JPH0755615A - Capacitance type force sensor - Google Patents

Capacitance type force sensor

Info

Publication number
JPH0755615A
JPH0755615A JP19848293A JP19848293A JPH0755615A JP H0755615 A JPH0755615 A JP H0755615A JP 19848293 A JP19848293 A JP 19848293A JP 19848293 A JP19848293 A JP 19848293A JP H0755615 A JPH0755615 A JP H0755615A
Authority
JP
Japan
Prior art keywords
capacitor element
pressure
force sensor
capacitance
type force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19848293A
Other languages
Japanese (ja)
Inventor
Shinichi Miyazawa
伸一 宮沢
Eiji Sasaki
英次 佐々木
Mikio Suzuki
三紀男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rubycon Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Rubycon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Rubycon Corp filed Critical Agency of Industrial Science and Technology
Priority to JP19848293A priority Critical patent/JPH0755615A/en
Publication of JPH0755615A publication Critical patent/JPH0755615A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To provide a capacitance type force sensor capable of enhancing electrostatic capacity, and downsizing a pressure detecting part. CONSTITUTION:An elastic dielectric 14 and electrodes 13, 15 are plurally laminated to form a capacitor element 4, and the capacitor element 4 and a coil element 6 are arranged in a pressure detecting part 1. The capacitor element 4 is electrically connected to the coil element 6 in parallel to each other, and forms a resonance circuit for determining a resonance frequency f0 together with a circuit provided on the outside of the pressure detecting part 1. When a pressure F is added to the capacitor element 4, the opposed distance (t) of the capacitor element 4 is changed to change an electrostatic capacity C, and this change is determined from the change of the resonance frequency to measure the pressure F. Since the electrostatic capacity C of the capacitor element 4 is the electrostatic capacity of the elastic dielectric, it can be detected as a large value, and the pressure detecting part can be structurally downsized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンデンサ素子の静電
容量の変化により圧力を測定する静電容量型力センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type force sensor for measuring pressure by changing the capacitance of a capacitor element.

【0002】[0002]

【従来の技術】近年、力センサは、その使用環境が過酷
になるとともに、測定対象も拡大し、また、測定範囲も
高真空から高圧までに及び、さらに、圧力検出部が、使
用される環境に応じ、より小型化したものが求められて
いる。
2. Description of the Related Art In recent years, the use environment of force sensors has become harsh, the range of measurement has expanded, and the measurement range has ranged from high vacuum to high pressure. In response, there is a demand for smaller products.

【0003】ところで、このような圧力を測定する力セ
ンサとして、例えば、固定電極と加圧量に応じて変位す
るばね等で支えられた移動電極とを設け、これら電極間
の静電容量を測定することにより加圧量を求める静電容
量型の力センサが用いられている。
By the way, as a force sensor for measuring such a pressure, for example, a fixed electrode and a moving electrode supported by a spring or the like which is displaced according to the amount of pressurization are provided, and the capacitance between these electrodes is measured. An electrostatic capacity type force sensor that obtains the amount of pressurization by doing so is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
ような従来の静電容量型力センサでは、測定する静電容
量が空気であるため比誘電率が1と小さく、極めて低い
静電容量を計測することになり、増幅回路の設置やリー
ド線等の浮遊容量の影響を排除するのに苦慮している。
However, in the conventional capacitance type force sensor as described above, since the capacitance to be measured is air, the relative dielectric constant is as small as 1 and an extremely low capacitance is measured. Therefore, it is difficult to install the amplifier circuit and eliminate the influence of stray capacitance such as lead wires.

【0005】また、構造上、静電容量を大きな値とする
ため電極間距離を小さく、あるいは対向電極の面積を大
きくしようとすると、移動電極の固定や設計が複雑とな
り、力センサの圧力検出部の大型化やコストの上昇を招
くといった問題がある。
Further, in view of the structure, if the distance between the electrodes is made small or the area of the counter electrode is made large in order to make the electrostatic capacitance a large value, the fixing and design of the moving electrode becomes complicated, and the pressure detecting portion of the force sensor is complicated. However, there is a problem in that the size is increased and the cost is increased.

【0006】本発明は上記事情に鑑みてなされたもの
で、静電容量を大きくするとともに圧力検出部を小型化
することのできる静電容量型力センサを提供することを
目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrostatic capacitance type force sensor capable of increasing the electrostatic capacitance and downsizing the pressure detecting portion.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明による第一の静電容量型力センサは、圧力検出部
のコンデンサ素子の加圧力に伴う静電容量の変化を求め
ることにより圧力を測定する静電容量型力センサにおい
て、上記コンデンサ素子の対向電極間に、加圧により弾
性変化をする弾性誘電体を介装したものである。
In order to achieve the above-mentioned object, a first electrostatic capacity type force sensor according to the present invention is designed to obtain a pressure change by obtaining a change in an electrostatic capacity according to a pressing force of a capacitor element of a pressure detecting section. In the electrostatic capacitance type force sensor for measuring, an elastic dielectric material that elastically changes by pressure is interposed between the opposing electrodes of the capacitor element.

【0008】また、上記目的を達成するため本発明によ
る第二の静電容量型力センサは、圧力検出部のコンデン
サ素子の加圧力に伴う静電容量の変化を求めることによ
り圧力を測定する静電容量型力センサにおいて、上記コ
ンデンサ素子の対向電極間に、温度上昇に対して誘電率
が増加する弾性誘電体と、温度上昇に対して誘電率が減
少する弾性誘電体とを介装したものである。
Further, in order to achieve the above object, the second capacitance type force sensor according to the present invention is a static pressure sensor for measuring pressure by obtaining a change in capacitance due to the applied pressure of the capacitor element of the pressure detecting portion. A capacitance type force sensor in which an elastic dielectric whose dielectric constant increases with temperature rise and an elastic dielectric whose dielectric constant decreases with temperature rise are interposed between opposed electrodes of the capacitor element. Is.

【0009】さらに、上記目的を達成するため本発明に
よる第三の静電容量型力センサは、圧力検出部のコンデ
ンサ素子の加圧力に伴う静電容量の変化を求めることに
より圧力を測定する静電容量型力センサにおいて、上記
コンデンサ素子の対向電極間に、加圧により弾性変化を
する弾性誘電体を介装して複数積層するとともに、一方
の電極の積層数と他方の電極の積層数とを異なって上記
コンデンサ素子を形成したものである。
Further, in order to achieve the above object, the third electrostatic capacity type force sensor according to the present invention is a static pressure sensor for measuring a pressure by obtaining a change in electrostatic capacity according to a pressing force of a capacitor element of a pressure detecting section. In the capacitance type force sensor, between the opposing electrodes of the capacitor element, a plurality of layers are laminated with an elastic dielectric that elastically changes by being interposed, and the number of layers of one electrode and the number of layers of the other electrode are And the above capacitor element is formed differently.

【0010】また、上記目的を達成するため本発明によ
る第四の静電容量型力センサは、圧力検出部のコンデン
サ素子の加圧力に伴う静電容量の変化を求めることによ
り圧力を測定する静電容量型力センサにおいて、上記コ
ンデンサ素子の対向電極間に、加圧により弾性変化をす
る弾性誘電体と加圧力に対する静電容量の変化を調整す
る緩衝増幅層とを介装したものである。
Further, in order to achieve the above object, a fourth electrostatic capacity type force sensor according to the present invention is a static capacitance sensor for measuring pressure by obtaining a change in electrostatic capacity associated with a pressing force of a capacitor element of a pressure detecting section. In the capacitance type force sensor, an elastic dielectric material that elastically changes by pressurization and a buffer amplification layer that adjusts a change in electrostatic capacitance due to a pressure are interposed between the opposing electrodes of the capacitor element.

【0011】さらに、上記目的を達成するため本発明に
よる第五の静電容量型力センサは、圧力検出部のコンデ
ンサ素子の加圧力に伴う静電容量の変化を求めることに
より圧力を測定する静電容量型力センサにおいて、上記
コンデンサ素子の対向電極間に、加圧により弾性変化を
する弾性誘電体を介装して複数積層するとともに、上記
各対向電極をそれぞれの側の各端子方向に延出して上記
各端子に重ね接合する各接合電極面を、上記各端子から
外側に重着するに従い面積が小さくなるように形成した
ものである。
Further, in order to achieve the above object, the fifth electrostatic capacity type force sensor according to the present invention is a static capacitance sensor for measuring a pressure by obtaining a change in electrostatic capacity according to a pressing force of a capacitor element of a pressure detecting section. In the capacitance type force sensor, a plurality of elastic dielectrics that elastically change by pressure are interposed between the opposing electrodes of the capacitor element, and the opposing electrodes extend in the direction of the terminals on each side. Each of the bonding electrode surfaces that is exposed and is lapped and bonded to each of the terminals is formed so that the area becomes smaller as it is stacked from the terminals to the outside.

【0012】[0012]

【作 用】上記構成による第一の静電容量型力センサ
で、圧力を測定するには、圧力が圧力検出部のコンデン
サ素子に加わると、この加圧力により上記コンデンサ素
子の対向電極間に介装されている弾性誘電体が弾性変化
をし、対向電極間距離が変化する。このため、上記コン
デンサ素子の静電容量が変化し、この静電容量変化を求
めることにより加圧力を求める。
[Operation] To measure the pressure with the first capacitive force sensor having the above-mentioned configuration, when the pressure is applied to the capacitor element of the pressure detection unit, this pressure causes an intervening electrode between the opposing electrodes of the capacitor element. The mounted elastic dielectric material changes elastically, and the distance between the opposing electrodes changes. Therefore, the capacitance of the capacitor element changes, and the pressure is obtained by obtaining the change in capacitance.

【0013】また、上記構成による第二の静電容量型力
センサでは、圧力が圧力検出部のコンデンサ素子に加わ
ると、この加圧力により上記コンデンサ素子の対向電極
間に介装されている、温度上昇に対して誘電率が増加す
る弾性誘電体と、温度上昇に対して誘電率が減少する弾
性誘電体とが弾性変化をし、対向電極間距離が変化す
る。このため、上記コンデンサ素子の静電容量が変化
し、この静電容量変化を求めることにより加圧力を求め
る。
Further, in the second capacitance type force sensor having the above structure, when pressure is applied to the capacitor element of the pressure detecting portion, this pressure force causes a temperature difference between the opposing electrodes of the capacitor element. The elastic dielectric whose dielectric constant increases with increasing temperature and the elastic dielectric whose dielectric constant decreases with increasing temperature elastically change, and the distance between the opposing electrodes changes. Therefore, the capacitance of the capacitor element changes, and the pressure is obtained by obtaining the change in capacitance.

【0014】さらに、上記構成による第三の静電容量型
力センサでは、圧力が圧力検出部のコンデンサ素子に加
わると、この加圧力により、複数、対向電極間に積層さ
れた加圧により弾性変化をする弾性誘電体が弾性変化を
し、それぞれ積層数を異なって設けた上記対向電極間距
離が変化する。このため、上記コンデンサ素子の静電容
量が変化し、この静電容量変化を求めることにより加圧
力を求める。
Further, in the third capacitance type force sensor having the above-mentioned structure, when pressure is applied to the capacitor element of the pressure detecting portion, this pressing force causes elastic change due to pressurization laminated between a plurality of opposing electrodes. The elastic dielectric material that undergoes the elastic change changes the distance between the opposing electrodes provided with different numbers of laminated layers. Therefore, the capacitance of the capacitor element changes, and the pressure is obtained by obtaining the change in capacitance.

【0015】また、上記構成による第四の静電容量型力
センサでは、圧力が圧力検出部のコンデンサ素子に加わ
ると、この加圧力により、上記コンデンサ素子の対向電
極間に介装されている、加圧により弾性変化をする弾性
誘電体と、加圧力に対する静電容量の変化を調整する緩
衝増幅層とが弾性変化をし、対向電極間距離が変化す
る。このため、上記コンデンサ素子の静電容量が変化
し、この静電容量変化を求めることにより加圧力を求め
る。
Further, in the fourth capacitance type force sensor having the above structure, when pressure is applied to the capacitor element of the pressure detecting portion, the applied pressure is interposed between the opposing electrodes of the capacitor element. The elastic dielectric material that elastically changes by pressurization and the buffer amplification layer that adjusts the change of the electrostatic capacitance with the applied pressure elastically change, and the distance between the opposing electrodes changes. Therefore, the capacitance of the capacitor element changes, and the pressure is obtained by obtaining the change in capacitance.

【0016】さらに、上記構成による第五の静電容量型
力センサでは、圧力が圧力検出部のコンデンサ素子に加
わると、この加圧力により、それぞれの側の各端子方向
に延出して上記各端子に重ね接合する各接合電極面を上
記各端子から外側に重着するに従い面積が小さくなるよ
うに形成した上記コンデンサ素子の各対向電極間に介装
されている加圧により弾性変化をする複数層の弾性誘電
体が、弾性変化をし、対向電極間距離が変化する。この
ため、上記コンデンサ素子の静電容量が変化し、この静
電容量変化を求めることにより加圧力を求める。
Further, in the fifth capacitance type force sensor having the above structure, when pressure is applied to the capacitor element of the pressure detecting portion, this pressing force extends in the direction of each terminal on each side and causes each of the terminals to be connected. A plurality of layers that are elastically changed by pressure between the opposing electrodes of the capacitor element, formed so that the surface of each of the bonding electrodes to be lap-bonded to each other is overlapped from the terminals to the outside The elastic dielectric material changes its elasticity and the distance between the opposing electrodes changes. Therefore, the capacitance of the capacitor element changes, and the pressure is obtained by obtaining the change in capacitance.

【0017】[0017]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1〜図5は本発明の第一実施例を示し、図1は
静電容量型力センサのコンデンサ素子の構造の説明図、
図2は静電容量型力センサの回路構成の概略説明図、図
3は静電容量型力センサの圧力検出部の構成を示す説明
図、図4はコンデンサ素子の電極部とリード線との接続
法を示す説明図、図5はコンデンサ素子の電極部とリー
ド線との接続を示す説明図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 show a first embodiment of the present invention, and FIG. 1 is an explanatory view of the structure of a capacitor element of a capacitance type force sensor,
2 is a schematic explanatory diagram of the circuit configuration of the capacitance type force sensor, FIG. 3 is an explanatory diagram showing the configuration of the pressure detection part of the capacitance type force sensor, and FIG. 4 is a diagram showing the electrode portion of the capacitor element and the lead wire. FIG. 5 is an explanatory view showing the connection method, and FIG. 5 is an explanatory view showing the connection between the electrode portion of the capacitor element and the lead wire.

【0018】これらの図において、符号1は静電容量型
力センサの圧力検出部を示し、この圧力検出部1は、検
出部ホルダ2内に設けられた絶縁固定板3上に、所定の
静電容量Cを有するコンデンサ素子4が設けられてお
り、このコンデンサ素子4の受圧面側(上記絶縁固定板
3と反対側の面側)に、上記検出部ホルダ2内をシール
するとともに測定対象物の圧力を受ける受圧板5が設け
られている。
In these drawings, reference numeral 1 indicates a pressure detecting portion of the capacitance type force sensor, and the pressure detecting portion 1 is mounted on an insulating fixing plate 3 provided in a detecting portion holder 2 and has a predetermined static pressure. A capacitor element 4 having an electric capacity C is provided, and the pressure-receiving surface side of the capacitor element 4 (the surface side opposite to the insulating fixing plate 3) seals the inside of the detection unit holder 2 and the object to be measured. A pressure receiving plate 5 for receiving the pressure is provided.

【0019】また、上記圧力検出部1の検出部ホルダ2
内には、上記コンデンサ素子4と電気的に並列接続さ
れ、所定のインダクタンスLを有するコイル素子6が配
設されている。
Further, the detector holder 2 of the pressure detector 1
Inside, a coil element 6 which is electrically connected in parallel with the capacitor element 4 and has a predetermined inductance L is arranged.

【0020】また、図2に示すように、上記並列接続さ
れた上記コンデンサ素子4と上記コイル素子6との一方
の電極側は、上記圧力検出部1の検出部ホルダ2内から
外部に引き出され電気的にアースされ、さらに、上記並
列接続された上記コンデンサ素子4と上記コイル素子6
との他方の電極側は、上記検出部ホルダ2内から外部に
引き出され、アンプ7の入力側と接続されたインピーダ
ンス素子8(インピーダンスZi )と、上記アンプ7の
出力側に接続されたインピーダンス素子9(インピーダ
ンスZ0 )とに接続され共振回路を形成している。
Further, as shown in FIG. 2, one electrode side of the capacitor element 4 and the coil element 6 connected in parallel is pulled out from the inside of the detection portion holder 2 of the pressure detection portion 1. The capacitor element 4 and the coil element 6 that are electrically grounded and that are connected in parallel are also provided.
The other electrode side of the impedance element 8 is connected to the input side of the amplifier 7 (impedance Zi) and the impedance element connected to the output side of the amplifier 7. 9 (impedance Z0) to form a resonance circuit.

【0021】ここで、Rr は内部抵抗を示し、この内部
抵抗Rr が、上記インピーダンスZi および上記インピ
ーダンスZ0 よりもはるかに小さいならば、上記回路の
発振周波数は共振周波数f0 となる。
Here, Rr represents an internal resistance, and if the internal resistance Rr is much smaller than the impedance Zi and the impedance Z0, the oscillation frequency of the circuit becomes the resonance frequency f0.

【0022】また、上記アンプ7の出力側は、上記共振
周波数f0 をカウントするカウンタ回路10と接続され
ており、このカウンタ回路10は、データの処理、数値
の算出および測定系の制御等を行う主制御装置11と接
続されている。
The output side of the amplifier 7 is connected to a counter circuit 10 that counts the resonance frequency f0. The counter circuit 10 processes data, calculates numerical values, controls measurement system, and the like. It is connected to the main controller 11.

【0023】上記主制御装置11では、周知の共振周波
数f0 についての式、 f0 =1/{2π(LC)1/2 } ・・・・(1) に基づき、静電容量Cを求めるもので、さらに、この静
電容量Cから以下の式に基づいて、誘電率εあるいは対
向距離tを求めるものである。ここで、対向面積をS,
層数をNとすると、 C=ε×(S/t)×N ・・・・(2) そして、この(2)式から、対向距離tを求め、予め求
めておいた加圧量(圧力F)と対向距離tとの関係(関
係式あるいはマップ等)から加圧量(圧力F)を求める
ようになっている。
The main controller 11 obtains the electrostatic capacitance C based on the well-known equation for the resonance frequency f0, f0 = 1 / {2π (LC) 1/2 } (1) Further, the dielectric constant ε or the facing distance t is obtained from the electrostatic capacitance C based on the following equation. Here, the facing area is S,
When the number of layers is N, C = ε × (S / t) × N (2) Then, the facing distance t is obtained from the equation (2), and the amount of pressurization (pressure) obtained in advance is calculated. The pressure amount (pressure F) is obtained from the relationship (relational expression or map) between F) and the facing distance t.

【0024】一方、前記コンデンサ素子4は、図1に示
すように、電極13と、弾性誘電体14と、上記電極1
3に対する対向電極15とが、それぞれ交互に複数積層
され形成されており、上記電極13と上記対向電極15
の外側には電極保護層16が形成されている。
On the other hand, as shown in FIG. 1, the capacitor element 4 includes an electrode 13, an elastic dielectric material 14, and the electrode 1 described above.
A plurality of counter electrodes 15 corresponding to 3 are alternately laminated and formed, and the electrodes 13 and the counter electrodes 15 are formed.
An electrode protection layer 16 is formed on the outer side of.

【0025】上記弾性誘電体14は、弾力性が有り、か
つ、復元性の良い特性を有する非結晶性高分子材、例え
ばシリコンを含んだ無定形高分子材等からなり、本実施
例においては3層に形成されている。また、上記電極1
3,15は、それぞれリード線端子17,18と接合さ
れている。
The elastic dielectric material 14 is made of an amorphous polymer material having elasticity and good restoring property, such as an amorphous polymer material containing silicon. In this embodiment, It is formed in three layers. In addition, the electrode 1
3, 15 are joined to the lead wire terminals 17, 18, respectively.

【0026】尚、本第一実施例では、弾性誘電体14を
3層に形成したものについて説明したが、3層に限るこ
となく2層あるいは4層以上に形成しても良い。このよ
うに弾性誘電体14を複数の積層構造とすることにより
所定の大きさの静電容量を得ることができる。
In the first embodiment, the elastic dielectric material 14 is formed in three layers, but the elastic dielectric material 14 is not limited to three layers and may be formed in two layers or four or more layers. By thus forming the elastic dielectric body 14 in a plurality of laminated structures, it is possible to obtain a capacitance of a predetermined size.

【0027】また、上記電極保護層16は、上記弾性誘
電体14と同じ材料のものであっても、異なる材料のも
のであっても良い。
The electrode protection layer 16 may be made of the same material as the elastic dielectric material 14 or a different material.

【0028】次いで、図4および図5に、上記コンデン
サ素子4の上記電極13,15とリード線17,18と
の接合方法について説明する。まず、上記電極13と上
記弾性誘電体14と上記対向電極15とが、それぞれ交
互に複数積層され形成されたコンデンサ本体4aは、そ
れぞれの電極側外部に各電極13,15が接合電極面と
して引き出される。(図4(a)に上記電極15がコン
デンサ本体4aから外部に引き出された状態を示す。)
次に、上記各電極13,15の引き出された接合電極面
は、下側から上側に順次、小さな台形状になるように加
工する(図4(b))。
Next, a method of joining the electrodes 13 and 15 of the capacitor element 4 and the lead wires 17 and 18 will be described with reference to FIGS. First, in the capacitor body 4a in which the electrodes 13, the elastic dielectrics 14, and the counter electrode 15 are alternately laminated in a plurality, the electrodes 13 and 15 are drawn out to the outside of the respective electrodes as bonding electrode surfaces. Be done. (FIG. 4A shows a state in which the electrode 15 is pulled out from the capacitor body 4a.)
Next, the joined electrode surfaces from which the electrodes 13 and 15 have been extracted are sequentially processed from the lower side to the upper side so as to have a small trapezoidal shape (FIG. 4B).

【0029】そして、上記電極13,15を、それぞれ
端子リード線17,18に当接させて巻き付け半田付を
行う(図5の符号19の部分)。ここで、上記電極1
3,15は、下側から上側に順次、小さな台形状に加工
されているため、半田付を容易に、かつ、確実に行うこ
とができる。
Then, the electrodes 13 and 15 are brought into contact with the terminal lead wires 17 and 18, respectively, and wound and soldered (the portion 19 in FIG. 5). Here, the electrode 1
Since 3 and 15 are sequentially processed into a small trapezoidal shape from the lower side to the upper side, soldering can be performed easily and reliably.

【0030】次に、上記構成による静電容量型力センサ
を用いて、圧力Fの計測を行う手順について説明する。
まず、圧力検出部1を、圧力Fが計測可能な場所に位置
させ、受圧板5を介して、内部のコンデンサ素子4に圧
力Fが加わると、このコンデンサ素子4の弾性誘電体1
4は、厚さが無負荷時よりも小さくなり、対向している
電極13,15が接近し、それぞれリード線17,18
間の静電容量Cは大きくなる。
Next, the procedure for measuring the pressure F using the capacitance type force sensor having the above-mentioned structure will be described.
First, when the pressure detector 1 is located at a place where the pressure F can be measured and the pressure F is applied to the internal capacitor element 4 via the pressure receiving plate 5, the elastic dielectric body 1 of the capacitor element 4 is
In No. 4, the thickness is smaller than that under no load, the electrodes 13 and 15 facing each other approach each other, and the lead wires 17 and 18 respectively.
The capacitance C between them becomes large.

【0031】上記静電容量Cの変化は、共振回路の共振
周波数f0 の変化として現れる。この共振周波数f0 の
変化をカウンタ回路10にてカウントして求め、主制御
装置11において、前述の(1)式を基にデータの処
理、数値の算出等を行って静電容量Cを求める。また、
上記得られた静電容量Cの値から、前述の(2)式を基
に対向距離tを求め、予め求めておいた圧力Fと対向距
離tとの関係(関係式あるいはマップ等)から圧力Fを
求める。
The change in the capacitance C appears as a change in the resonance frequency f0 of the resonance circuit. The change in the resonance frequency f0 is obtained by counting by the counter circuit 10, and the main controller 11 obtains the electrostatic capacitance C by processing the data, calculating the numerical value, etc. based on the equation (1). Also,
From the value of the capacitance C obtained above, the facing distance t is obtained based on the above-mentioned equation (2), and the pressure is calculated from the relationship (relational expression or map) between the pressure F and the facing distance t which is obtained in advance. Find F.

【0032】このように、本第一実施例によれば、弾性
誘電体を有するコンデンサ素子を用いて、圧力を測定す
るとともに、圧力検出部には、共振回路を構成するコイ
ル素子とコンデンサ素子とが配設されているのみである
ので、過酷な使用環境、例えば、地下のボーリング中、
数km先のガス吐出圧、水圧等を、精度良く測定すること
ができる。すなわち、圧力検出部には共振回路を構成す
るコイル素子とコンデンサ素子とが配設されているのみ
であり、コンデンサ素子の弾性誘電体を、例えば無定形
高分子材等で形成することにより、例えば200℃の高
温雰囲気でも圧力の計測が可能となる。
As described above, according to the first embodiment, the pressure is measured by using the capacitor element having the elastic dielectric, and the pressure detecting section includes the coil element and the capacitor element which form the resonance circuit. Since it is only installed, harsh use environment, for example, during underground boring,
It is possible to measure gas discharge pressure, water pressure, etc. several kilometers away with high accuracy. That is, only the coil element and the capacitor element that form the resonance circuit are arranged in the pressure detection unit, and by forming the elastic dielectric of the capacitor element with, for example, an amorphous polymer material, The pressure can be measured even in a high temperature atmosphere of 200 ° C.

【0033】また、圧力検出部には、共振回路を構成す
るコイル素子とコンデンサ素子とが配設されているのみ
であるので、圧力検出部の一層の小型化を図ることがで
き、様々なものの測定を行うことが可能となる。
Further, since only the coil element and the capacitor element forming the resonance circuit are arranged in the pressure detecting section, the pressure detecting section can be further miniaturized and various elements can be obtained. It becomes possible to perform the measurement.

【0034】さらに、圧力検出部と、その他の回路の部
分とを、例えば、ロータリトランス等を用いて非接触に
接続するようにすれば、回転しているものの測定も可能
となる。
Further, if the pressure detecting portion and the other circuit portion are connected to each other in a non-contact manner by using, for example, a rotary transformer, it is possible to measure a rotating object.

【0035】尚、本第一実施例では、弾性誘電体14を
3層に形成したものについて説明したが、3層に限るこ
となく2層あるいは4層以上に形成しても良く、このよ
うに弾性誘電体14を複数の積層構造とすることによ
り、所定の大きさの静電容量を得ることができる。
In the first embodiment, the elastic dielectric body 14 is described as having three layers, but the number of layers is not limited to three and may be two or four or more. By forming the elastic dielectric body 14 into a plurality of laminated structures, it is possible to obtain a capacitance of a predetermined size.

【0036】さらに、本第一実施例で構成した共振回路
は、本第一実施例のものに限定するものではなく、他の
共振回路(例えば、CL直列共振を応用した回路等)を
構成して測定できるようにしても良く、また、コンデン
サ素子の静電容量が計測できるものであれば共振回路以
外の他の回路を構成しても良い。
Further, the resonance circuit constructed in the first embodiment is not limited to the one in the first embodiment, but other resonance circuits (for example, a circuit to which CL series resonance is applied) are constructed. It may be possible to measure with the use of a capacitor element, and a circuit other than the resonance circuit may be configured as long as the capacitance of the capacitor element can be measured.

【0037】さらに、本第一実施例のコンデンサ素子と
コイル素子とは、検出部ホルダ内に配設して使用するよ
うにしているが、この検出部ホルダの形状は、本第一実
施例のものに限るものではなく、さらに、コンデンサ素
子のみを樹脂材等でパッケージ化したものであっても良
い。このようにコンデンサ素子を構成すれば、力センサ
の圧力検出部を、より一層、小型化することができ、様
々な圧力測定が可能となる。
Further, the capacitor element and the coil element of the first embodiment are arranged and used in the detecting portion holder. The shape of the detecting portion holder is the same as that of the first embodiment. The capacitor element is not limited to the above, and only the capacitor element may be packaged with a resin material or the like. If the capacitor element is configured in this way, the pressure detection unit of the force sensor can be further downsized, and various pressure measurements can be performed.

【0038】また、コンデンサ素子の両電極は、半田付
によりリード線と接合されているが、その他、溶接、熔
射、接着(導電性接着剤等による接着)等によって接合
しても良く、また、素子基板に直接接合するようにして
も良い。
Although both electrodes of the capacitor element are joined to the lead wire by soldering, they may be joined by welding, melting, adhesion (adhesion with a conductive adhesive or the like), or the like. Alternatively, it may be directly bonded to the element substrate.

【0039】次に、図6は本発明の第二実施例による静
電容量型力センサのコンデンサ素子を示す説明図であ
る。尚、この第二実施例は、弾性誘電体を、静電容量変
化率が温度に対し正特性を有する(高温になるにつれて
静電容量変化率が上昇する)ものと、静電容量変化率が
温度に対し負特性を有する(高温になるにつれて静電容
量変化率が下降する)ものとを交互に積層して、温度に
対する静電容量変化率を平均化させた点が前記第一実施
例とは異なり、その他の同じ構造部分は上記第一実施例
と同じ符号を付し説明は省略する。
Next, FIG. 6 is an explanatory view showing a capacitor element of a capacitance type force sensor according to a second embodiment of the present invention. In the second embodiment, when the elastic dielectric material has a capacitance change rate having a positive characteristic with respect to temperature (the capacitance change rate increases as the temperature rises), What has a negative characteristic with respect to temperature (capacitance change rate decreases with increasing temperature) is alternately laminated, and the capacitance change rate with respect to temperature is averaged. However, the other same structural parts are denoted by the same reference numerals as those in the first embodiment, and description thereof will be omitted.

【0040】すなわち、図6において、符号21は圧力
検出部1内のコンデンサ素子を示し、電極13と、この
対向電極15との間に、温度上昇に対して誘電率が増加
する(正特性の)弾性誘電体22と、温度上昇に対して
誘電率が増加する(負特性の)弾性誘電体23とをそれ
ぞれ交互に介装して形成したものである。
That is, in FIG. 6, reference numeral 21 indicates a capacitor element in the pressure detecting portion 1, and the dielectric constant between the electrode 13 and the counter electrode 15 increases with temperature rise (of the positive characteristic). ) An elastic dielectric body 22 and an elastic dielectric body 23 whose dielectric constant increases (negative characteristic) with temperature rise are alternately formed.

【0041】上記正特性の弾性誘電体22として、例え
ば、ポリエチレンテレフタレート等の材料が、また、上
記負特性の弾性誘電体23として、例えば、ポリプロピ
レン等の材料を弾性誘電体として用いることができる。
A material such as polyethylene terephthalate may be used as the positive dielectric elastic dielectric material 22, and a material such as polypropylene may be used as the negative dielectric elastic dielectric material 23.

【0042】このように、温度に対し特性変化の異なる
弾性誘電体を組み合わせて使用することにより、温度に
対する静電容量変化率を平均化させ、温度ドリフトを抑
制することが可能となり、温度補正なしに正確な圧力計
測を行うことができる。その他、構成、作用効果は前記
第一実施例と同様であるので省略する。
As described above, by using elastic dielectrics having different characteristics with respect to temperature in combination, the rate of change in capacitance with respect to temperature can be averaged, and temperature drift can be suppressed, without temperature correction. Accurate pressure measurement can be performed. The rest of the configuration, functions and effects are the same as those of the first embodiment, so description thereof will be omitted.

【0043】次に、図7は本発明の第三実施例による静
電容量型力センサのコンデンサ素子を示す説明図であ
る。尚、この第三実施例は、前述の第一実施例の圧力検
出部に設けられたコンデンサ素子の電極と弾性誘電体の
積層構造に、さらに緩衝増幅層を加えた点が異なり、そ
の他の同じ構造部分は上記第一実施例と同じ符号を付
し、説明は省略する。
Next, FIG. 7 is an explanatory view showing a capacitor element of a capacitance type force sensor according to a third embodiment of the present invention. The third embodiment is different in that a buffer amplification layer is further added to the laminated structure of the electrode of the capacitor element and the elastic dielectric provided in the pressure detecting portion of the first embodiment, and the other same. The structural parts are given the same reference numerals as in the first embodiment described above, and their explanations are omitted.

【0044】すなわち、図7において、符号31は圧力
検出部1内のコンデンサ素子を示し、3層の電極13
と、4層の弾性誘電体14と、上記電極13に対する3
層の対向電極15とが、それぞれ交互に複数積層され、
中間部には1層の緩衝増幅層32が積層されている。ま
た、図中、電極13,15の外側には電極保護層16が
形成されている。
That is, in FIG. 7, reference numeral 31 indicates a capacitor element in the pressure detecting section 1, and the electrodes 13 of three layers are shown.
And 4 layers of elastic dielectric 14 and 3 for the electrode 13
A plurality of layers of counter electrodes 15 are alternately laminated,
A buffer amplification layer 32 of one layer is laminated in the middle portion. Further, in the figure, an electrode protective layer 16 is formed outside the electrodes 13 and 15.

【0045】上記緩衝増幅層32は、加圧により厚みが
薄くなり易く、また、加圧を解除すると復元性の良好な
材質として、例えば、シリコンゴムの独立気泡体等が用
いられている。
As the material of the buffer amplification layer 32, which is likely to be thinned by pressurization and has a good restoring property when the pressurization is released, for example, a closed cell of silicon rubber or the like is used.

【0046】このように、緩衝増幅層32を設けること
により、加えられる圧力Fに対して静電容量Cの変化を
緩衝あるいは増幅して検出することができ、静電容量C
の設定の自由度を広げることが可能となる。また、突発
的に大きな圧力が加わるようなことがあっても、緩衝増
幅層にて吸収することができる。
As described above, by providing the buffer amplification layer 32, it is possible to buffer or amplify the change of the electrostatic capacitance C with respect to the applied pressure F and detect the electrostatic capacitance C.
It is possible to increase the degree of freedom in setting. Further, even if a large pressure is suddenly applied, it can be absorbed by the buffer amplification layer.

【0047】尚、本第三実施例では、1層の緩衝増幅層
を中央に積層するようにしているが、積層する位置は中
央に限ることなく、上方側(加圧面側)、あるいは、下
方側に積層しても良く、また、2層以上の緩衝増幅層を
交互に積層するようにしても良い。その他、構成、作用
効果は前記第一実施例と同様であるので省略する。
In the third embodiment, one buffer amplification layer is laminated at the center. However, the laminated position is not limited to the center, and the upper side (pressurizing surface side) or the lower side may be laminated. Alternatively, two or more buffer amplification layers may be alternately stacked. The rest of the configuration, functions and effects are the same as those of the first embodiment, so description thereof will be omitted.

【0048】次に、図8は本発明の第四実施例による静
電容量型力センサのコンデンサ素子を示し、(a)はコ
ンデンサ素子の構造の説明図で、(b)はコンデンサ素
子の弾性誘電体に包まれた電極(弾性誘電体付電極層)
の斜視図である。
Next, FIG. 8 shows a capacitor element of a capacitance type force sensor according to a fourth embodiment of the present invention, (a) is an explanatory view of the structure of the capacitor element, and (b) is an elasticity of the capacitor element. Electrode wrapped in dielectric (electrode layer with elastic dielectric)
FIG.

【0049】尚、本第四実施例は、上記第三実施例で述
べた電極と弾性誘電体と緩衝増幅層とを積層して形成さ
れるコンデンサ素子において、弾性誘電体で予め電極を
被覆し弾性誘電体付電極層を形成してから緩衝増幅層と
積層して形成したものである。
In the fourth embodiment, in the capacitor element formed by laminating the electrode, the elastic dielectric and the buffer amplification layer described in the third embodiment, the electrode is previously covered with the elastic dielectric. It is formed by forming an electrode layer with an elastic dielectric and then laminating it with a buffer amplification layer.

【0050】すなわち、図8に示すように、コンデンサ
素子41の弾性誘電体付電極層42は、引き出され加工
される側の部分42aを残し、積層される側の部分42
bが、予め弾性誘電体43で被覆され形成されている。
That is, as shown in FIG. 8, the electrode layer 42 with elastic dielectric of the capacitor element 41 has a portion 42a on the side to be extracted and processed, and a portion 42 on the side to be laminated.
b is previously formed by being coated with the elastic dielectric 43.

【0051】そして、上記弾性誘電体付電極層42の加
工側部分42aを、交互に180度反転させるととも
に、上記各弾性誘電体付電極層42間に緩衝増幅層32
を積層してコンデンサ素子41を形成する。
Then, the processed side portions 42a of the electrode layer 42 with elastic dielectric are alternately inverted 180 degrees, and the buffer amplification layer 32 is provided between the electrode layers 42 with elastic dielectric.
Are laminated to form the capacitor element 41.

【0052】このようなコンデンサ素子41とすること
により、前記第三実施例の効果に加え、図8(a)中の
x1 とx2 寸法を同じに形成して、厚さ寸法が同一な弾
性誘電体とし、加圧に対する静電容量の変化を均一に出
力させることが可能となる。また、故意にx1 とx2 寸
法を異なって形成して、圧力の所定の範囲のみ強調させ
て静電容量の変化を出力させることも可能となる。
By using such a capacitor element 41, in addition to the effect of the third embodiment, the x1 and x2 dimensions in FIG. 8A are formed to be the same, and the elastic dielectric having the same thickness dimension is formed. As a body, it is possible to uniformly output changes in capacitance with respect to pressure. It is also possible to intentionally form the x1 and x2 dimensions differently so that only a predetermined range of pressure is emphasized and a change in capacitance is output.

【0053】さらに、電極に予め弾性誘電体を形成し弾
性誘電体付電極層として別途製作するので、コンデンサ
素子を積層して形成する際の工数削減を図ることができ
る。その他、構成、作用効果は前記第三実施例と同様で
あるので省略する。次に、図9は本発明の第五実施例に
よる静電容量型力センサのコンデンサ素子を示し、
(a)はコンデンサ素子の構造の説明図で、(b)は電
極の配置の説明図である。
Further, since the electrodes are preliminarily formed with the elastic dielectric material and are separately manufactured as the electrode layer with the elastic dielectric material, it is possible to reduce the number of steps when the capacitor elements are laminated and formed. The rest of the configuration, functions and effects are the same as those of the third embodiment, and therefore will be omitted. Next, FIG. 9 shows a capacitor element of a capacitance type force sensor according to a fifth embodiment of the present invention.
(A) is explanatory drawing of the structure of a capacitor element, (b) is explanatory drawing of arrangement | positioning of an electrode.

【0054】尚、この第五実施例は、前記第一実施例の
圧力検出部に設けられたコンデンサ素子の電極と弾性誘
電体の積層構造を、一方の側の電極を奇数枚とし、この
対向電極を偶数枚として積層してシールド効果を高めた
もので、その他の前記第一実施例と同じ構造部分は上記
第一実施例と同じ符号を付し説明は省略する。
In the fifth embodiment, the laminated structure of the electrodes of the capacitor element and the elastic dielectric material provided in the pressure detecting portion of the first embodiment has an odd number of electrodes on one side, and the electrodes are opposed to each other. The electrode has an even number of electrodes and is laminated to enhance the shield effect. Other structural parts that are the same as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and description thereof will be omitted.

【0055】すなわち、図9において、符号51は圧力
検出部1内のコンデンサ素子を示し、一方の電極52は
奇数枚(図においては3枚)に、また、この電極52の
対向電極53は偶数枚(図においては4枚)に積層され
て形成されている。
That is, in FIG. 9, reference numeral 51 indicates a capacitor element in the pressure detecting portion 1, one electrode 52 is an odd number (three in the figure), and the counter electrode 53 of this electrode 52 is an even number. It is formed by stacking one sheet (four sheets in the figure).

【0056】そして、回路上において、枚数の多い上記
偶数枚の対向電極53は、低圧側(グランド側)と接続
され、枚数の少ない上記奇数枚の電極52は、高圧側
(ホット側)と接続されている。
In the circuit, the even-numbered counter electrodes 53 having a large number are connected to the low voltage side (ground side), and the odd-numbered electrodes 52 having a small number are connected to the high voltage side (hot side). Has been done.

【0057】このような構造とすることによりシールド
効果を著しく向上させることができ、コンデンサ素子を
実際に使用する周波数帯(数100Hz 〜数MHz )に
おいて、より安定して、再現性の向上したデータを得る
ことが可能となる。
With such a structure, the shield effect can be remarkably improved, and the data having more stable and improved reproducibility can be obtained in the frequency band (several 100 Hz to several MHz) in which the capacitor element is actually used. Can be obtained.

【0058】尚、この本第五実施例を、前記第二実施
例、前記第三実施例および前記第四実施例にも適応すれ
ば、同様にシールド効果を著しく向上させることができ
る。その他、構成、作用効果は前記第一実施例と同様で
あるので省略する。
If the fifth embodiment is also applied to the second embodiment, the third embodiment and the fourth embodiment, the shielding effect can be remarkably improved. The rest of the configuration, functions and effects are the same as those of the first embodiment, so description thereof will be omitted.

【0059】[0059]

【発明の効果】以上説明したように本発明によれば、圧
力検出部のコンデンサ素子の加圧力に伴う静電容量の変
化を求めることにより圧力を測定する静電容量型力セン
サにおいて、静電容量を大きくするとともに、圧力検出
部を小型化することが可能となる。
As described above, according to the present invention, in the electrostatic capacity type force sensor for measuring the pressure by obtaining the change of the electrostatic capacity according to the applied pressure of the capacitor element of the pressure detecting portion, It is possible to increase the capacity and downsize the pressure detection unit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例による静電容量型力センサ
のコンデンサ素子の構造の説明図
FIG. 1 is an explanatory view of a structure of a capacitor element of a capacitance type force sensor according to a first embodiment of the present invention.

【図2】本発明の第一実施例による静電容量型力センサ
の回路構成の概略説明図
FIG. 2 is a schematic explanatory diagram of a circuit configuration of a capacitance type force sensor according to a first embodiment of the present invention.

【図3】本発明の第一実施例による静電容量型力センサ
の圧力検出部の構成を示す説明図
FIG. 3 is an explanatory diagram showing a configuration of a pressure detection unit of the capacitance type force sensor according to the first embodiment of the present invention.

【図4】本発明の第一実施例によるコンデンサ素子の電
極部とリード線との接続法を示す説明図
FIG. 4 is an explanatory view showing a method of connecting the electrode portion and the lead wire of the capacitor element according to the first embodiment of the present invention.

【図5】本発明の第一実施例によるコンデンサ素子の電
極部とリード線との接続を示す説明図
FIG. 5 is an explanatory view showing the connection between the electrode portion and the lead wire of the capacitor element according to the first embodiment of the present invention.

【図6】本発明の第二実施例による静電容量型力センサ
のコンデンサ素子を示す説明図
FIG. 6 is an explanatory view showing a capacitor element of a capacitance type force sensor according to a second embodiment of the present invention.

【図7】本発明の第三実施例による静電容量型力センサ
のコンデンサ素子を示す説明図
FIG. 7 is an explanatory view showing a capacitor element of a capacitance type force sensor according to a third embodiment of the present invention.

【図8】本発明の第四実施例による静電容量型力センサ
のコンデンサ素子を示し、(a)はコンデンサ素子の構
造の説明図、(b)はコンデンサ素子の弾性誘電体に包
まれた電極(弾性誘電体付電極層)の斜視図
FIG. 8 shows a capacitor element of a capacitance type force sensor according to a fourth embodiment of the present invention, (a) is an explanatory view of the structure of the capacitor element, and (b) is wrapped in an elastic dielectric of the capacitor element. Perspective view of electrode (electrode layer with elastic dielectric)

【図9】本発明の第五実施例による静電容量型力センサ
のコンデンサ素子を示し、(a)はコンデンサ素子の構
造の説明図、(b)は電極の配置の説明図
FIG. 9 shows a capacitor element of a capacitance type force sensor according to a fifth embodiment of the present invention, (a) is an explanatory view of the structure of the capacitor element, and (b) is an explanatory view of the arrangement of electrodes.

【符号の説明】[Explanation of symbols]

1 圧力検出部 4 コンデンサ素子 13 電極 14 弾性誘電体 15 電極 C 静電容量 F 圧力 1 Pressure Detector 4 Capacitor Element 13 Electrode 14 Elastic Dielectric 15 Electrode C Capacitance F Pressure

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 英次 長野県伊那市大字西箕輪1938番地1 ルビ コン株式会社内 (72)発明者 鈴木 三紀男 長野県下伊那郡松川町元大島2932番地 ル ビコン電子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiji Sasaki 1938 Nishi Minowa, Ina City, Nagano Prefecture 1938 Rubicon Co., Ltd. Electronic Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧力検出部のコンデンサ素子の加圧力に
伴う静電容量の変化を求めることにより圧力を測定する
静電容量型力センサにおいて、 上記コンデンサ素子の対向電極間に、加圧により弾性変
化をする弾性誘電体を介装したことを特徴とする静電容
量型力センサ。
1. A capacitance type force sensor for measuring a pressure by obtaining a change in capacitance with a pressure applied to a capacitor element of a pressure detection section, wherein an elastic force is applied between opposing electrodes of the capacitor element by pressurization. An electrostatic capacitance type force sensor characterized in that a changing elastic dielectric is interposed.
【請求項2】 圧力検出部のコンデンサ素子の加圧力に
伴う静電容量の変化を求めることにより圧力を測定する
静電容量型力センサにおいて、 上記コンデンサ素子の対向電極間に、温度上昇に対して
誘電率が増加する弾性誘電体と、温度上昇に対して誘電
率が減少する弾性誘電体とを介装したことを特徴とする
静電容量型力センサ。
2. A capacitance type force sensor for measuring a pressure by obtaining a change in capacitance due to a pressure applied to a capacitor element of a pressure detecting section, wherein a capacitance sensor measures the pressure between opposing electrodes of the capacitor element against temperature rise. A capacitance type force sensor is characterized in that an elastic dielectric body whose dielectric constant increases and a elastic dielectric body whose dielectric constant decreases with temperature rise are interposed.
【請求項3】 圧力検出部のコンデンサ素子の加圧力に
伴う静電容量の変化を求めることにより圧力を測定する
静電容量型力センサにおいて、 上記コンデンサ素子の対向電極間に、加圧により弾性変
化をする弾性誘電体を介装して複数積層するとともに、
一方の電極の積層数と他方の電極の積層数とを異なって
上記コンデンサ素子を形成したことを特徴とする静電容
量型力センサ。
3. A capacitance type force sensor for measuring a pressure by obtaining a change in capacitance due to a pressure applied to a capacitor element of a pressure detecting section, wherein an elastic force is applied between opposing electrodes of the capacitor element by pressurization. A plurality of laminated elastic dielectrics are interposed,
An electrostatic capacitance type force sensor, wherein the capacitor element is formed such that the number of laminated layers of one electrode is different from the number of laminated layers of the other electrode.
【請求項4】 圧力検出部のコンデンサ素子の加圧力に
伴う静電容量の変化を求めることにより圧力を測定する
静電容量型力センサにおいて、 上記コンデンサ素子の対向電極間に、加圧により弾性変
化をする弾性誘電体と、加圧力に対する静電容量の変化
を調整する緩衝増幅層とを介装したことを特徴とする静
電容量型力センサ。
4. A capacitance type force sensor for measuring a pressure by obtaining a change in capacitance with a pressure applied to a capacitor element of a pressure detecting section, wherein an elastic force is applied between opposing electrodes of the capacitor element by pressurization. An electrostatic capacitance type force sensor comprising a changing elastic dielectric and a buffer amplification layer for adjusting a change in electrostatic capacitance with respect to a pressing force.
【請求項5】 圧力検出部のコンデンサ素子の加圧力に
伴う静電容量の変化を求めることにより圧力を測定する
静電容量型力センサにおいて、 上記コンデンサ素子の対向電極間に、加圧により弾性変
化をする弾性誘電体を介装して複数積層するとともに、
上記各対向電極をそれぞれの側の各端子方向に延出して
上記各端子に重ね接合する各接合電極面を、上記各端子
から外側に重着するに従い面積が小さくなるように形成
したことを特徴とする静電容量型力センサ。
5. A capacitance type force sensor for measuring a pressure by obtaining a change in capacitance due to a pressure applied to a capacitor element of a pressure detecting section, wherein an elastic force is applied between opposing electrodes of the capacitor element by pressurization. A plurality of laminated elastic dielectrics are interposed,
It is characterized in that each of the above-mentioned counter electrodes extends in the direction of each of the terminals on each side, and each of the bonding electrode surfaces that are superposedly bonded to each of the terminals is formed so that the area becomes smaller as the terminals are stacked outward from the respective terminals. Capacitive force sensor.
JP19848293A 1993-08-10 1993-08-10 Capacitance type force sensor Pending JPH0755615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19848293A JPH0755615A (en) 1993-08-10 1993-08-10 Capacitance type force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19848293A JPH0755615A (en) 1993-08-10 1993-08-10 Capacitance type force sensor

Publications (1)

Publication Number Publication Date
JPH0755615A true JPH0755615A (en) 1995-03-03

Family

ID=16391852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19848293A Pending JPH0755615A (en) 1993-08-10 1993-08-10 Capacitance type force sensor

Country Status (1)

Country Link
JP (1) JPH0755615A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6606911B2 (en) 2000-12-27 2003-08-19 Omron Corporation Pressure sensors
US6628124B1 (en) * 1999-03-04 2003-09-30 Riken Electrocapacitive force measuring apparatus
WO2005052532A1 (en) * 2003-11-28 2005-06-09 Xiroku, Inc. Pressure sensor using electromagnetic coupling
WO2005054802A1 (en) * 2003-12-04 2005-06-16 Xiroku, Inc. Pressure sensor using capacitive coupling
US7259672B2 (en) 2003-04-01 2007-08-21 Seiko Epson Corporation Contactless identification tag
US7312591B2 (en) 2005-03-11 2007-12-25 Npc Corporation Powered panel moving system
JP2008039778A (en) * 2006-08-02 2008-02-21 Air Products & Chemicals Inc Method and device for monitoring fluid pressure
US7342373B2 (en) 2006-01-04 2008-03-11 Nartron Corporation Vehicle panel control system
JP2009036557A (en) * 2007-07-31 2009-02-19 Sony Corp Device and method for detection, and program
US8013598B2 (en) 2006-06-19 2011-09-06 Newcom, Inc. Object detecting device for detecting object using electromagnetic induction
JP2012053050A (en) * 2011-10-05 2012-03-15 Univ Of Tokyo Non-single-crystal transistor integrated circuit
US8330726B2 (en) 2003-05-19 2012-12-11 Xiroku, Inc. Position detection apparatus using area image sensor
US8563880B2 (en) 2006-10-24 2013-10-22 Newcom, Inc. Operating tool with conductor pieces
CN104949777A (en) * 2014-03-26 2015-09-30 丰田自动车株式会社 Drucksensor
JP2021149879A (en) * 2020-03-23 2021-09-27 株式会社東海理化電機製作所 Load sensor and operation input device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628124B1 (en) * 1999-03-04 2003-09-30 Riken Electrocapacitive force measuring apparatus
EP1219940A3 (en) * 2000-12-27 2004-04-07 Omron Corporation Capacitive pressure sensors
US6606911B2 (en) 2000-12-27 2003-08-19 Omron Corporation Pressure sensors
US7522054B2 (en) 2003-04-01 2009-04-21 Seiko Epson Corporation Contactless identification tag
US7259672B2 (en) 2003-04-01 2007-08-21 Seiko Epson Corporation Contactless identification tag
US8330726B2 (en) 2003-05-19 2012-12-11 Xiroku, Inc. Position detection apparatus using area image sensor
WO2005052532A1 (en) * 2003-11-28 2005-06-09 Xiroku, Inc. Pressure sensor using electromagnetic coupling
US7703341B2 (en) 2003-11-28 2010-04-27 Xiroku, Inc. Pressure detecting apparatus utilizing electromagnetic coupling
WO2005054802A1 (en) * 2003-12-04 2005-06-16 Xiroku, Inc. Pressure sensor using capacitive coupling
US7312591B2 (en) 2005-03-11 2007-12-25 Npc Corporation Powered panel moving system
US7342373B2 (en) 2006-01-04 2008-03-11 Nartron Corporation Vehicle panel control system
US8013598B2 (en) 2006-06-19 2011-09-06 Newcom, Inc. Object detecting device for detecting object using electromagnetic induction
JP2008039778A (en) * 2006-08-02 2008-02-21 Air Products & Chemicals Inc Method and device for monitoring fluid pressure
US8563880B2 (en) 2006-10-24 2013-10-22 Newcom, Inc. Operating tool with conductor pieces
JP2009036557A (en) * 2007-07-31 2009-02-19 Sony Corp Device and method for detection, and program
JP2012053050A (en) * 2011-10-05 2012-03-15 Univ Of Tokyo Non-single-crystal transistor integrated circuit
CN104949777A (en) * 2014-03-26 2015-09-30 丰田自动车株式会社 Drucksensor
DE102015104397A1 (en) 2014-03-26 2015-10-01 Toyota Jidosha Kabushiki Kaisha PRESSURE SENSOR
JP2021149879A (en) * 2020-03-23 2021-09-27 株式会社東海理化電機製作所 Load sensor and operation input device

Similar Documents

Publication Publication Date Title
JPH0755615A (en) Capacitance type force sensor
US5424650A (en) Capacitive pressure sensor having circuitry for eliminating stray capacitance
EP0376631A1 (en) Differential capacitive pressure sensor with over-pressure protection and method of providing over-pressure protection to a capacitive pressure sensor
CN204495495U (en) A kind of three-dimensional force capacitance type touch sensor unit
US4227419A (en) Capacitive pressure transducer
TWI648527B (en) An improved pressure sensor structure
US5020377A (en) Low pressure transducer using metal foil diaphragm
CA1239806A (en) Capacitive sensing cell made of brittle material
JPH021253B2 (en)
US9638598B2 (en) Capacitive pressure transducer for measuring the pressure of a medium adjacent to the measuring cell
CN105283745A (en) An improved pressure sensor structure
US20020011114A1 (en) Capacitive vacuum sensor
JPH0324793B2 (en)
KR101884739B1 (en) Pressure transducer with capacitively coupled source electrode
JP3399688B2 (en) Pressure sensor
JPH08122362A (en) Capacitive acceleration sensor
JPH08313550A (en) Semiconductor acceleration sensor and method for evaluating characteristic of sensor element of the sensor
JPH04212611A (en) Tire pneumatic pressure monitor
JP2004226294A (en) Static and dynamic pressure detection sensor
JP3273768B2 (en) Load measuring device and load measuring method
JP3370810B2 (en) Capacitive pressure sensor
JP3106939B2 (en) Capacitive pressure detector
CN218646479U (en) Pressure sensor
JP3144647B2 (en) Capacitive pressure sensor element
JPH03239938A (en) Capacity type pressure sensor