JP3106939B2 - Capacitive pressure detector - Google Patents
Capacitive pressure detectorInfo
- Publication number
- JP3106939B2 JP3106939B2 JP07302383A JP30238395A JP3106939B2 JP 3106939 B2 JP3106939 B2 JP 3106939B2 JP 07302383 A JP07302383 A JP 07302383A JP 30238395 A JP30238395 A JP 30238395A JP 3106939 B2 JP3106939 B2 JP 3106939B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- diaphragm
- capacitance
- detecting means
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Fluid Pressure (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、圧力に応じて変
形するダイアフラムを備え、このダイアフラムの変位
を、ダイアフラムと対向して設けた固定電極との間に形
成される静電容量の変化から検出する、静電容量式圧力
検出装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a diaphragm which is deformed in response to pressure and detects a displacement of the diaphragm from a change in capacitance formed between the diaphragm and a fixed electrode provided opposite to the diaphragm. The present invention relates to a capacitance type pressure detecting device.
【0002】[0002]
【従来の技術】このような静電容量式圧力検出装置の従
来例として、例えば図7,図8に示すものが知られてい
る(特公平6−1228号公報参照)。図7において、
1は圧力検出部本体で、2はシリコン基板からなるダイ
アフラム、3a,3bは固定電極で、ダイアフラム2と
一定の間隔(d)だけ離して対向設置され、それぞれ静
電容量C1,C2を形成する。4a,4bは絶縁基板で
固定電極3a,3bをダイアフラム2から絶縁しながら
保持するとともに、周辺で支持部材5a,5bを介して
ダイアフラム2とガラス結合層6a,6bで気密に固定
されている。7a,7bは固定電極3a,3bを絶縁基
板4a,4bの外部に取り出すための電極板で、絶縁基
板4a,4bに接合固定されたのちスパッタ等の方法に
よって、固定電極3a,3bと絶縁基板4a,4bと電
極板7a,7bを貫通する導圧孔8a,8bの内面に導
電体の薄膜を形成して導通させてある。2. Description of the Related Art FIGS. 7 and 8 show a conventional example of such a capacitance type pressure detecting device (see Japanese Patent Publication No. 6-1228). In FIG. 7,
Reference numeral 1 denotes a pressure detecting unit main body, 2 denotes a diaphragm made of a silicon substrate, and 3a and 3b denote fixed electrodes, which are opposed to the diaphragm 2 at a predetermined distance (d) to form capacitances C1 and C2, respectively. . Reference numerals 4a and 4b denote insulating substrates for holding the fixed electrodes 3a and 3b while insulating them from the diaphragm 2, and hermetically fixing the diaphragm 2 and the glass bonding layers 6a and 6b around the periphery via supporting members 5a and 5b. Reference numerals 7a and 7b denote electrode plates for taking out the fixed electrodes 3a and 3b to the outside of the insulating substrates 4a and 4b. The fixed electrodes 3a and 3b are fixed to the insulating substrates 4a and 4b and then fixed to the insulating substrates 4a and 4b by a method such as sputtering. Conductor thin films are formed on the inner surfaces of the pressure guiding holes 8a and 8b penetrating the electrode plates 4a and 4b and the electrode plates 7a and 7b to conduct electricity.
【0003】圧力検出部本体1を差圧計に構成する場合
は図8に示すように、シリコンオイル等の圧力伝達媒体
10,11内に封止され、例えば導圧孔8a側で本体ケ
ース12に固定される。測定流体の圧力はシールダイア
フラム13a,13bから圧力伝達媒体10,11を介
してダイアフラム2に伝達される。圧力伝達媒体10,
11を用いる理由は、主としてダイアフラム2を過大な
圧力から保護するためで、過大な圧力が加わるとシール
ダイアフラム13aまたは13bは、ケース12に設け
られた受け部14aまたは14bに衝突してそれ以上変
位しないので、ダイアフラム2には一定の大きさの圧力
しか加わらない。しかしながら、このようなオイルを充
填すると、前述の静電容量C1,C2はオイルの誘電率
に依存するので、これが温度や圧力で変化すると誤差と
なる。When the pressure detecting unit main body 1 is configured as a differential pressure gauge, as shown in FIG. 8 , it is sealed in pressure transmitting media 10 and 11 such as silicon oil, and is connected to the main body case 12 at the pressure guiding hole 8a side, for example. Fixed. The pressure of the measurement fluid is transmitted from the seal diaphragms 13a and 13b to the diaphragm 2 via the pressure transmission media 10 and 11. Pressure transmission medium 10,
The reason for using 11 is mainly to protect the diaphragm 2 from excessive pressure. When excessive pressure is applied, the seal diaphragm 13a or 13b collides with the receiving portion 14a or 14b provided on the case 12 and is further displaced. Therefore, only a certain amount of pressure is applied to the diaphragm 2. However, when such oil is filled, the above-mentioned capacitances C1 and C2 depend on the dielectric constant of the oil, and if this changes with temperature or pressure, an error occurs.
【0004】その誤差を補正する方法として、例えば静
電容量C1,C2の測定値を次式により演算すること
で、オイルの誘電率の影響を受けずにダイアフラム2の
変位、つまり圧力を測定することができる。 (C1−C2)/{(C1+C2)−2Ck)}=Δ/d …(1) C1=ε0・ε・S/(d−Δ)=Ck C2=ε0・ε・S/(d+Δ)=Ck …(2) ただし、Ck:電極以外の部分の導体間で発生する寄生容量 Δ :ダイアフラム2の変位量 S :電極面積 d :ダイアフラム2と固定電極3aまたは3bとの間隔 ε0:オイルの比誘電率 ε :真空の誘電率 である。As a method of correcting the error, for example, the displacement of the diaphragm 2, that is, the pressure is measured without being affected by the dielectric constant of the oil by calculating the measured values of the capacitances C1 and C2 by the following equation. be able to. (C1−C2) / {(C1 + C2) −2Ck)} = Δ / d (1) C1 = ε0 · ε · S / (d−Δ) = Ck C2 = ε0 · ε · S / (d + Δ) = Ck .. (2) where Ck: parasitic capacitance generated between conductors other than the electrodes Δ: displacement of the diaphragm 2 S: electrode area d: distance between the diaphragm 2 and the fixed electrode 3a or 3b ε0: relative dielectric constant of oil Rate ε: Vacuum permittivity.
【0005】[0005]
【発明が解決しようとする課題】上記(1)式のような
演算をすることにより、圧力媒体の誘電率が温度や圧力
に伴って変化する影響を除去することができるが、より
高精度の測定を行なうには次のような問題がある。すな
わち、高圧流体の測定においては、検出部本体1全体が
周囲から圧縮圧力を受けるために、ダイアフラム2と固
定電極3aまたは3bとの間隔が減少し、静電容量は両
側で増加する。この変化量をδで表わすと、上記(2)
式は次の(3)式のようになる。 C1=ε0・ε・S/(d−Δ−δ)=Ck C2=ε0・ε・S/(d+Δ−δ)=Ck …(3) したがって、上記(1)式は次の(4)式となり、圧力
に依存するδを消去できなくなる。 (C1−C2)/{(C1+C2)−2Ck)}=Δ/(d−δ)…(4)The effect of changing the dielectric constant of the pressure medium with temperature and pressure can be eliminated by performing the calculation as in the above equation (1). There are the following problems in performing the measurement. That is, in the measurement of the high-pressure fluid, the entire distance between the diaphragm 2 and the fixed electrode 3a or 3b decreases because the entire detection unit main body 1 receives a compression pressure from the surroundings, and the capacitance increases on both sides. When this variation is represented by δ, the above (2)
The equation is as shown in the following equation (3). C1 = ε0 · ε · S / (d−Δ−δ) = Ck C2 = ε0 · ε · S / (d + Δ−δ) = Ck (3) Therefore, the above equation (1) is obtained by the following equation (4). Δ depending on the pressure cannot be eliminated. (C1−C2) / {(C1 + C2) −2Ck)} = Δ / (d−δ) (4)
【0006】同様にして、圧力伝達媒体10,11の温
度が変化すると、ダイアフラム2と固定電極3aまたは
3bとの間隔は伸縮し、同じ方向に静電容量が変化する
ので温度に依存する項が現れ、高精度で測定する場合は
誤差となる。このため、他に温度センサや圧力センサを
設けて補正を行なう方法が公知であるが、センサおよび
その信号処理回路が増加し、コストアップする欠点があ
る。これを回避する比較的簡単な方法として、図9に示
すようなものがある(SENSORS June 19
95,pp32,33,48,49「SmartPre
ssure Sensors for Industr
ial Application」参照)。Similarly, when the temperature of the pressure transmitting media 10 and 11 changes, the distance between the diaphragm 2 and the fixed electrode 3a or 3b expands and contracts, and the capacitance changes in the same direction. Appears and an error occurs when measuring with high accuracy. For this reason, a method of performing correction by providing a temperature sensor or a pressure sensor is known in the art. As a relatively simple method for avoiding this, there is a method as shown in FIG. 9 (SENSORS June 19).
95, pp32, 33, 48, 49 "SmartPre
sure Sensors for Industry
ial Application ").
【0007】図9において、21はセンサダイアフラ
ム、22はリファレンスダイアフラムで、これらは1枚
のシリコン基板23に形成されていて、前者には測定す
る差圧が、後者には差圧の一方の圧力がダイアフラム両
面に導かれ、差圧では変形しない構造となっている。こ
の信号の処理方法は、上記文献に記載された米国特許
(USP)第4,794,320号によれば、センサダ
イアフラム21の静電容量をCs、リファレンスダイア
フラム22の静電容量をCr、回路を含むその他の入力
容量からなる寄生容量をCp、このCpとCsで決まる
発信周波数の周期をTs、CpとCrで決まる発信周波
数の周期をTr、CpとCsとCrで決まる発信周波数
の周期をTb、発振器のフィードバック抵抗をRfとし
て、次式により補正するものである。In FIG. 9 , reference numeral 21 denotes a sensor diaphragm and reference numeral 22 denotes a reference diaphragm, which are formed on a single silicon substrate 23. The former has a differential pressure to be measured, and the latter has one differential pressure. Are guided to both sides of the diaphragm, and are not deformed by the differential pressure. According to U.S. Pat. No. 4,794,320 described in the above document, the capacitance of the sensor diaphragm 21 is Cs, the capacitance of the reference diaphragm 22 is Cr, the circuit is Is the parasitic capacitance composed of other input capacitances including Cp, the period of the transmission frequency determined by Cp and Cs is Ts, the period of the transmission frequency determined by Cp and Cr is Tr, and the period of the transmission frequency determined by Cp, Cs and Cr is Tb, and the feedback resistance of the oscillator is Rf, which is corrected by the following equation.
【0008】 Ts=(Cs+Cp)×Rf Tr=(Cr+Cp)×Rf Tb=(Cr+Cs+Cp)×Rf …(5) (5)式から、 Tb−Tr=Cs×Rf Tb−Ts=Cr×Rf Ts+Tr−Tb=Cp×Rf …(6) ここで、Cs=ε0・ε・S/(d−Δ) Cr=ε0・ε・S/d …(7) であることから、 (Cr/Cs)−1=Δ/d …(8) となり、リファレンスダイアフラム22の静電容量Cr
とセンサダイアフラム21の静電容量Csとの比を演算
して、センサダイアフラム21の変位を求めるようにし
ている。Ts = (Cs + Cp) × Rf Tr = (Cr + Cp) × Rf Tb = (Cr + Cs + Cp) × Rf (5) From equation (5), Tb−Tr = Cs × Rf Tb−Ts = Cr × Rf Ts + Tr− Tb = Cp × Rf (6) Here, Cs = ε0 · ε · S / (d−Δ) Cr = ε0 · ε · S / d (7) From the equation, (Cr / Cs) −1 = Δ / d (8), and the capacitance Cr of the reference diaphragm 22
The displacement of the sensor diaphragm 21 is obtained by calculating the ratio between the sensor diaphragm 21 and the capacitance Cs of the sensor diaphragm 21.
【0009】しかし、図9のような構成では、センサダ
イアフラム21とリファレンスダイアフラム22とに共
通に加わる寄生容量Cpの影響を取り除くことはできる
が、個々のダイアフラムが持っている寄生容量(すなわ
ち、ダイアフラムの変位によって変化しないダイアフラ
ム固定部や、周囲導体との間の容量で、これは構造上不
可避である)があり、これが温度や圧力で変化するとC
r,Csそのものが変化するので、補償できないという
問題がある。したがって、この発明は上述のような欠点
を解消すべくなされたもので、その課題は低コストで高
精度の圧力測定を可能にすることにある。However, in the configuration shown in FIG. 9 , although the influence of the parasitic capacitance Cp commonly applied to the sensor diaphragm 21 and the reference diaphragm 22 can be eliminated, the parasitic capacitances of the individual diaphragms (that is, the diaphragms) The capacitance between the diaphragm fixed part and the surrounding conductor, which does not change due to the displacement of this, is unavoidable due to its structure.)
There is a problem that compensation cannot be made because r and Cs themselves change. Accordingly, the present invention has been made to solve the above-mentioned drawbacks, and has an object to enable low-cost and highly accurate pressure measurement.
【0010】[0010]
【課題を解決するための手段】このような課題を解決す
べく、請求項1の発明では、圧力に応じて変形する導電
性のダイアフラムの両側に固定電極を所定の間隔を以て
配設し、前記ダイアフラムとの間に対となる静電容量を
形成する少なくとも1つの静電容量式圧力検出手段と、
静電容量の変化から絶対圧力を検出する絶対圧力検出手
段と、静電容量の変化からダイアフラムを含む周囲の温
度を検出する温度検出手段と、前記静電容量式圧力検出
手段と絶対圧力検出手段と温度検出手段とを順次選択す
る選択手段と、検出された圧力を、検出された絶対圧力
および温度にもとづき補正する補正演算手段とを備え、
前記温度検出手段を、誘電体基板とその片面に形成され
て互いに噛み合う1対の櫛歯状の電極とからなるコンデ
ンサとし、その櫛歯状の電極面を、前記静電容量式圧力
検出手段のダイアフラムを形成した基板を挟持する絶縁
基板側にして、この絶縁基板上に設けた配線部に固定し
たことを特徴とする。In order to solve such a problem, according to the first aspect of the present invention, fixed electrodes are arranged at predetermined intervals on both sides of a conductive diaphragm which deforms in response to pressure. At least one capacitance-type pressure detecting means for forming a pair of capacitances with the diaphragm;
Absolute pressure detecting means for detecting an absolute pressure from a change in capacitance, temperature detecting means for detecting an ambient temperature including a diaphragm from a change in capacitance, the capacitance type pressure detecting means, and an absolute pressure detecting means And selecting means for sequentially selecting the temperature detecting means, and a correction calculating means for correcting the detected pressure based on the detected absolute pressure and temperature ,
The temperature detecting means is formed on a dielectric substrate and one surface thereof.
Consisting of a pair of comb-shaped electrodes that mesh with each other
And the comb-shaped electrode surface is contacted with the capacitance type pressure
Insulation that sandwiches the substrate on which the diaphragm of the detection means is formed
On the board side, fix it to the wiring section provided on this insulating board.
Was it it said.
【0011】請求項2の発明では、圧力に応じて変形す
る導電性のダイアフラムの両側に固定電極を所定の間隔
を以て配設し、前記ダイアフラムとの間に対となる静電
容量を形成する静電容量式圧力検出手段と、静電容量の
変化から絶対圧力を検出する絶対圧力検出手段と静電容
量の変化からダイアフラムを含む周囲の温度を検出する
温度検出手段とのいずれか一方と、前記静電容量式圧力
検出素子を封入する周囲流体の誘電率を検出する誘電率
検出手段と、前記静電容量式圧力検出手段と絶対圧力検
出手段または温度検出手段のいずれか一方と誘電率検出
手段とを順次選択する選択手段と、検出された圧力を、
検出された誘電率と絶対圧力または温度にもとづき補正
する補正演算手段とを設けたことを特徴とする。According to the second aspect of the present invention, fixed electrodes are arranged at predetermined intervals on both sides of a conductive diaphragm that is deformed in response to pressure, and a pair of capacitances is formed between the fixed electrodes and the diaphragm. Capacitance type pressure detection means, and either one of absolute pressure detection means for detecting absolute pressure from change in capacitance and temperature detection means for detecting ambient temperature including the diaphragm from change in capacitance, A dielectric constant detecting unit for detecting a dielectric constant of a surrounding fluid enclosing the capacitance type pressure detecting element; and a dielectric constant detecting unit for detecting any one of the capacitance type pressure detecting unit and the absolute pressure detecting unit or the temperature detecting unit. Selecting means for sequentially selecting the means, and the detected pressure,
It characterized in that a correction calculating means for correcting, based on the detected permittivity absolute pressure or temperature.
【0012】上記請求項2の発明においては、前記誘電
率検出手段を、前記ダイアフラムを形成する基板を挟持
する絶縁基板を含む電気的に絶縁された部材上に形成さ
れた互いに噛み合う櫛歯状電極から構成することができ
(請求項3の発明)、または、前記誘電率検出手段を、
前記静電容量式圧力検出手段のダイアフラムを形成した
基板の周縁の固定部で、ダイアフラム基板またはこれを
挟持する絶縁基板のいずれか一方を座ぐり加工して形成
した空隙と、この空隙内部のダイアフラム基板と対向す
る絶縁基板表面に設けられる固定電極と、前記空隙に周
囲流体を導入する連通口と、この連通口の内面を利用し
て前記固定電極を外部に導くリード電極とから構成する
ことができる(請求項4の発明)。 請求項1または2の
発明においては、前記絶対圧力検出手段を、前記静電容
量式圧力検出手段のダイアフラムを形成した基板に形成
された他のダイアフラムと、この他のダイアフラムのい
ずれか一方の面に所定の間隔を以て配設された固定電極
と、前記他のダイアフラムと固定電極の間の空間を真空
に保持するシール部材と、前記固定電極を気密に外部へ
取り出すリード電極とから構成することができる(請求
項5の発明)。 [0012] In the second aspect of the present invention, the dielectric material
The ratio detecting means sandwiches the substrate forming the diaphragm.
Formed on an electrically insulated member including an insulating substrate
Can be composed of interdigitated interdigital electrodes
(Invention of claim 3) or the dielectric constant detecting means comprises:
Formed a diaphragm of the capacitance type pressure detecting means
At the fixed part on the periphery of the substrate, connect the diaphragm substrate or
Forming one of the sandwiched insulating substrates by spot facing
And the diaphragm substrate inside this space.
A fixed electrode provided on the surface of the insulating substrate;
Use the communication port for introducing the surrounding fluid and the inner surface of this communication port.
And the lead electrode for guiding the fixed electrode to the outside
(The invention of claim 4). Claim 1 or 2
In the present invention, the absolute pressure detecting means is provided with the capacitance
Formed on the substrate on which the diaphragm of the quantitative pressure detection means is formed
And other diaphragms
Fixed electrodes arranged at a predetermined interval on one of the surfaces
And the space between the other diaphragm and the fixed electrode is evacuated.
And the fixed electrode is hermetically sealed to the outside.
And a lead electrode to be taken out.
Item 5).
【0013】[0013]
【発明の実施の形態】図1はこの発明の原理構成図であ
る。同図において、31はシリコン基板で、両面からプ
ラズマエッチングによってダイアフラム32を形成す
る。ダイアフラム32は中央に基板31よりも若干薄い
平坦部33と、その外周に円環状の薄肉部34を有す
る。35a,35bはパイレックスガラスなどのシリコ
ン基板31と熱膨張係数がほぼ等しい絶縁材料でできた
基板で、静電接合等の方法によりシリコン基板31の周
辺の部分で気密に接合され、ダイアフラム32の両面に
空隙36a,36bが形成される。FIG. 1 is a block diagram showing the principle of the present invention. In the figure, reference numeral 31 denotes a silicon substrate on which a diaphragm 32 is formed by plasma etching from both sides. The diaphragm 32 has a flat portion 33 slightly thinner than the substrate 31 at the center and an annular thin portion 34 on the outer periphery. 35a and 35b are substrates made of an insulating material having a thermal expansion coefficient substantially equal to that of the silicon substrate 31 such as Pyrex glass, and are hermetically bonded to the periphery of the silicon substrate 31 by a method such as electrostatic bonding. Gaps 36a and 36b are formed in the gap.
【0014】絶縁基板35a,35bのダイアフラム3
2の平坦部33に対向する部分にはスパッタなどの方法
でCr/Auを二層に積層した固定電極37a,37b
が形成され、ダイアフラム32との間にコンデンサC
1,C2が形成される。38a,38bは空隙36a,
36bを外部に連通させる導圧口である。この導圧口3
8a,38bの内面と絶縁基板35a,35bの外表面
の導圧口38a,38bを囲む部分に、スパッタなどの
方法により電極39a,39bを設け、固定電極37
a,37bと電気的に導通させている。The diaphragm 3 of the insulating substrates 35a and 35b
The fixed electrodes 37a and 37b in which two layers of Cr / Au are laminated by a method such as sputtering are formed on the portions facing the flat portions 33 of the second.
Is formed, and a capacitor C is provided between the diaphragm 32 and the capacitor C.
1, C2 are formed. 38a and 38b are gaps 36a,
36b is a pressure guiding port that communicates with the outside. This impulse port 3
Electrodes 39a and 39b are provided by a method such as sputtering on the inner surfaces of the inner surfaces 8a and 38b and the outer surfaces of the insulating substrates 35a and 35b so as to surround the pressure guiding ports 38a and 38b.
a, 37b.
【0015】40は圧力検出手段で、41はダイアフラ
ム32の平坦部33と同程度の深さまで、シリコン基板
31をプラズマエッチングによって加工した空隙(真空
室)である。この空隙41に対向する絶縁基板35aの
面には電極42が設けられ、孔43の内面に形成したリ
ード電極を介して、絶縁基板35aの外表面に設けた電
極44と導通しており、ダイアフラム32との間に静電
容量C3が形成される。また、電極44の上には絶縁基
板45が真空雰囲気で、拡散接合または静電接合等の方
法により気密に接合され、空隙41の内部を真空に維持
している。なお、基板45は絶縁材には限らない。Numeral 40 is a pressure detecting means, and numeral 41 is a space (vacuum chamber) formed by processing the silicon substrate 31 by plasma etching to a depth substantially equal to the flat portion 33 of the diaphragm 32. An electrode 42 is provided on the surface of the insulating substrate 35a facing the gap 41, and is electrically connected to an electrode 44 provided on the outer surface of the insulating substrate 35a via a lead electrode formed on the inner surface of the hole 43. 32, a capacitance C3 is formed. Further, an insulating substrate 45 is air-tightly bonded on the electrode 44 by a method such as diffusion bonding or electrostatic bonding in a vacuum atmosphere, and the inside of the gap 41 is maintained at a vacuum. Note that the substrate 45 is not limited to an insulating material.
【0016】46は温度検出手段を示し、47は絶縁基
板35aの外表面に設けた電極で、絶縁基板35aを挟
んでシリコン基板31との間に静電容量C4が形成され
ている。48はこの検出部1を保持するための基台、4
9は電極39bと基台48を絶縁するための絶縁板で、
それぞれ接着や接合などの公知の方法で固定されてい
る。50はシリコン基板31を導通するために設けた開
口で、スパッタなどの方法により開口50の内面を介し
て電極51にシリコン基板31を導通させる。Reference numeral 46 denotes a temperature detecting means. Reference numeral 47 denotes an electrode provided on the outer surface of the insulating substrate 35a, and a capacitance C4 is formed between the electrode and the silicon substrate 31 with the insulating substrate 35a interposed therebetween. Reference numeral 48 denotes a base for holding the detection unit 1, 4
Reference numeral 9 denotes an insulating plate for insulating the electrode 39b from the base 48.
Each is fixed by a known method such as adhesion or bonding. Reference numeral 50 denotes an opening provided for electrically connecting the silicon substrate 31. The silicon substrate 31 is electrically connected to the electrode 51 through the inner surface of the opening 50 by a method such as sputtering.
【0017】図1のような構成において、導入圧力P
1,P2の大小関係は任意であるが、便宜上、P1<P
2の場合を例にして説明を行なうものとする。いま、P
1,P2(P1<P2)の差圧が加わると、ダイアフラ
ム32は矢印の方向に変位するが、この変位量は静電容
量C1,C2を検出して式(1)の演算をすれば、前述
のように圧力伝達流体10,11の誘電率の温度や圧力
による変化の影響を受けずに求めることができる。ま
た、圧力が加わると、絶縁基板35aの真空室41の壁
面を形成している部分は、圧力P2で変形し静電容量C
3が変化するので、圧力の絶対値に対応した信号が得ら
れる。ここで、温度変化があると空隙がシリコン基板3
1の熱膨張により変化するが、真空室41および絶縁基
板35aの寸法によって圧力感度を十分大きくすること
ができるので、温度に依存せずに圧力を検出することが
できる。In the configuration shown in FIG.
The magnitude relation between P1 and P2 is arbitrary, but for convenience, P1 <P
The description will be made taking the case of 2 as an example. Now, P
When a pressure difference of 1, P2 (P1 <P2) is applied, the diaphragm 32 is displaced in the direction of the arrow. The amount of this displacement can be obtained by detecting the capacitances C1, C2 and calculating the equation (1). As described above, the dielectric constant of the pressure transmitting fluids 10 and 11 can be obtained without being affected by a change due to temperature or pressure. When pressure is applied, the portion of the insulating substrate 35a forming the wall surface of the vacuum chamber 41 is deformed by the pressure P2, and the capacitance C
Since 3 changes, a signal corresponding to the absolute value of the pressure is obtained. Here, if there is a change in the temperature, a void is formed in the silicon substrate 3
Although the pressure sensitivity changes depending on the thermal expansion of 1, the pressure sensitivity can be made sufficiently large by the dimensions of the vacuum chamber 41 and the insulating substrate 35a, so that the pressure can be detected independently of the temperature.
【0018】温度変化は絶縁基板35aの誘電率を変化
させる。すなわち、パイレックスガラス等の材料では、
一般的に温度に比例して誘電率が増加し、静電容量C4
が変化する。絶縁基板35aの厚さは圧力によって圧縮
され薄くなるが、静電容量への影響は無視できるほど小
さい。また、静電容量C4は、周囲の圧力伝達媒体中に
漏れる電気力線のためオイル誘電率の変化が影響する
が、これは電極47を絶縁基板35aの端部から十分離
すことにより防止し、全体として静電容量C4の圧力依
存性を非常に小さくしている。したがって、図2に示す
演算手段54で静電容量C1,C2を演算するととも
に、この結果について静電容量C3,C4から求めた圧
力および温度にて所定の補正演算をすることにより、高
精度の測定が可能となる。The temperature change changes the dielectric constant of the insulating substrate 35a. That is, in materials such as Pyrex glass,
Generally, the dielectric constant increases in proportion to the temperature, and the capacitance C4
Changes. Although the thickness of the insulating substrate 35a is reduced by being compressed by the pressure, the influence on the capacitance is so small as to be negligible. The capacitance C4 is affected by the change in oil permittivity due to electric lines of force leaking into the surrounding pressure transmission medium. This is prevented by separating the electrode 47 from the end of the insulating substrate 35a sufficiently. As a whole, the pressure dependency of the capacitance C4 is very small. Therefore, by calculating the capacitances C1 and C2 by the calculation means 54 shown in FIG. 2 and performing a predetermined correction calculation on the result based on the pressure and temperature obtained from the capacitances C3 and C4, a highly accurate calculation can be performed. Measurement becomes possible.
【0019】このとき静電容量の検出を図2の如く、1
つの検出回路52を切換回路53で切り換えるようにす
れば、他の補正用のセンサを設ける方法に比べて専用の
回路が不要となり、低コストになる利点がある。なお、
図2は静電容量の検出回路52、静電容量の切換回路5
3および検出された静電容量C1〜Cnの演算手段54
等からなる図1の信号処理回路である。また、図1では
差圧の検出手段を1つとしたが、2つ以上設けることが
できる。こうすれば、異なる差圧に対応することがで
き、感度をより高めることが可能となる。At this time, as shown in FIG.
If the two detection circuits 52 are switched by the switching circuit 53, there is an advantage that a dedicated circuit becomes unnecessary and the cost is reduced as compared with a method of providing another correction sensor. In addition,
FIG. 2 shows a capacitance detection circuit 52 and a capacitance switching circuit 5.
3 and calculating means 54 of the detected capacitances C1 to Cn
And the like. In FIG. 1, one differential pressure detecting means is provided, but two or more differential pressure detecting means can be provided. In this way, it is possible to cope with different pressure differences, and it is possible to further increase the sensitivity.
【0020】図3はこの発明の第1の実施の形態を示す
構成図である。なお、図3(イ)は上面図、同(ロ)は
側断面図である。図1に示すものと異なるのは、温度検
出手段46を誘電体基板55の片面に1対の櫛歯状の電
極58a,58bを設けたコンデンサで形成し、絶縁基
板35aの上に設けた配線57a,57bに接合固定し
た点にある。この例は、電極が圧力伝達流体(10,1
1)に接触する部分が少ないので、圧力伝達流体(1
0,11)の誘電率の変化による影響が小さく、かつ、
電極の製作や実装が容易でコストを低減し得る利点があ
る。この例でも、温度検出のためのコンデンサを35b
側に形成することができる。 FIG. 3 is a block diagram showing a first embodiment of the present invention. FIG. 3A is a top view, and FIG.
It is a side sectional view. The difference from the one shown in FIG. 1 is that the temperature detecting means 46 is provided on one surface of the dielectric substrate 55 with a pair of comb-shaped electric
It is formed by a capacitor provided with the poles 58a and 58b , and is fixed to the wirings 57a and 57b provided on the insulating substrate 35a. In this example, the electrode is a pressure transmitting fluid (10, 1).
Since there is little contact with the pressure transmitting fluid (1)
0, 11) is less affected by a change in the dielectric constant, and
It has the advantage that the production and mounting of electrodes is easy and cost can be reduced.
You. Also in this example, the capacitor for temperature detection is 35b.
Can be formed on the side .
【0021】図4はこの発明の第2の実施の形態を示す
構成図である。これが図1に示すものと異なるのは、温
度検出手段として、シリコン基板31にダイアフラム3
2の平坦部33と同程度の深さまで、プラズマエッチン
グによって第3の空隙59を設けた点にある。この空隙
59のシリコン基板31と対向した絶縁基板35aの面
には電極62が設けられ、開口61の内面に形成したリ
ード電極を介して、絶縁基板35aの外表面に設けた電
極63と導通しており、シリコン基板31との間に静電
容量C5が形成される。 FIG. 4 is a block diagram showing a second embodiment of the present invention. This differs from that shown in FIG.
As the degree detecting means, the diaphragm 3 is provided on the silicon substrate 31.
2 to the same depth as the flat portion 33
This is the point that the third gap 59 is provided. This void
Surface of insulating substrate 35a facing silicon substrate 31 of 59
Is provided with an electrode 62, and a hole formed on the inner surface of the opening 61.
An electrode provided on the outer surface of the insulating substrate 35a is connected via a ground electrode.
It is electrically connected to the pole 63 and has an electrostatic
The capacitance C5 is formed.
【0022】空隙59には周囲の圧力伝達流体11が導
かれるので、周囲の圧力が変化しても絶縁基板35a,
35bやシリコン基板31が変形することはなく、した
がって、静電容量C5はその間の圧力伝達流体11の誘
電率に依存する。すなわち、温度や圧力に伴う圧力伝達
流体11の誘電率を検出することができる。静電容量C
5はその他高圧時の圧縮変形や、温度による膨張収縮に
よっても変化するが、これらは圧力伝達媒体の影響に比
べて非常に小さく無視することができる。 The surrounding pressure transmitting fluid 11 is introduced into the space 59.
Therefore, even if the surrounding pressure changes, the insulating substrates 35a,
35b and the silicon substrate 31 were not deformed.
Accordingly, the capacitance C5 is induced by the pressure transmitting fluid 11 therebetween.
Depends on electric power. That is, pressure transmission with temperature and pressure
The dielectric constant of the fluid 11 can be detected. Capacitance C
5 is for compressive deformation at high pressure and expansion and contraction due to temperature.
However, these are different from the effects of the pressure transmission medium.
All are very small and can be ignored.
【0023】これに対し、静電容量C3は上述のよう
に、圧力のみの関数で温度には依存しないので、C5と
演算することで温度のみに依存する信号を取り出すこと
ができる。この例は、第1,第2の実施形態のように直
接温度を検出するのではなく、演算で温度情報を求める
必要があるが、静電容量と温度の関数関係が圧力伝達流
体11の特性で支配されるため、差圧信号を得るための
静電容量C1,C2と同じ温度依存性となる。圧力伝達
流体に用いられるシリコンオイルの誘電率は、低 温側ほ
ど変化率が大きい非線型な特性を示すのに対し、第1,
第2の実施形態例では誘電体を用いていることから低温
側ほど変化率が小さい非線型な特性を持ち、補正が必要
な温度領域で温度検出精度が低いという難点があるが、
図4の例では補正精度が温度範囲で変化しないという利
点を有することになる。 On the other hand, the capacitance C3 is as described above.
In addition, since it is a function of only pressure and does not depend on temperature, C5 and
Extract signals that depend only on temperature by calculating
Can be. This example is directly similar to the first and second embodiments.
Obtain temperature information by calculation instead of detecting contact temperature
Although the function relationship between capacitance and temperature is
Because it is governed by the characteristics of the body 11,
It has the same temperature dependence as the capacitances C1 and C2. Pressure transmission
The dielectric constant of silicon oil used in the fluid, Ho low temperature side
In contrast to the non-linear characteristic with a large rate of change,
In the second embodiment, since a dielectric is used,
Non-linear characteristics with smaller change rate on the side, need to be corrected
There is a drawback that temperature detection accuracy is low in a wide temperature range,
In the example of FIG. 4, there is an advantage that the correction accuracy does not change in the temperature range.
Will have points.
【0024】図5に図4の変形例を示す。なお、図5
(イ)は上面図、同(ロ)は側断面図である。 すなわ
ち、圧力伝達流体11の誘電率を検出する手段を、絶縁
基板35aの表面に櫛歯型の凹凸部64をエッチング等
の方法で形成し、その表面に櫛歯電極65a,65bを
設け、両電極間に静電容量C5を形成する。電極は絶縁
基板35aの表面を介する静電容量を持つが、櫛歯電極
65a,65bの隙間を小さく、かつ、絶縁基板35a
の凹凸部64の溝の深さを深くすることによって、電極
65a,65bの間にある圧力伝達流体11の誘電率で
決まる構造としている。これにより、電極の製作が絶縁
基板35aの表面の加工だけで済むので、製作が容易で
コストが低減するという利点がある。 FIG . 5 shows a modification of FIG. FIG.
(A) is a top view, and (B) is a side sectional view. Sand
Means for detecting the dielectric constant of the pressure transmitting fluid 11 is insulated.
Etching or the like of the comb-shaped uneven portion 64 on the surface of the substrate 35a
And comb electrodes 65a, 65b on the surface.
To form a capacitance C5 between the two electrodes. Electrodes are insulated
It has a capacitance through the surface of the substrate 35a, but has a comb electrode
The gap between 65a and 65b is reduced and the insulating substrate 35a
By increasing the depth of the groove of the uneven portion 64 of the
The dielectric constant of the pressure transmitting fluid 11 between 65a and 65b
The structure is determined. This makes the electrode fabrication insulated
Since it is only necessary to process the surface of the substrate 35a, manufacturing is easy.
There is an advantage that cost is reduced.
【0025】図6は図1または図4の変形例を示す。図
1または図4に示すものと異なる点は、シリコン基板3
1をプラズマエッチング等の手段により、ダイアフラム
66に形成した圧力検出手段を用いる点にある。この例
ではシリコン基板31の加工が複雑になるが、図1,図
4で絶縁基板35aをダイアフラムにするのに比べ、機
械的強度に優れたシリコンをダイアフラムとして用いる
ので、製作も容易で信頼性も高められるという利点があ
る。 なお、図4,図5の例では絶対圧力検出手段と誘電
率検出手段とを設けるようにしたが、温度検出手段と誘
電率検出手段とを設けるようにしても良いのはいうまで
もない。 FIG. 6 shows a modification of FIG. 1 or FIG . Figure
1 or FIG. 4 is different from the silicon substrate 3 shown in FIG.
1 by means of plasma etching, etc.
66 in that the pressure detecting means formed at 66 is used. This example
In this case, the processing of the silicon substrate 31 becomes complicated.
4 compared to using the insulating substrate 35a as a diaphragm.
Using silicon with excellent mechanical strength as the diaphragm
Therefore, there is an advantage that manufacturing is easy and reliability is improved.
You. 4 and 5, the absolute pressure detecting means and the dielectric
Ratio detection means, but the temperature detection means
Needless to say, an electric power detecting means may be provided.
Nor.
【0026】[0026]
【発明の効果】この発明によれば、下記のような効果を
期待することができる。 (1)請求項1の発明では、圧力に応じて変形するダイ
アフラムの両側に一定 間隔だけ離して固定電極を配置し
て両側の静電容量を検出するとともに、静電容量の変化
から温度および圧力を直接検出する検出手段を設け、こ
れらの各静電容量を適宜切り換えて1つの装置で測定
し、圧力に応じて変形するダイアフラムおよび寄生容量
に対する圧力伝達流体の誘電率の影響を除去するととも
に、温度および圧力の直接の影響を補正するようにした
ので、従来装置のようにダイアフラム以外の部分の寄生
容量を補正するだけのものと異なり、広い温度と圧力の
範囲で高精度の測定が可能となる利点が得られる。特
に、温度検出手段を、誘電体基板の片面に1対の櫛歯状
の電極を設けたコンデンサで形成することで、電極の製
作,実装が容易になるだけでなく、電極の圧力伝達流体
に接触する部分を少なくできるので、誘電率の変化によ
る影響を軽減できる利点が得られる。 According to the present invention, the following effects can be obtained.
You can expect. (1) According to the first aspect of the present invention, a die that is deformed according to pressure is provided.
Place fixed electrodes on both sides of the
To detect the capacitance on both sides and change the capacitance.
Detection means for directly detecting temperature and pressure from
Switch each of these capacitances appropriately and measure with one device
Diaphragm and parasitic capacitance
The effect of the dielectric constant of the pressure transmitting fluid on
Now compensates for direct effects of temperature and pressure
As a result, parasitic parts other than the diaphragm
Unlike those that only compensate for capacity,
The advantage that high-precision measurement is possible in the range is obtained. Special
In addition, a temperature detecting means is provided on one surface of the dielectric substrate with a pair of comb teeth.
Electrode by forming a capacitor with
Not only makes it easier to work and mount, but also
Because the contact area can be reduced,
The advantage that the influence which can be reduced can be obtained.
【0027】また、従来装置のように、他の原理にもと
づく温度や圧力センサを設けるものと異なり、圧力検出
と同一原理の静電容量の変化から温度および圧力を検出
するようにしたので、静電容量の検出値を切り換えて測
定することができ、新たな検出手段が不要となり、コス
トを低減することができる。 請求項2〜5の発明では、
静電容量の変化から温度,圧力を検出する検出手段のい
ずれか一方を設けるとともに、圧力伝達流体の誘電率を
検出する検出手段を設け、これらから温度,圧力を求め
て補正する。つまり、圧力伝達流体の誘電率を直接検出
するようにしたので、圧力伝達流体の誘電率の温度変化
による影響をより一層精度良く補正し得る利点が得られ
る。 Also, as in the conventional device, it is based on other principles.
Pressure and temperature sensors
Detects temperature and pressure from changes in capacitance based on the same principle
So that the capacitance detection value is switched and measured.
New detection means is unnecessary,
Can be reduced. In the invention of claims 2 to 5,
Detection means for detecting temperature and pressure from changes in capacitance
And the dielectric constant of the pressure transmitting fluid
Provision of detection means to detect temperature and pressure
To correct. In other words, the dielectric constant of the pressure transmitting fluid is directly detected
Temperature change in the dielectric constant of the pressure transmitting fluid
The advantage of being able to correct the effects of
You.
【図1】この発明の原理構成図である。FIG. 1 is a principle configuration diagram of the present invention.
【図2】図1の信号処理回路を示すブロック図である。FIG. 2 is a block diagram illustrating a signal processing circuit of FIG. 1;
【図3】この発明による第1の実施の形態を示す部分構
成図である。FIG. 3 is a partial configuration diagram showing the first embodiment according to the present invention.
【図4】この発明による第2の実施の形態を示す全体構
成図である。FIG. 4 is an overall configuration diagram showing a second embodiment according to the present invention.
【図5】図4の変形例を示す部分構成図である。FIG. 5 is a partial configuration diagram showing a modified example of FIG.
【図6】図1または図4の変形例を示す構成図である。FIG. 6 is a configuration diagram showing a modified example of FIG . 1 or FIG .
【図7】従来例を示す部分構成図である。FIG. 7 is a partial configuration diagram showing a conventional example .
【図8】従来例を示す全体構成図である。FIG. 8 is an overall configuration diagram showing a conventional example.
【図9】他の従来例を示す構成図である。FIG. 9 is a configuration diagram showing another conventional example.
1…圧力検出部本体、2,32,66…ダイアフラム、
3a,3b,37a,37b…固定電極、4a,4b,
35a,35b…絶縁基板、5a,5b…支持部材、6
a,6b…ガラス接合層、7a,7b…電極板、8a,
8b…導圧孔、10,11…圧力伝達流体、12…ケー
ス、13a,13b…シールダイアフラム、14a,1
4b…受け部、21…センサダイアフラム、22…レフ
ァレンスダイアフラム、23,31…シリコン基板、3
3…平坦部、34…薄肉部、36a,36b,41,5
9…空隙、38a,38b…導圧口、39a,39b,
42,44,47,51,56a,56b,,58a,
58b,62,63,65a,65b…電極、40…絶
対圧力検出手段、43,61…孔、45…基板、46…
温度検出手段、48…基台、49…絶縁板、50,61
…開口、52…検出回路、53…切換回路、54…演算
手段、55…誘電体基板、57a,57b…配線、64
…凹凸部。1 ... pressure detection unit main body, 2, 32, 66 ... diaphragm,
3a, 3b, 37a, 37b ... fixed electrodes, 4a, 4b,
35a, 35b: insulating substrate, 5a, 5b: support member, 6
a, 6b: glass bonding layer, 7a, 7b: electrode plate, 8a,
8b: pressure guide hole, 10, 11: pressure transmitting fluid, 12: case, 13a, 13b: seal diaphragm, 14a, 1
4b: receiving portion, 21: sensor diaphragm, 22: reference diaphragm, 23, 31: silicon substrate, 3
3 flat part, 34 thin part, 36a, 36b, 41, 5
9: air gap, 38a, 38b: pressure guiding port, 39a, 39b,
42, 44, 47, 51, 56a, 56b, 58a,
58b, 62, 63, 65a, 65b: electrodes, 40: absolute pressure detecting means, 43, 61: holes, 45: substrate, 46:
Temperature detecting means, 48: base, 49: insulating plate, 50, 61
... Opening, 52, Detection circuit, 53, Switching circuit, 54, Calculation means, 55, Dielectric substrate, 57a, 57b, Wiring, 64
... Uneven portions.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 公弘 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭60−61637(JP,A) 特開 平7−7161(JP,A) 特開 昭62−24120(JP,A) 特開 平3−175329(JP,A) 特開 昭59−4177(JP,A) 特開 平3−175329(JP,A) 特開 平5−52692(JP,A) 特開 平5−332867(JP,A) 特開 平6−66658(JP,A) 特開 昭60−128321(JP,A) 特開 昭59−163513(JP,A) 実開 昭58−82640(JP,U) 米国特許4625560(US,A) 米国特許4741214(US,A) 米国特許5623102(US,A) (58)調査した分野(Int.Cl.7,DB名) G01L 9/12 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kimihiro Nakamura 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (56) References JP-A-60-61637 (JP, A) JP-A-7-7161 (JP, A) JP-A-62-24120 (JP, A) JP-A-3-175329 (JP, A) JP-A-59-4177 (JP, A) JP-A-3-175329 (JP) JP-A-5-52692 (JP, A) JP-A-5-332867 (JP, A) JP-A-6-66658 (JP, A) JP-A-60-128321 (JP, A) JP-A-60-128321 US Pat. No. 4,625,560 (US, A) US Pat. No. 4,741,214 (US, A) US Pat. No. 5,623,102 (US, A) (58) Fields investigated ( Int.Cl. 7 , DB name) G01L 9/12
Claims (5)
ラムの両側に固定電極を所定の間隔を以て配設し、前記
ダイアフラムとの間に対となる静電容量を形成する少な
くとも1つの静電容量式圧力検出手段と、 静電容量の変化から絶対圧力を検出する絶対圧力検出手
段と、 静電容量の変化からダイアフラムを含む周囲の温度を検
出する温度検出手段と、 前記静電容量式圧力検出手段と絶対圧力検出手段と温度
検出手段とを順次選択する選択手段と、 検出された圧力を、検出された絶対圧力および温度にも
とづき補正する補正演算手段とを備え、 前記温度検出手段を、誘電体基板とその片面に形成され
て互いに噛み合う1対の櫛歯状の電極とからなるコンデ
ンサとし、その櫛歯状の電極面を、前記静電容量式圧力
検出手段のダイアフラムを形成した基板を挟持する絶縁
基板側にして、この絶縁基板上に設けた配線部に固定し
たことを特徴とする静電容量式圧力検出装置。1. A fixed electrode is disposed at a predetermined interval on both sides of a conductive diaphragm that is deformed in response to pressure, and at least one capacitance that forms a pair of capacitances with the diaphragm. Pressure detection means, absolute pressure detection means for detecting an absolute pressure from a change in capacitance, temperature detection means for detecting the ambient temperature including the diaphragm from a change in capacitance, the capacitance pressure detection selecting means for sequentially selecting the unit absolute pressure detecting means and the temperature detecting means, the detected pressure, and a correction calculating means for correcting based on the detected absolute pressure and temperature, said temperature detecting means, the dielectric Body substrate and formed on one side
Consisting of a pair of comb-shaped electrodes that mesh with each other
And the comb-shaped electrode surface is contacted with the capacitance type pressure
Insulation that sandwiches the substrate on which the diaphragm of the detection means is formed
A capacitance type pressure detecting device, which is fixed to a wiring portion provided on the insulating substrate on the substrate side .
ラムの両側に固定電極を所定の間隔を以て配設し、前記
ダイアフラムとの間に対となる静電容量を形成する静電
容量式圧力検出手段と、 静電容量の変化から絶対圧力を検出する絶対圧力検出手
段と静電容量の変化からダイアフラムを含む周囲の温度
を検出する温度検出手段とのいずれか一方と、 前記静電容量式圧力検出素子を封入する周囲流体の誘電
率を検出する誘電率検出手段と、 前記静電容量式圧力検出手段と絶対圧力検出手段または
温度検出手段のいずれか一方と誘電率検出手段とを順次
選択する選択手段と、 検出された圧力を、検出された誘電率と絶対圧力または
温度にもとづき補正する補正演算手段とを備えたことを
特徴とする 静電容量式圧力検出装置。2. A conductive diaphragm which deforms in response to pressure.
Fixed electrodes are arranged at predetermined intervals on both sides of the ram,
Capacitance that forms a pair of capacitance with the diaphragm
Capacitive pressure detecting means and absolute pressure detecting means for detecting absolute pressure from change in capacitance
Ambient temperature including diaphragm from step and capacitance change
And a temperature detecting means for detecting the dielectric constant of the surrounding fluid enclosing the capacitance type pressure detecting element.
Dielectric constant detecting means for detecting the ratio, the capacitance type pressure detecting means and the absolute pressure detecting means or
One of the temperature detecting means and the dielectric constant detecting means are sequentially
Selection means for selecting, the detected pressure, the detected dielectric constant and absolute pressure or
Correction calculation means for correcting based on temperature.
Characteristic capacitance type pressure detector.
ムを形成する基板を挟持する絶縁基板を含む電気的に絶
縁された部材上に形成された互いに噛み合う櫛歯状電極
から構成することを特徴とする請求項2に記載の静電容
量式圧力検出装置。3. The apparatus according to claim 2 , wherein said permittivity detecting means comprises:
Electrically isolated, including the insulating substrate that sandwiches the substrate that forms the
Interdigitated comb-shaped electrodes formed on an edged member
The capacitance type pressure detecting device according to claim 2, wherein
圧力検出手段のダイアフラムを形成した基板の周縁の固
定部で、ダイアフラム基板またはこれを挟持する絶縁基
板のいずれか一方を座ぐり加工して形成した空隙と、 この空隙内部のダイアフラム基板と対向する絶縁基板表
面に設けられる固定電極と、 前記空隙に周囲流体を導入する連通口と、 この連通口の内面を利用して前記固定電極を外部に導く
リード電極とから構成することを特徴とする請求項2に
記載の 静電容量式圧力検出装置。 4. The method according to claim 1, wherein said permittivity detecting means is a capacitance type.
Fixing of the periphery of the substrate on which the diaphragm of the pressure detecting means is formed
In the fixed part, the diaphragm substrate or the insulating
A gap formed by counterboring one of the plates and the surface of the insulating substrate facing the diaphragm substrate inside this gap
A fixed electrode provided on the surface, a communication port for introducing a surrounding fluid into the gap, and guiding the fixed electrode to the outside by using an inner surface of the communication port.
And a lead electrode.
The capacitance-type pressure detection device according to claim 1.
式圧力検出手段のダイアフラムを形成した基板に形成さ
れた他のダイアフラムと、 この他のダイアフラムのいずれか一方の面に所定の間隔
を以て配設された固定電極と、 前記他のダイアフラムと固定電極の間の空間を真空に保
持するシール部材と、 前記固定電極を気密に外部へ取り出すリード電極とから
構成することを特徴とする請求項1または2のいずれか
に記載の 静電容量式圧力検出装置。 5. An apparatus according to claim 5, wherein said absolute pressure detecting means is provided with said capacitance.
Formed on the substrate on which the diaphragm of the pressure detection means is formed
A predetermined distance between the other diaphragm and one surface of the other diaphragm.
The space between the fixed electrode and the other diaphragm and the fixed electrode is maintained in a vacuum.
And a lead electrode for taking out the fixed electrode to the outside in an airtight manner.
3. The method according to claim 1, wherein
The capacitance-type pressure detection device according to 1.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07302383A JP3106939B2 (en) | 1995-11-21 | 1995-11-21 | Capacitive pressure detector |
DE19648048A DE19648048C2 (en) | 1995-11-21 | 1996-11-20 | Detector device for pressure measurement based on measured capacitance values |
US08/754,495 US5992240A (en) | 1995-11-21 | 1996-11-20 | Pressure detecting apparatus for measuring pressure based on detected capacitance |
FR9614242A FR2741441B1 (en) | 1995-11-21 | 1996-11-21 | CAPACITIVE TYPE PRESSURE DETECTION APPARATUS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07302383A JP3106939B2 (en) | 1995-11-21 | 1995-11-21 | Capacitive pressure detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09145511A JPH09145511A (en) | 1997-06-06 |
JP3106939B2 true JP3106939B2 (en) | 2000-11-06 |
Family
ID=17908254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07302383A Expired - Fee Related JP3106939B2 (en) | 1995-11-21 | 1995-11-21 | Capacitive pressure detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3106939B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7401522B2 (en) * | 2005-05-26 | 2008-07-22 | Rosemount Inc. | Pressure sensor using compressible sensor body |
JP6532231B2 (en) * | 2014-12-26 | 2019-06-19 | ダイハツ工業株式会社 | Power generation system |
JP6687197B2 (en) * | 2016-11-04 | 2020-04-22 | 株式会社山本電機製作所 | Pressure sensor |
CN107478359B (en) * | 2017-07-28 | 2019-07-19 | 佛山市川东磁电股份有限公司 | A double-film capacitive pressure sensor and method of making the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4625560A (en) | 1985-05-13 | 1986-12-02 | The Scott & Fetzer Company | Capacitive digital integrated circuit pressure transducer |
US4741214A (en) | 1986-09-19 | 1988-05-03 | Combustion Engineering, Inc. | Capacitive transducer with static compensation |
US5623102A (en) | 1992-02-28 | 1997-04-22 | Siemens Aktiengesellschaft | Three wafer semiconductor pressure-difference sensor and method for manufacture separating middle wafer into conducting diaphragm and web |
-
1995
- 1995-11-21 JP JP07302383A patent/JP3106939B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4625560A (en) | 1985-05-13 | 1986-12-02 | The Scott & Fetzer Company | Capacitive digital integrated circuit pressure transducer |
US4741214A (en) | 1986-09-19 | 1988-05-03 | Combustion Engineering, Inc. | Capacitive transducer with static compensation |
US5623102A (en) | 1992-02-28 | 1997-04-22 | Siemens Aktiengesellschaft | Three wafer semiconductor pressure-difference sensor and method for manufacture separating middle wafer into conducting diaphragm and web |
Also Published As
Publication number | Publication date |
---|---|
JPH09145511A (en) | 1997-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4951174A (en) | Capacitive pressure sensor with third encircling plate | |
US4388668A (en) | Capacitive pressure transducer | |
US5483834A (en) | Suspended diaphragm pressure sensor | |
US4831492A (en) | Capacitor construction for use in pressure transducers | |
US4177496A (en) | Capacitive pressure transducer | |
EP0210843B1 (en) | Pressure transducers and methods of converting a variable pressure input | |
US4207604A (en) | Capacitive pressure transducer with cut out conductive plate | |
EP0376631A1 (en) | Differential capacitive pressure sensor with over-pressure protection and method of providing over-pressure protection to a capacitive pressure sensor | |
EP0164413B1 (en) | Pressure transducer | |
US4769738A (en) | Electrostatic capacitive pressure sensor | |
KR0137965B1 (en) | Capacitive sensor with minimized dielectric drift | |
CA1239806A (en) | Capacitive sensing cell made of brittle material | |
JPS6356935B2 (en) | ||
US6598483B2 (en) | Capacitive vacuum sensor | |
JPH06331651A (en) | Accelerometer with minute mechanism and preparation thereof | |
KR19980032489A (en) | Semiconductor pressure sensor | |
EP0165302A1 (en) | Pressure sensor with a substantially flat overpressure stop for the measuring diaphragm | |
US4862317A (en) | Capacitive pressure transducer | |
JPH09203681A (en) | Pressure detector | |
JP2570420B2 (en) | Capacitive pressure detector | |
JP3106939B2 (en) | Capacitive pressure detector | |
JP3385392B2 (en) | Vacuum sensor | |
JPH07174652A (en) | Semiconductor pressure sensor and its manufacture as well as pressure detection method | |
JP2000121475A (en) | Capacitive pressure detector | |
JP2000121473A (en) | Capacitance type absolute pressure detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070908 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080908 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080908 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090908 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090908 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100908 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110908 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110908 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120908 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120908 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130908 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |