JPS58159695A - Controller for motor - Google Patents

Controller for motor

Info

Publication number
JPS58159695A
JPS58159695A JP57043314A JP4331482A JPS58159695A JP S58159695 A JPS58159695 A JP S58159695A JP 57043314 A JP57043314 A JP 57043314A JP 4331482 A JP4331482 A JP 4331482A JP S58159695 A JPS58159695 A JP S58159695A
Authority
JP
Japan
Prior art keywords
inverter
output
motor
voltage
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57043314A
Other languages
Japanese (ja)
Inventor
Atsushi Kaga
加我 敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57043314A priority Critical patent/JPS58159695A/en
Publication of JPS58159695A publication Critical patent/JPS58159695A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/097Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against wrong direction of rotation

Abstract

PURPOSE:To automatically correct the torque of an induction motor when started with reverse rotation by altering the target value of a constant current control system when the motor is reversely rotated. CONSTITUTION:Voltage detectors 12A-12C and a current detector 13 respectively detect the voltage and current of the phases of an induction motor 9. A limiter 14 stores the pattern of determining the characteristic relatioship between the output fM of a tachometer generator 10 in normally rotating direction and the output voltage of an inverter, compares the output voltage of the inverter to the output fM of the actually measured tachometer generator 10 with the output voltage of the inverter in the pattern and produces an output when both output voltages do not coincide. An arithmetic circuit 15 decides the output current value of the inverter in response to the output of the limiter 14. When the motor 9 is reversely rotated, the constant current value supplied from the inverter 8 to the motor 9 is increased in response to the signal from the limiter 14.

Description

【発明の詳細な説明】 この発明は、逆方向回転で始動した場合の誘導電動機の
トルクを自動補正する電動機制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a motor control device that automatically corrects the torque of an induction motor when the induction motor is started with rotation in the opposite direction.

従来、この種の装置として第1図に示すものがあった。Conventionally, there has been a device of this type as shown in FIG.

第1図は、可変電圧・可変周波数(以下VVVFと呼ぶ
)インバータにより、誘導電動機(以下IMと呼ぶ)を
駆動する方式のものである。
FIG. 1 shows a system in which an induction motor (hereinafter referred to as IM) is driven by a variable voltage/variable frequency (hereinafter referred to as VVVF) inverter.

第1図におりで、tは架線、コはパンタグラフ。In Figure 1, there is a cage, t is an overhead wire, and ko is a pantograph.

3は断流器、すは高速度減流器、Sは減流抵抗。3 is a current interrupter, S is a high-speed flow reducer, and S is a flow reduction resistor.

6はインバータ入力が過大になった時に点弧させインバ
ータを保護するサイリスタ(OVTH)、  7はイン
バータへの外からの又は内部から外部へのサージや高調
波を遮するフィルタ、gはVVVFインバータ、デはI
M、10はIM?のIM速変(回転数)を検知するタコ
ジェネレータ、//は、すべり周波数パターンfsと、
タコジェネレータ10の出力fmとを加算する加算器で
ある。
6 is a thyristor (OVTH) that fires to protect the inverter when the inverter input becomes excessive; 7 is a filter that blocks surges and harmonics from the outside to the inverter or from inside to outside; g is a VVVF inverter; De is I
M, 10 is IM? The tacho generator that detects the IM speed change (rotation speed) // has a slip frequency pattern fs,
This is an adder that adds the output fm of the tacho generator 10.

この構成忙おいて、 VVVFインバータgでIMデの
IM速度を制御するが、インバータの動作については本
論の目的ではないので、詳細な説明を割愛する、ただ、
速度制御の演算方法としてはタコジェネレータ/θの出
力fMと、すべり周波数パタンfsとを加算し、fIN
Vとして、インバータ周波数を決定する。即ち1次式が
制御の基本となるように制御する。
In this configuration, the IM speed of the IM device is controlled by the VVVF inverter g, but since the operation of the inverter is not the purpose of this paper, a detailed explanation will be omitted.
The calculation method for speed control is to add the output fM of the tacho generator/θ and the slip frequency pattern fs, and calculate fIN
As V, determine the inverter frequency. That is, control is performed so that the linear equation becomes the basis of control.

fM+ f3 = rINv   、 、 、(1)こ
れを・図に示せば第二図のようになる。
fM+f3=rINv, , , (1) If this is shown in a diagram, it will be as shown in Figure 2.

第一図は5曲線ノlで示されるインバータ周波数fIN
Vと1曲線ノコで示されるモータ速度(ここではモータ
周波数として)fMとの関係を示しており、横軸に速度
V、縦軸に周波数fを表わしている。すなわち、(7)
弐に基づき、fINv&ifMに−Cべり周波数fsを
加えたものである。従って、速度がOの時点ですべり周
波数fsでインバータが全損すると、モータはトルクを
出し、徐々に加速−するが、これK E、じて、すべり
周波数分子sを常に加算することシてより、連続的な加
速度が行なわれることになる、また、IM定電流一定に
制御する定電流制御もあわせ行う。
The first figure shows the inverter frequency fIN shown by 5 curves no.
It shows the relationship between V and the motor speed (here as motor frequency) fM shown by a one-curve saw, with the horizontal axis representing the speed V and the vertical axis representing the frequency f. That is, (7)
2, the −C deviation frequency fs is added to fINv&ifM. Therefore, if the inverter is completely lost at the slip frequency fs when the speed is O, the motor will produce torque and gradually accelerate. , continuous acceleration is performed, and constant current control is also performed to keep the IM constant current constant.

このような速度演算を行って起動するときを考えてみる
と1通常の平坦路からの起動加速は問題K rcらない
が、登り坂において起動する場合は次に一、d明するよ
うな好ましくない状況が生じる可能性がある、これを第
3図に基づいて説明する。車輛は起動する場合、起動指
令を出して、断流器などが投入され、正規のトルクが発
生するまでに若干の遅れ時間が存在する。このため車輛
は前進せずにある程度後退しはじめる。IM速度を検出
するタコジェネレータはIMの絶対速度(周波数)のみ
を検知し、車輛の進行方向を明らかにすることはできな
いため、第3図に示すような演算上のそごを生ずる。
If we consider the case of starting after calculating the speed like this, 1. Starting acceleration from a normal flat road is not a problem, but when starting on an uphill slope, it is preferable as described below. This will be explained based on FIG. 3. When starting a vehicle, there is a slight delay between when a start command is issued, a current interrupter, etc. is turned on, and normal torque is generated. As a result, the vehicle begins to move backward to some extent instead of moving forward. Since the tachogenerator that detects the IM speed detects only the absolute speed (frequency) of the IM and cannot clarify the direction in which the vehicle is traveling, it causes calculation difficulties as shown in FIG.

第3図において、実際のfMは曲線i、に示すように、
速度が逆方向に増加するにつれて、fMが減少していく
が、インバータ演算は、曲線1′3に示すfMの絶対値
f′MK対してfsを加算するのみであるので、下記の
(λ)式に示す演算を実施する。
In FIG. 3, the actual fM is as shown by curve i,
As the speed increases in the opposite direction, fM decreases, but since the inverter operation only adds fs to the absolute value f'MK of fM shown in curve 1'3, the following (λ) Perform the operation shown in the formula.

f′M+fs−fINV  ・ ・ ・(コ)この演算
において実際のすべり周波数f s(reaf)は1曲
線1/で示されるfINVと、実速度に対して1曲線1
3で示されるfMとの差があるので、すべり周波数fs
(reaffi)は速度の増加につれて。
f'M + fs - fINV ・ ・ ・ (J) In this calculation, the actual slip frequency f s (reaf) is expressed by fINV, which is expressed by 1 curve 1/, and 1 curve 1 relative to the actual speed.
Since there is a difference from fM shown by 3, the slip frequency fs
(reaffi) as the speed increases.

増大していく。It will increase.

このように、坂道発進をする場合にはインバータのすべ
り周波数は増大してしまう恐れがある。
In this way, when starting on a slope, the slip frequency of the inverter may increase.

IM速度演算士、すべりが所定の値より過大になると次
の不都合を招来する。第9図は、すべりの犬、小による
トルク特性を示す図であり、横軸にすべりSを、縦軸に
トルクTおよび[ilを示し7ている。図中、曲線i、
はIMのすべり一市流特性9曲線Ls′オすべり一トル
ク特性である。今。
IM speed calculator: If the slip exceeds a predetermined value, the following problems will occur. FIG. 9 is a diagram showing torque characteristics due to slippage, and the horizontal axis shows the slippage S, and the vertical axis shows the torques T and [il]. In the figure, curve i,
is the slip-commercial characteristic curve Ls' of IM's slip-torque characteristic. now.

すべりS/のとサニセ流、トルクが各々I/、T/であ
ったとする。次にすべりがSJに増加した−とすると電
流およびトルクはそれぞれIa、Trに増Tするが、先
に述べたように定電流制御・をするため、すべりS−の
み増加し、@流は変什しない。
Suppose that the slip S/, the Sanisse flow, and the torque are I/ and T/, respectively. Next, if the slip increases to SJ -, the current and torque increase to Ia and Tr, respectively, but since constant current control is performed as mentioned earlier, only the slip S- increases and the @ current changes. Don't pay.

TMの場合、トルクは次式で示すことができる。In the case of TM, the torque can be expressed by the following equation.

T=R(了)J@fs ただし7、Rは宇数、 ■はインバータ出力電圧 fは !・ ノl 周波数 fsはすべり周波数 ここですべりを犬とすると、IMの合成−次抵抗Rコは
T=R (completed) J@fs However, 7, R is a number, and ■ is the inverter output voltage f!・Nol Frequency fs is the slip frequency.If slip is assumed here, then the composite-order resistance R of IM is.

rl 二/次抵抗 rコ :2次抵抗 f3はすべり周波数 となり、2次抵抗は小さくなる。従ってインバータ電圧
が同じであれば、IM定電流増加するが、インバータの
定電流制御が有効であるので、電流が抑えられることに
なり、トルクは減少する。従って先の第3図で示したよ
うに車輛が逆行するとすべりは増大するのでトルクは、
減少してしまうこと(てなる。このため、車軸が通行す
るの2回復し、正規の方向に進行することができなくな
る。
rl Secondary resistance rko: The secondary resistance f3 becomes the slip frequency, and the secondary resistance becomes small. Therefore, if the inverter voltage is the same, the IM constant current will increase, but since the constant current control of the inverter is effective, the current will be suppressed and the torque will decrease. Therefore, as shown in Figure 3 above, when the vehicle moves backwards, the slip increases and the torque becomes
This causes the axle to recover by 2 and become unable to proceed in the normal direction.

この発明のかかる不具合を解決するために為されたもの
で、電動機の正方向回転における周波数とインバータ出
力電圧との関係を予じめ記憶しておき、インバータ出力
電圧の実測値を前記記憶値と比較することにより、前記
電動機の逆回転時には定電流制御系の目標値を変更する
ようにした電動機制御装置を提供するものである。
This invention was made in order to solve this problem of the present invention, and the relationship between the frequency of the motor in the forward rotation direction and the inverter output voltage is stored in advance, and the actual measured value of the inverter output voltage is compared to the stored value. By comparison, an electric motor control device is provided which changes the target value of the constant current control system when the electric motor rotates in reverse.

この発明の一実施例を説明するに先立って、この発明の
概要となる作用を第5図で概略的に示す。
Before explaining one embodiment of the present invention, the general operation of the present invention is schematically shown in FIG.

第5図は、電流な一定値に制御した一!まですべりを大
とした場合の現象を速度V[対するインバータ出力電圧
■INVの観点からとらえたものである。
Figure 5 shows the current controlled to a constant value. This is a phenomenon when the slip is increased to a large value from the viewpoint of the inverter output voltage (INV) with respect to the speed V[.

図中1曲線)6は定電流制御の電流9曲線1グは正常に
進行している時のインバータ出力電圧。
Curve 1) 6 in the figure is the current 9 curve 1g of constant current control is the inverter output voltage when the current is running normally.

曲@Ljは、逆行している時のインバータ出力電圧であ
る。正規に進行している場合は、インバータ出力は速度
(周波数)罠対応して増加し、IMの逆起電力に打ちが
ち、1M電流を一定にしようとする。しかるに、並行時
は、IMインピーダンスは小さくなるので、電流が増加
しないよう電圧をしぼり込むことになる。従って、曲線
1tVC示されるように、インバータ出力電圧は、速度
と共に減少していくことになる。
The song @Lj is the inverter output voltage when moving backwards. When running normally, the inverter output increases in response to the speed (frequency) trap, tends to overcome the back emf of the IM, and tries to keep the 1M current constant. However, in parallel mode, the IM impedance becomes small, so the voltage must be reduced so that the current does not increase. Therefore, as shown by the curve 1tVC, the inverter output voltage will decrease with speed.

第6図に、第S図の特性を利用したこの発明の一実施例
を示す。図中符号l〜//の示すものは第1図に示した
ものと同様なので説明を省略する。
FIG. 6 shows an embodiment of the present invention that utilizes the characteristics shown in FIG. Components indicated by the symbols l to // in the figure are the same as those shown in FIG. 1, and therefore their explanations will be omitted.

/2A〜iscはIMの各相間の電圧を検知する電圧検
知a、 (ACPTU、V、W )、/JハIM’ft
tlf、検知器(ACCT )、/ダは、正方:I、1
回転におけるfMとインバータ出力電圧との特性F係を
定ぬたバタンな記憶し、実測されたfMに対応するイン
バータ出力電圧なバタン内のインバータ出方電圧と比較
して両インバータ出カ電圧値が一致しない場合に出力を
出すリミッタ回路、/3はリミッタ回路/4(の出力v
LMT K対応し、インバータ出方電流値を決定する演
算回路(OPC)である。16は、正方向回転時には定
電流制御系の目標値IPとIM電流検知5 / jから
の信号Imとを比較する比較器である。
/2A~isc is voltage detection a, (ACPTU, V, W), /Jha IM'ft which detects the voltage between each phase of IM
tlf, detector (ACCT), /da is square: I, 1
The characteristic F ratio between fM and inverter output voltage during rotation is memorized, and the inverter output voltage corresponding to the actually measured fM is compared with the inverter output voltage in the button to determine the value of both inverter output voltages. A limiter circuit that outputs an output if they do not match, /3 is the output v of limiter circuit /4 (
This is an operational circuit (OPC) that is compatible with LMT K and determines the inverter output current value. 16 is a comparator that compares the target value IP of the constant current control system and the signal Im from the IM current detection 5/j during forward rotation.

以上の構成において、基本的な演算動作は、第1図に観
明したものと同一である8すなわち、すべり周波数制御
として。
In the above configuration, the basic calculation operation is the same as that observed in FIG. 18, that is, as slip frequency control.

fM+fs = flNV な演算し、定電流制御として、制御目標値IPとなるよ
うに1M電流を制御する。このとき、電気車が逆行した
とすると、すべりが逼大となるが電流は定電流制御され
ているので、IM電圧すなゎちインバータ電圧■INv
は減少される。LMT回路/ダは、視、状のIMm波数
に灯芯したインバータ電圧vrNVv基準のバタンと比
較し、バタンより逸脱していわば、出力V  を比較器
/AK出PC して目標値IPに出力■oPcを加え、結果的忙定ii
流制御系の目標値を増大させる。この結果、インバータ
電流IMは増加し、トルク不足を解決で永ることKなる
fM+fs = flNV is calculated, and the 1M current is controlled as constant current control so as to reach the control target value IP. At this time, if the electric car goes backwards, the slip will be large, but the current is controlled at a constant current, so the IM voltage is the inverter voltage ■INv
is reduced. The LMT circuit/da compares the inverter voltage vrNVv which is set at the IMm wave number in the visual field with the standard bump, and deviates from the bump, so to speak, outputs the output V to the comparator/AK output PC and outputs it to the target value IP. As a result, busy schedule ii
Increase the target value of the flow control system. As a result, the inverter current IM increases, and the torque shortage can be solved for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1層は従来の電動機制御装置を示すブロック回路図、
第一図は第1図の正常動作を説明するための図、第3図
および第9図は、車輛逆行時の第1図の動作特性を49
明するだめの図、第5図はこの発明の動作原理を説明す
るための図、−第6図は。 この発明の一実施例による電動機制御装置を示すブロッ
ク回路図である。 図において、tは可変電圧・可変周波数インバータ、?
は透導電動機、lダはリミッタ回路、isは演算回路、
fMは誘動t#Ih機の周波数−vINVはインバータ
出力電圧、IPは定電流値そある。 −2図 巨 馬3図 (“ −6図
The first layer is a block circuit diagram showing a conventional motor control device,
Figure 1 is a diagram for explaining the normal operation of Figure 1, and Figures 3 and 9 show the operating characteristics of Figure 1 when the vehicle is running backwards.
Figures 5 and 6 are diagrams for explaining the principle of operation of the present invention. FIG. 1 is a block circuit diagram showing a motor control device according to an embodiment of the present invention. In the figure, t is a variable voltage/variable frequency inverter, ?
is a conductive motor, lda is a limiter circuit, is is an arithmetic circuit,
fM is the frequency of the inductive t#Ih machine, vINV is the inverter output voltage, and IP is the constant current value. Figure -2 Figure 3 Giant Horse (Figure -6 Figure

Claims (1)

【特許請求の範囲】 誘導電動機を可変電圧・可変周波数インバータによって
定電流にて駆動制御する電動機制御装置圧おいて、前記
誘導電動機の正方向回転状illおける前記誘導電動機
の周波数および前記インバータの出力電圧間の関係を表
わすパターンを記憶し。 かつ前記誘導電動機の周波数に対応する前記インバータ
出力電圧の実測値を前記パターンに記憶された値と比較
するIJ ミッタ回路と、前記誘導電動機の逆回転時、
前記リミッタ回路からの信号に応じて前記定電流値を増
大するよ5に働く演算回路とを備えたことを特徴とする
電動機制御装置。
[Scope of Claims] A motor control device for driving and controlling an induction motor with a constant current using a variable voltage/variable frequency inverter, the frequency of the induction motor and the output of the inverter when the induction motor is rotating in the forward direction. Memorize patterns that represent relationships between voltages. and an IJ mitter circuit that compares an actual value of the inverter output voltage corresponding to the frequency of the induction motor with a value stored in the pattern, and when the induction motor rotates in reverse;
5. A motor control device comprising: an arithmetic circuit that operates to increase the constant current value in response to a signal from the limiter circuit.
JP57043314A 1982-03-17 1982-03-17 Controller for motor Pending JPS58159695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57043314A JPS58159695A (en) 1982-03-17 1982-03-17 Controller for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043314A JPS58159695A (en) 1982-03-17 1982-03-17 Controller for motor

Publications (1)

Publication Number Publication Date
JPS58159695A true JPS58159695A (en) 1983-09-22

Family

ID=12660339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043314A Pending JPS58159695A (en) 1982-03-17 1982-03-17 Controller for motor

Country Status (1)

Country Link
JP (1) JPS58159695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0870621A2 (en) * 1997-04-09 1998-10-14 Seiko Epson Corporation Automatic cutting device, method for controlling the same and printer using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0870621A2 (en) * 1997-04-09 1998-10-14 Seiko Epson Corporation Automatic cutting device, method for controlling the same and printer using the same
EP0870621A3 (en) * 1997-04-09 2000-02-02 Seiko Epson Corporation Automatic cutting device, method for controlling the same and printer using the same
US6164854A (en) * 1997-04-09 2000-12-26 Seiko Epson Corporation Automatic cutting device apparatus and method including a reversible motor
EP1473167A2 (en) * 1997-04-09 2004-11-03 Seiko Epson Corporation Automatic cutting device, method for controlling the same and printer using thereof
EP1473167A3 (en) * 1997-04-09 2005-03-09 Seiko Epson Corporation Automatic cutting device, method for controlling the same and printer using thereof

Similar Documents

Publication Publication Date Title
KR950015169B1 (en) Control system for induction motor driven electric car
JP3232823B2 (en) Regenerative braking control method for electric vehicles
JP2000092887A (en) Regenerative braking apparatus
JPWO2018011968A1 (en) Torque control method and torque control device
JP2611195B2 (en) Control device for AC motor for vehicle
JPS58159695A (en) Controller for motor
JP2018196172A (en) Control method of permanent magnet synchronous motor for electric automobile and device thereof
JP3933983B2 (en) Electric vehicle control device
JP3127033B2 (en) Electric car
JP4342878B2 (en) Electric vehicle control device
JPS59123403A (en) Brake device for electric motor car
JPH0424957B2 (en)
JPH0755006B2 (en) Electric vehicle constant speed device
JP4120503B2 (en) Induction motor control method
JPS6057285B2 (en) electric car control device
JPH11225405A (en) Controller of motor-driven vehicle
JP3969861B2 (en) Electric vehicle control device
JP3525397B2 (en) Control device for traveling vehicles
JPH09308006A (en) Controller and control method for electric vehicle
JP2002095111A (en) Controller for electric vehicle
JPS5928801A (en) Protecting method for electric motor coach
JP2573179B2 (en) Control device for AC motor
JP3629388B2 (en) Electric vehicle control device
JP2528885B2 (en) Electric vehicle control device
JP2504224Y2 (en) Controller for permanent magnet type synchronous motor for vehicle