. The capacitive pressure sensor according to claim 1, wherein the material of the base support portion and the diaphragm is alumina. 8. The electrostatic valley type pressure sensor according to claim 1, wherein the gas inside the seal portion is removed.
JP4327482A 1982-03-17 1982-03-17 Electrostatic capacity type pressure sensor Pending JPS58160831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4327482A JPS58160831A (en) 1982-03-17 1982-03-17 Electrostatic capacity type pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4327482A JPS58160831A (en) 1982-03-17 1982-03-17 Electrostatic capacity type pressure sensor

Publications (1)

Publication Number Publication Date
JPS58160831A true JPS58160831A (en) 1983-09-24

Family

ID=12659235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4327482A Pending JPS58160831A (en) 1982-03-17 1982-03-17 Electrostatic capacity type pressure sensor

Country Status (1)

Country Link
JP (1) JPS58160831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645138U (en) * 1987-06-29 1989-01-12
EP2233900A3 (en) * 2009-03-27 2014-12-03 Robert Bosch GmbH Capacitive pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645138U (en) * 1987-06-29 1989-01-12
EP2233900A3 (en) * 2009-03-27 2014-12-03 Robert Bosch GmbH Capacitive pressure sensor

Similar Documents

Publication Publication Date Title
US4207604A (en) Capacitive pressure transducer with cut out conductive plate
US4227419A (en) Capacitive pressure transducer
US4177496A (en) Capacitive pressure transducer
US3993939A (en) Pressure variable capacitor
US6222376B1 (en) Capacitive moisture detector and method of making the same
US4262532A (en) Pressure and temperature sensor
US4583296A (en) Electrical inclination sensor and method for its manufacture
US5381299A (en) Capacitive pressure sensor having a substrate with a curved mesa
US4164868A (en) Capacitive humidity transducer
EP0041886A1 (en) Capacitive pressure transducer
JPH04290936A (en) Sensor for capacity manometer
US4445384A (en) Piezoelectric pressure sensor
GB1361581A (en) Capacitance humidity sensing element
US5448444A (en) Capacitive pressure sensor having a reduced area dielectric spacer
EP3004830A1 (en) An improved pressure sensor structure
JPH0755615A (en) Capacitance type force sensor
JPS58160831A (en) Electrostatic capacity type pressure sensor
JPS58731A (en) Electrostatic capacity type pressure sensor
US3235826A (en) Pressure transducer
US5440931A (en) Reference element for high accuracy silicon capacitive pressure sensor
JPS58198739A (en) Electrostatic capacity type pressure sensor
JP2660517B2 (en) Capacitive level sensor
US5614717A (en) Pyroelectric infrared ray sensor
JPS6029629A (en) Semiconductor capacity type pressure sensor
JP3083115B2 (en) Capacitive pressure sensor element