JPS58159014A - Coupling crystal oscillator - Google Patents

Coupling crystal oscillator

Info

Publication number
JPS58159014A
JPS58159014A JP4115982A JP4115982A JPS58159014A JP S58159014 A JPS58159014 A JP S58159014A JP 4115982 A JP4115982 A JP 4115982A JP 4115982 A JP4115982 A JP 4115982A JP S58159014 A JPS58159014 A JP S58159014A
Authority
JP
Japan
Prior art keywords
present
electrode
oscillator
shows
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4115982A
Other languages
Japanese (ja)
Inventor
Hirofumi Kawashima
宏文 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP4115982A priority Critical patent/JPS58159014A/en
Priority to GB08307141A priority patent/GB2117968B/en
Priority to US06/475,446 priority patent/US4633124A/en
Priority to CH145783A priority patent/CH657498GA3/fr
Publication of JPS58159014A publication Critical patent/JPS58159014A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02023Characteristics of piezoelectric layers, e.g. cutting angles consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0509Holders; Supports for bulk acoustic wave devices consisting of adhesive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0595Holders; Supports the holder support and resonator being formed in one body
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To improve temperature characteristics, impact resistance and workability, by forming as one body an oscillating part and a supporting part of an oscillator, by means of photolithography. CONSTITUTION:An oscillating part 1 and two supporting parts 2 placed on both its dies are formed as one body by etching from a GT-cut crystal substrate. Between the oscillating part 1 and a mount part 4, a groove 3 is provided, by which an effect for enclosing oscillation energy of the oscillating part 1 in the oscillating part is raised. As for the oscillator, resonance frequency of two modes is decided by width W and length L, and the temperature characteristic is nearly decided by return of both resonance frequencies. Therefore, this crystal oscillator is formed by a cut angle of IRE display YXlt (48 deg.-53 deg.)/ (45 deg.-55 deg.) , a side ratio W/L is selected within a range of 0.90-1.2, and also thickness is set to a range of 50mum-150mum.

Description

【発明の詳細な説明】 本発明は複数の縦振動モードが結合した、いわゆる結合
水墨振動子、特に、G!カット水晶振動子Kllする0
本発明の目的は周波数温度特性(以下、111%性と呼
ぶ)の優れた結合水晶振動子、41に%・!カット水晶
振動子を提供する事にある、本発明の傭の目的は’ X
 C0ryatal工t*pmdaxee】の小さいG
!カット水晶振動子を提供することに&!、本働鴫の更
に他の目的は耐衝撃性に優れ究・!カット水晶m動子を
提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a so-called coupled ink oscillator in which a plurality of longitudinal vibration modes are coupled, particularly G! Cut crystal oscillator Kll0
The purpose of the present invention is to provide a coupled crystal oscillator with excellent frequency-temperature characteristics (hereinafter referred to as 111% characteristics) of 41%.! The purpose of the present invention is to provide a cut crystal oscillator.
Small G of C0ryatal*pmdaxee]
! To provide cut crystal oscillators &! Another purpose of this work is to have excellent impact resistance! Our purpose is to provide cut crystal crystals.

本発明の更に伽の目的はマウント作業が容易な支持構造
を提供することKある。
A further object of the present invention is to provide a support structure that is easy to mount.

S変時性の優れた、しかも、OX (○ryatatI
鵠pad番鴨−#]の小さ一振動子を要求する民生機器
は多く&J&が、これらKはムチカット水晶振動子が使
用されて来た。しかし、最近は色々な民生機器で小蓋化
が11れ、それに伴って、ムチカット水晶振動子も小蓋
化が要求されて来ているが、仁のタイプの振動子はスプ
リアス振動(日puriouaマ4kv番感(・鴨)が
多く小蓋化が難しく、同時に1小温化するとOxが高く
なってしまうのが実状である。%に、腕時計用水晶部−
子としてムチカット水晶振動子を使用す為場合相嚢に小
証化する必要がh)、音叉量1自水晶振動子と比較した
とき、サイズの面では全く満足できるものではない、そ
こで、最近は工0の技術を応用したフォトリソダラフイ
による振動子の形成方法が例えば、音叉層水晶振動子製
造に応用され、その結果、大変に小型の振動子を提供す
ることかで亀るようになった、そヒで、本発明ではこの
フォトνノグツフイをGTカット水晶振動子に応用する
事によって、小型で、温度特性の優れた、OIの小さい
、耐衝撃性に優れた、そしてiラント作業が容易な支持
構造のGTカット水晶振動子を提案するものであ)、以
下、図面に従って本発明の詳細な説明する。
Excellent S chronotropy, and OX (○ryatatI
There are many consumer devices that require a small crystal oscillator, and these K have been using whip-cut crystal oscillators. However, recently, various consumer devices have been made smaller, and whip-cut crystal resonators have also been required to have smaller caps. The reality is that there are many 4kV numbers (ducks), making it difficult to make the lid smaller, and at the same time, if the temperature decreases by 1, the Ox will increase.
Since a whip-cut crystal oscillator is used as a child, it is necessary to make it into a phase bag (h), and when compared with a self-quartz crystal oscillator with a tuning fork amount of 1, it is not completely satisfactory in terms of size, so recently, For example, the method of forming a resonator using photolithography, which applied the technology of 0, was applied to the production of tuning fork layer crystal resonators, and as a result, it became difficult to provide extremely small resonators. Therefore, in the present invention, by applying this photo-ν nozzle to a GT-cut crystal resonator, it is compact, has excellent temperature characteristics, has a small OI, has excellent impact resistance, and is easy to perform i-rant work. The present invention will be described in detail below with reference to the drawings.

第1図に)、@)は本発明の結合娠動子の形状の一実施
例で、振動部1とその両側に配置された二つの支持部2
とがエラチン/によって一体く形成され九〇Tカット水
晶振動子の例である* M i zlに)は平面図を、
第1図に)は上天図を示す、振動部lとマウント部4の
間には溝3が両支持部2に設けである。この溝3を設け
るl由は振動部lの励振エネルギーを溝3によって振動
部内部に閉じ込める効果を有する。即ち、振動部の励振
エネルギーはマウント部4には伝達されない。それ故、
マウン)KXろエネルギー損失はな(、OI値の小さい
振動子を提供す為事ができる。第2図に)、(ロ)は本
発明の結上振動子の形状の他の実施例で、振動11sと
その両側に配置されにニつの支持部6とがエツチングに
よって一体に形M、されたGTカット水晶振動子の他の
例である。第2図に)は平面図を、II2図に)は1函
■を示す、振動部5とマウント部80間に#i壽7が両
支持部6に設けである。この溝7を設ける運−は第1図
に)、 P)で述べた理由と会(岡じであ為、第3図に
)#伊)は本発明の結合S動子の形状の倫の実施例で、
振動部9とその両側に配置堪れ究二つつ支持部10とが
エツチングによって一体KIIIIE−!れたGTカツ
F水晶振動子の他の例である。第S図■は平面図を、第
3図(ロ)は上函図を示す、II動部9とマウント部巴
の間には溝11が脚支持910 K設けである。この溝
11を設け1理由は第1@勾、P)で述べた理由と全く
同じである。又、第1図両、に)、第2図に)、に)、
第3図両、に)の振動子は幅Wと長さLによって2つの
モードの共振周波数は決定され、幅Wによる主振動の共
振周波数e/V、長さ′LKよる副振動の共振周波数を
/Lとすると温度特性は両共振局液数の差Δf=fso
−/LKよりてなぼ決まる。即ち、辺比R=、 W /
 Lによって温度特性は決定される。
In Fig. 1) and @) are examples of the shape of the combined insulator of the present invention, which includes a vibrating part 1 and two supporting parts 2 disposed on both sides of the vibrating part 1.
This is an example of a 90T-cut crystal resonator integrally formed with Elatin.
FIG. 1) shows a sky view. A groove 3 is provided in both supporting parts 2 between the vibrating part 1 and the mount part 4. The provision of this groove 3 has the effect of confining the excitation energy of the vibrating part l inside the vibrating part by the groove 3. That is, the excitation energy of the vibrating section is not transmitted to the mount section 4. Therefore,
(Maun) KX has no energy loss (it is possible to provide a resonator with a small OI value, as shown in Fig. 2), (b) is another embodiment of the shape of the crystal resonator of the present invention, This is another example of a GT-cut crystal resonator in which a vibration 11s and two supporting parts 6 disposed on both sides are integrally formed into a shape M by etching. FIG. 2) shows a plan view, and FIG. The reason for providing this groove 7 is shown in Fig. 1), and the reasons mentioned in P) and the reason described in P) (by Jade Oka, shown in Fig. 3) are due to the logic of the shape of the coupled S-movement of the present invention. In the example,
The vibrating part 9 and the supporting parts 10 arranged on both sides of the vibrating part 9 are integrated by etching! This is another example of the GT Katsu F crystal resonator. Figure S (2) shows a plan view, and Figure 3 (B) shows a top view. A groove 11 is provided between the II moving part 9 and the mount part to support the leg 910K. The reason for providing this groove 11 is exactly the same as the reason stated in Part 1 (P). Also, Figure 1), Figure 2),
In the vibrator shown in Figure 3, the resonance frequencies of the two modes are determined by the width W and length L. The resonance frequency of the main vibration is determined by the width W, e/V, and the resonance frequency of the secondary vibration is determined by the length 'LK. When /L, the temperature characteristic is the difference between the two resonance local liquid numbers Δf=fso
- Tenabō is determined by LK. That is, the side ratio R=, W/
The temperature characteristics are determined by L.

#!4図は本発明のGTカット水晶振動子の切断方位、
即ち、エツチングによる形成方位を示す、X軸、Y軸、
z軸は各々水晶の結晶軸で、電気軸、機緘軸、光軸であ
る。水晶振動子13はXRM@示でXX1g (ω/θ
)になるように形成される。
#! Figure 4 shows the cutting direction of the GT cut crystal resonator of the present invention.
That is, the X-axis, Y-axis, and
The z-axes are the crystal axes of the crystal, and are the electric axis, mechanical axis, and optical axis. The crystal resonator 13 is XRM @ XX1g (ω/θ
).

又、xI軸、Yl軸、zl、z@軸ij%*X、!、z
軸の回転後の新軸でおる。第5図は本発明の結合水晶振
動子、即ち、振動部と支持部がエツチングによって一体
に形成された0丁カット水晶振動子のカット勇躍と一次
、二次温度係数α、lとの関係を示し、振動子形状、即
ち、辺比Rとカット角−が一定の場合であるm Wit
 s図から明らかなように、カット声優が大−くなるに
従って、−次、二次温度係数α、βはそれでれ負の値か
ら正の値へと移動する。又、角度1一度轟9の一1βの
変化は−の方が小壜い、更に、カット角S中51でg、
/ともにほとんど零となpすばらしい温度特性を示す事
が理解逼れる。第6図は本発明のGTカッF水水晶S壬
子辺比R(W/I、)と−次、二次温度係数a、βとの
関係を示し、カット声優、−が一定の場合である。第6
図から明らかなように、辺比lが人動(なるに従って、
−次、二次温度係数値、/は負値から正値へ変化するの
が分かる。又、単位辺比轟1の鍔、βの変化はαよりも
βの方が小さい、更に、辺比R中0.98でα。
Also, xI axis, Yl axis, zl, z@axis ij%*X,! ,z
After the shaft has rotated, the new shaft is used. FIG. 5 shows the relationship between the cutting force and the primary and secondary temperature coefficients α and l of the coupled crystal resonator of the present invention, that is, the zero-cut crystal resonator in which the vibrating part and the supporting part are integrally formed by etching. m Wit, which is the case where the transducer shape, that is, the side ratio R and the cut angle - are constant.
As is clear from the s diagram, as the size of the cut voice actor increases, the -order and quadratic temperature coefficients α and β move from negative values to positive values. Also, the change in angle 1 x Todoroki 9 - 1 β is smaller at -, and furthermore, at cut angle S 51 g,
It is easy to understand that both P and P exhibit excellent temperature characteristics. Figure 6 shows the relationship between the GT cup F crystal S zigzag side ratio R (W/I, ) of the present invention and the -order and quadratic temperature coefficients a and β, when the cut voice actor and - are constant. be. 6th
As is clear from the figure, as the side ratio l increases (as
It can be seen that the -order, quadratic temperature coefficient value, / changes from a negative value to a positive value. Also, the change in β of the unit side ratio of Tsuba 1 is smaller than α, and furthermore, α is 0.98 in the side ratio R.

βともほとんど零Knll、この場合もすばらしい温度
特性を示す事が分かる。第7図は本発明の0丁カット水
晶振動子の支持部の寸法サイズ管パラメーターにしたと
龜の辺比II (W/L)と−次温度係@aとの関係を
示す、支持部Bは支持部ムより■振動の振動を抑制する
ように設計されている、支持部ムと支持部1とでは直を
零にする辺比が異1)、支持I11の方が支持部ムよl
 g = Qにする辺比lが人動(をる、それ故、本発
明のGTカット水晶JII!―子が良好な温[41性、
【持つ、カツト角と辺比はこれらの組合わせでTop1
本発明ではカット月経、θは各々、優−48°〜53°
It can be seen that both β and Knll are almost zero, and that this case also exhibits excellent temperature characteristics. FIG. 7 shows the relationship between the side ratio II (W/L) of the support part and the -order temperature coefficient @a when the dimensions and tube parameters of the support part of the 0-piece cut crystal resonator of the present invention are taken as the pipe parameters. The support part I11 is designed to suppress vibrations more than the support part M.The support part M and the support part 1 have different side ratios that make the directivity zero1).
Therefore, the GT cut crystal JII of the present invention has a good temperature [41 properties,
[The cut angle and side ratio are among the top combinations of these.]
In the present invention, the cut menstrual period, θ is -48° to 53°, respectively.
.

θ;±(45°〜55°]、又、辺比RtiO,eO〜
1.2の選択によって良好な温度特性を提供する事がで
きる。第8図に)、に)は本発明の結合振動子形状の電
極配置の一実施例で、第1vA両は平面図を、第1図に
)は上面図を示す、水晶振動子14の振動部15の上面
と下TIfJKは励振電極16 、17が各々全面に一
様に配置され、励振電極16は一方の支持部に延びて配
置され、励振電極17は他方の支持部に延びて配置され
ている。即ち、支持部KFi片面にのみ電極が配置され
、電界が印′jXiされない構造となっている。第9図
(ト)、(ハ)は本発明の結合振動子形状の電極配置の
他の実施例で、第9図に)は平面図、#!9図(ハ)は
上面図を示す、水晶振動子18の振動部19の上、下面
には励振電極20.23が配置され、振動部の中心部に
配置された一実施例である。11g10図は本発明の結
合振動子形状の電極配置の他の実施例で、平面図を示す
、水晶振動子四の振動部器には励振電極冴と周波数調整
用の錘り5.26が配置され、励振電極とf!りは電気
的には接続されていない、又、励振電極は鍾りの位置を
除いて、揚動子の振動部のほぼ全面に配置されている。
θ; ±(45°~55°), and side ratio RtiO, eO~
By selecting 1.2, good temperature characteristics can be provided. Figures 8) and 2) show an example of the coupled oscillator-shaped electrode arrangement of the present invention, 1vA and 1) show a plan view, and Figure 1) shows a top view. Vibration of the crystal oscillator 14 Excitation electrodes 16 and 17 are arranged uniformly over the entire surface of the upper and lower TIfJK parts 15, with the excitation electrode 16 extending to one support part and the excitation electrode 17 extending to the other support part. ing. That is, the electrode is arranged only on one side of the support part KFi, and the structure is such that no electric field is applied. FIGS. 9(g) and 9(c) show other embodiments of the coupled oscillator-shaped electrode arrangement of the present invention, and FIG. 9) is a plan view, and #! FIG. 9(c) shows a top view of an embodiment in which excitation electrodes 20 and 23 are arranged on the upper and lower surfaces of the vibrating part 19 of the crystal resonator 18, and are arranged in the center of the vibrating part. Figure 11g10 is another embodiment of the electrode arrangement in the form of a coupled resonator according to the present invention, and shows a plan view, in which an excitation electrode and a weight 5.26 for frequency adjustment are arranged in the vibrating part of the four crystal resonators. and the excitation electrode and f! The excitation electrodes are arranged over almost the entire surface of the vibrating part of the lifter, except for the position of the ferrule.

裏面電極は図示されていないが振動部全面でも、あるい
は、励振電極冴と鍾りる。jに対称になるように励振電
極と鍾りを設けても良い、第11図は本実−の結合振動
子形状の電極配置の他の実施例で平wi図を示す、水晶
振動子nの振動部列には励振電@四と周波数調整用の錘
り30 、31 、32 。
Although the back surface electrode is not shown, it may be applied to the entire surface of the vibrating section or to the excitation electrode. The excitation electrodes and the studs may be arranged symmetrically with respect to the crystal oscillator n. The vibrating section array has an excitation electric @4 and weights 30, 31, 32 for frequency adjustment.

北が振動部の4隅に配置された例である。第12図は本
発明の結合振動子形状の電極配置の他の実施例で、平面
図を示す、振動s34には励振IE極あと周波数調整用
の@ D 36 、37 、38 、39が配置され、
励振電iiu鍾91Iを除い1振動部の全面に配11さ
れている。j113図は本発明の結合振動子形状の電極
配置の−の実施例で、平面図を示す、振動部には斜線で
示し究励振電極4oと周波数調整用の錘り41〜50が
配tされている。第14図は本発明の結合振動子形状の
電極配置の他の実施例の平面WAを示す、励振電極51
と周波数調整用の姉り52.53が配置されている。第
15図は本発明の結合振動子形状の電極配置の他の実施
例の平面1glを示す、励振電極54と周波数調整用の
錘J)55.56が配置されている。第16図は本発明
の結合振動子形状の電極配置の他の実施例で、平面図を
示す。振動部には励振電極57と周波数調整用の錘り5
8.59,60.61が配置されている。篇17図は本
発明の結合振動子形状の電極配置の他の実施例の平面図
を示す、振動部Kti励振電極62と周波数調整用の錘
り63〜70が配置されている、第18図は本発明の結
合振動子形状の電極配置の他の実施例の平面図を示す、
振動部に祉励振電極71と周波数調整用の@j)’72
が配置されている、第19図は本発明の結合振動子形状
の電極配置の他の実施例の平面図である。振動部には励
振電極73と周波数調整用の@シフ4が配置され工いる
、第11図から第19図の裏面電極は図示されていない
が第10図で述べたように1接動部全面でも、参るいは
励振電極と周波数調整用の錘pを一緒に配置し、厚みに
対して対称になるように配置しても良い、又、纂10!
1−纂17図では振動部に複数の錘jt配置しであるが
、少なくともm個装置しても周波数調整量の差はあるも
のの同じ効果を有する事は言うまでもない、第加図(ト
)、に)は本発明の結上m勅子形状の電極配置の他の実
施例で、第20図に)は平面−を% jll開園至)は
上面図を示す、水晶振動子7810110111k m
 ト支持fi 771F)上下面KU励振電@7B、7
tlが各々全面に配置されている、このようKllll
k部と支持部に励振電極を配置する事によって、電界効
率を更に高める事ができるので、Ox値を更に小さくす
る事ができる。第21図は本発明の結合振動子形状の電
極配置と鍾シの他の実施例で平面図を示す、水晶振動子
の振動部の上面、下面(II示1れてない)には励振電
極の78.78’  (図示されてない]が各々全面に
一様に配置され、更に、振動部の端部には電極78の上
に電極負荷効果を有する錘3180.81が配置畜れて
いる6g22mは本発明の結合振動子形状の電極配置と
鍾夕の他の実施例の平面図を示す。
This is an example in which the north side is placed at the four corners of the vibrating section. FIG. 12 shows another embodiment of the electrode arrangement of the coupled resonator shape of the present invention, and shows a plan view. In the vibration s34, @ D 36 , 37 , 38 , 39 for frequency adjustment are arranged after the excitation IE pole. ,
Excitation electricity 11 is distributed over the entire surface of one vibrating section except for the iiiu 91I. Fig. j113 is an embodiment of the electrode arrangement in the form of a coupled resonator according to the present invention, and shows a plan view. The vibration part has an ultimate excitation electrode 4o shown by diagonal lines and weights 41 to 50 for frequency adjustment. ing. FIG. 14 shows a plane WA of another embodiment of the coupled resonator-shaped electrode arrangement of the present invention, an excitation electrode 51
and older sisters 52 and 53 for frequency adjustment are arranged. FIG. 15 shows a plane 1gl of another embodiment of the coupled oscillator-shaped electrode arrangement of the present invention, in which an excitation electrode 54 and frequency adjustment weights J) 55 and 56 are arranged. FIG. 16 shows a plan view of another embodiment of the coupled oscillator-shaped electrode arrangement of the present invention. The vibrating part includes an excitation electrode 57 and a weight 5 for frequency adjustment.
8.59 and 60.61 are arranged. Figure 17 shows a plan view of another embodiment of the coupled oscillator-shaped electrode arrangement of the present invention, in which the vibrating part Kti excitation electrode 62 and weights 63 to 70 for frequency adjustment are arranged. shows a plan view of another embodiment of the coupled oscillator-shaped electrode arrangement of the present invention,
@j)'72 for vibration part and vibration excitation electrode 71 for frequency adjustment
FIG. 19 is a plan view of another embodiment of the coupled resonator-shaped electrode arrangement of the present invention. The excitation electrode 73 and @shifter 4 for frequency adjustment are arranged in the vibrating part.The back electrodes in Figs. 11 to 19 are not shown, but as described in Fig. 10, the entire surface of the contact part is However, it is also possible to arrange the excitation electrode and the weight P for frequency adjustment together so that they are symmetrical with respect to the thickness.
In Figure 1-17, a plurality of weights are arranged in the vibrating part, but it goes without saying that even if at least m units are installed, the same effect will be obtained although there will be a difference in the amount of frequency adjustment. Figure 20) shows a top view of the crystal resonator 7810110111km.
771F) Upper and lower surfaces KU excitation electric @7B, 7
tl are arranged on the entire surface, like this Kllll
By arranging the excitation electrodes in the k section and the support section, the electric field efficiency can be further increased, so that the Ox value can be further reduced. FIG. 21 shows a plan view of another embodiment of the coupled oscillator-shaped electrode arrangement and oscillator according to the present invention. 78.78' (not shown) are arranged uniformly over the entire surface, and furthermore, a weight 3180.81 having an electrode loading effect is arranged on the electrode 78 at the end of the vibrating part. 6g22m shows a plan view of another embodiment of the coupled oscillator-shaped electrode arrangement and Zhongyu of the present invention.

篇4図七同じように、水晶振動子の振動部の上面、下面
(図示されてない)には励振電極82,821 (図示
されてない〕が各々全面に一様に配置され、更に1振動
部の四隅には電極82の上に電極負荷効果を有する錘り
85,86,87.88が配置されている。
Similarly, excitation electrodes 82 and 821 (not shown) are arranged uniformly on the top and bottom surfaces (not shown) of the vibrating part of the crystal resonator, respectively. Weights 85, 86, 87, and 88 having an electrode loading effect are placed on the electrode 82 at the four corners of the section.

又、電極負荷効果には次の3つがある。Furthermore, there are the following three types of electrode load effects.

(1)振動部端部の励振電極を厚くすることは、錘りの
働きをする。それ故、共振周波数!。
(1) Increasing the thickness of the excitation electrode at the end of the vibrating section acts as a weight. Hence the resonant frequency! .

並びに、温度特性を変えることができる・同時に1 (2)電極負荷効果によって、振動部端部での弾性波の
反射を少なくシ、スプリアス振動を抑制することができ
る。
In addition, the temperature characteristics can be changed at the same time. (2) Due to the electrode load effect, reflection of elastic waves at the ends of the vibrating part can be reduced and spurious vibrations can be suppressed.

((至)電極負荷効果によって、振動部内部に励振エネ
ルギーをトラップすることができる。それ故、0Xfl
t更に低くすることができる。
((To) Due to the electrode loading effect, the excitation energy can be trapped inside the vibrating part. Therefore, 0Xfl
t can be made even lower.

振動部の全面に励振電極を配置し、その上に、電極負荷
効果を有する鍾りを配置した実施例を纂4図、第n図で
示したが、第稔図から纂18図につい工も、励振電極の
上に鍾9を配置しても電極負荷効果を有する事は言うま
でもない0次に、振動部の励振電極の面積の大きさくよ
って、0工11が異なる事を説明する。第n図は本発明
の水晶振動子の振動部と支持部が一体に形成されている
GTカット水晶振動子の172図である。断面ムームの
各位置に対する変位との関係の計算at示している。即
ち、点−で変位は零となp1点Cから点G、−に行(に
従って変位の絶対値は大!(なる振動である(f位置1
−一襲1]、第ム図は各位置に対する歪みとの閤係七示
している。即ち、点Cで歪みは最大と131.端部に行
くに従って小さくなる。又、gzi!lIから明らかな
ように、端部G。
An example in which excitation electrodes are placed on the entire surface of the vibrating section and a plow having an electrode loading effect is placed on top of the excitation electrodes is shown in Figures 4 and n, but the details are also shown in Figures 1 to 18. It goes without saying that even if the peg 9 is placed on the excitation electrode, there will be an electrode loading effect, and the fact that the 0th order differs depending on the area of the excitation electrode of the vibrating section will be explained. Fig. n is a diagram 172 of a GT cut crystal oscillator in which the vibrating part and the support part of the quartz crystal oscillator of the present invention are integrally formed. The calculation of the relationship between the displacement and each position of the cross-sectional moom is shown. In other words, the displacement is zero at point -, and from p1 point C to point G, - (accordingly, the absolute value of displacement is large!).
- 1], Figure 1 shows the distortion and 7 strokes for each position. That is, at point C, the distortion is maximum and 131. It becomes smaller towards the end. Also, gzi! As is clear from lI, the end G.

−で鉱歪番が零とならず、歪みが生じている。これは振
動部の端IIK励振電砺電極置した場合と、しない場合
では、水晶振動子のaX@が異なることを意味している
。即ち、振動部の端部にまで励振型liを配置した方が
低いOX@となる。第6図に)、に)はgangに)#
(至)のように振動部の上下面、  1金両に励振電極
を配置した場合と、第9図■、(至)のようK116部
の部分(振動部の約75−〕に配置した場合の○1値の
分布のヒストグラムで、実験値である。第5図←)は、
励振電極を振動部の一部分に配置したと亀の個数m−2
00に対するOI[の分布を示すヒストグラムで、平均
値1=x140(4である。これに対して、第6図同は
振動部の上下面、全面に配置したときの個数@ xx 
Q Q Qのときの0工値の分布を示すヒスドグツムで
、平均値X−S+@と、約4割0工値を小さくすること
ができ、振動部の全面に励振電極を配置した方が02を
低くする事がで龜る。又、第10図から纂19図のよう
に、励振電極と錘pt別々に設は九ときはレーザーによ
って共振同波数と周波数温度係数を調整し、第m図、第
4図のように1振動部の全面に励振電極を配置し、その
上に錘りを設けたときには蒸着によって共振周波数と周
波数温度係数を調整する方法が採用される0次に、錘り
の増減によって周波数温度係数と共振周波数の調整を例
を挙げて具体的Kw!、明する。
At −, the ore strain number does not reach zero and distortion occurs. This means that the aX@ of the crystal resonator is different depending on whether the IIK excitation current electrode is placed at the end of the vibrating section or not. That is, OX@ is lower when the excitation type li is arranged up to the end of the vibrating section. Figure 6), to) to gang)#
When the excitation electrodes are placed on the top and bottom surfaces of the vibrating part, on both sides of the 1-metal gold plate, as shown in (to), and when they are placed on the K116 part (approximately 75 - of the vibrating part), as shown in Figure 9 (■), (to). This is a histogram of the distribution of ○1 values, which is the experimental value. Figure 5 ←) is
If the excitation electrode is placed in a part of the vibrating part, the number of turtles m-2
This is a histogram showing the distribution of OI for 00, and the average value 1 = x140 (4).On the other hand, Fig.
Q It is difficult to lower the value. In addition, as shown in Figs. 10 to 19, when the excitation electrode and the weight pt are set separately, the resonant same wave number and frequency temperature coefficient are adjusted by a laser, and one vibration is generated as shown in Figs. m and 4. When an excitation electrode is placed on the entire surface of the section and a weight is placed on top of the excitation electrode, a method is adopted in which the resonance frequency and frequency temperature coefficient are adjusted by vapor deposition. Give an example of the adjustment of Kw! , reveal.

第1図は纂10図の鍾125.加をレーザーによって飛
散したときの錘9の除去量に対する一次温度係数aの変
化Δaとの関係を示す。即ち、錘りの除去量を多くする
に従つニー次温度係数αは正側へと移動する。第n図は
第11図の錘り30 、31 、32.33をレーザー
で飛散したときの錘りの除去量に対する一次温度係数α
の変化Δαとの関係を示す、錘りの除去量を多くするに
従って一次温度係数aは負側へと移動する。これらのこ
とから分かるように、纂10図の鍾りのときは@りt除
去することKよって一次温度係数αは正の方間に、又、
第11図の鍾9の配置のときFi錘りを除去することに
よって一次温度係数αは負側へと移動する。即ち、第1
0図の錘り25#加と第11図の錘り;幻、 31 、
32.330関に錘りを配置しtときは、−次温度係数
gは全く変化しない事が予測できる。第12図は前記し
た鍾90例である。第あ図は第戊図の錘りあ、37.3
8.39をレーず−で除去したときの錘り除去量に対す
る一次Ill係数−の変化Δαとの関係を示し、鍾夕の
除去によって一次温度係数αは変化しないことが分かる
。i@29図は第10図の錘り6.26.第11図の錘
J)30,31,32,33.第12図の錘り 36 
、37 、あ、39をレーザーで各々除去したと亀の@
シ除去量に対する主振動の共振周波数の変化を示し、直
線D a Ili e Iltそれぞれ第10図、第1
2図、第11図の場合に対応している。いづれの場合で
も、錘りの除去量によって主振動の共振周波数は高くな
る。ことが分かる。又、本実篇例ではレーザ一方式によ
る調整を説明したが無理によって、錘りt付層する場°
合は前記現象は全く逆の関係になる事は言うまでもない
、尚、説明でFi第10alt。
Figure 1 is the 125th block of Figure 10. The relationship between the change Δa in the primary temperature coefficient a and the amount of weight 9 removed when the weight is scattered by a laser is shown. That is, as the amount of weight removed increases, the second temperature coefficient α moves to the positive side. Figure n shows the primary temperature coefficient α for the amount of weights removed when the weights 30, 31, 32, and 33 in Figure 11 are scattered by a laser.
The primary temperature coefficient a moves to the negative side as the amount of weight removed increases. As can be seen from these facts, in the case of the plow shown in Figure 10, by removing K, the primary temperature coefficient α becomes positive, and
In the arrangement of the peg 9 shown in FIG. 11, by removing the Fi weight, the primary temperature coefficient α moves to the negative side. That is, the first
Weight 25# addition in figure 0 and weight in figure 11; illusion, 31,
When the weight is placed at 32.330 and time t, it can be predicted that the -th temperature coefficient g does not change at all. FIG. 12 shows 90 examples of the above-mentioned pegs. Figure A is the weight area of Figure 3, 37.3.
The relationship between the change Δα in the primary Ill coefficient and the amount of weight removed when 8.39 is removed by laser is shown, and it can be seen that the primary temperature coefficient α does not change due to the removal of the weight. i@29 Figure 10 is the weight 6.26. Weights J in Figure 11) 30, 31, 32, 33. Weight 36 in Figure 12
, 37 , ah, 39 was removed with a laser and the turtle @
Figures 10 and 1 show the changes in the resonance frequency of the main vibration with respect to the amount of removal.
This corresponds to the cases shown in FIGS. 2 and 11. In either case, the resonant frequency of the main vibration increases depending on the amount of weight removed. I understand that. In addition, in this actual example, adjustment using one laser method was explained, but if the weight is layered due to unreasonable conditions,
It goes without saying that the above phenomenon will have a completely opposite relationship in the case of Fi 10th alt.

第11図、第12図の3つの場合で説明したが、第13
図から第19図の錘りでも共振周波数と周波数温度係数
、あるいは、共振周波数のみ替える事ができる。第(資
)図に)、に)e (’) Fi、a丁カット水晶振動
子90t一本発明の支持台座94にマウントしたときの
一実施例で第(資)図に)は平爾図、jlK30図(ロ
)は第1図に)の下面図、第(資)図0は第(資)図0
の下面図を示す、支持台座94は凹形状に形gされ、両
端部95□  、96は平面で、その上に電極97,9
8.99が配置されている。電極98と電1199は側
面電極100,101と支持台座94の下面に配置され
た電極102を介して接続されている。このように電極
配置された支持台94の両端部95.96に水晶振動子
90が配置され、振動子端部で接層剤、あるいは、半田
等103,104によって支持固層される。この支持固
層によって水晶振動子90の励振電極112.93の円
、電極92は電極97に1電極93は電極99と接続さ
れ、゛磁極100.102.101を介して電極98と
同極になる。即ち、支持台座94の電極を前記しtよう
に配置する事によって電極97.98の2端子構造にす
る事ができる。電極100,101.102Fi、分か
pやすくするために実物より太く描いである。このよう
に振動子を支持台にマウントする事によって耐衝撃性に
優れた振動子にする事ができる。第31図に)、に)、
ρ)はGTカット水晶感動子105を本発明の支持台座
106にマウントしたときの他の実膣例で第31図←)
は平面図、第31図1: (至)は5131図両の下面図、第31図0は第31 
(B)の下面     1図を示す、支持台座106は
凹形状に形取され、両1118107,108KU溝1
09,110.111.112が設けられ、その上に電
極113#114.115が配置されている。電極11
4と電極115は側面’li極116,117と支持台
座106の下面に配置された電極18t−介して接続さ
れている。このように電極配置された支持台座106の
#111,112の中に水晶振動子105が配置され、
振動子端部で接着剤、あるいは、半田等119,120
によって支持固層される。
The explanation was given using the three cases of Fig. 11 and Fig. 12, but the case of Fig. 13
Even with the weights shown in FIG. 19, the resonant frequency and frequency temperature coefficient, or only the resonant frequency can be changed. Figures (Main)) and 2) e (') Fi, a-cut crystal resonator 90t are an embodiment of the present invention when mounted on the support pedestal 94. , jlK30 Figure (b) is the bottom view of Figure 1), Figure 0 is Figure 0
The support pedestal 94 has a concave shape, and both ends 95□ and 96 are flat, and electrodes 97 and 9 are placed on the support pedestal 94, which is shown in a bottom view.
8.99 is placed. The electrode 98 and the electrode 1199 are connected through side electrodes 100 and 101 and an electrode 102 arranged on the lower surface of the support base 94. The crystal resonator 90 is arranged at both ends 95 and 96 of the support base 94 with electrodes arranged in this way, and is supported and fixed at the ends of the resonator with a layering agent, solder, etc. 103 and 104. By this supporting solid layer, the excitation electrodes 112 and 93 of the crystal resonator 90 are connected to each other, and the electrode 92 is connected to the electrode 97, and the electrode 93 is connected to the electrode 99. Become. That is, by arranging the electrodes of the support base 94 as described above, a two-terminal structure of the electrodes 97 and 98 can be obtained. The electrodes 100, 101, and 102Fi are drawn thicker than they actually are to make it easier to separate them. By mounting the vibrator on the support base in this manner, the vibrator can have excellent impact resistance. Figure 31), to),
ρ) is another example of an actual vagina when the GT-cut crystal sensor 105 is mounted on the support pedestal 106 of the present invention in Fig. 31←)
is a plan view, Fig. 31 1: (to) is a bottom view of both Fig. 5131, Fig. 31 0 is a bottom view of Fig. 31
The support pedestal 106 shown in FIG.
09,110.111.112 are provided, and electrodes 113#114.115 are arranged thereon. Electrode 11
4 and the electrode 115 are connected through side electrodes 116 and 117 and an electrode 18t disposed on the lower surface of the support base 106. A crystal oscillator 105 is placed in #111 and 112 of the support pedestal 106 with electrodes arranged in this way,
Adhesive or solder etc. 119, 120 at the end of the vibrator
Supported by a solid layer.

この支持固着によって水晶振動子105に配置された励
振電極121,122の内、電極121は電極113に
、電極122は電極115と接続され、電極116 、
118 、17を介して電JtAl14と同極になる。
Of the excitation electrodes 121 and 122 arranged on the crystal resonator 105, the electrode 121 is connected to the electrode 113, the electrode 122 is connected to the electrode 115, and the electrode 116,
118 and 17, it becomes the same polarity as JtAl14.

このように溝に振動子をマウントする蔓によって耐衝撃
性に優れる事は勿論であるが、更に、振動子のセットが
容易になり、その上、作業性を良くすることができる。
The vine for mounting the vibrator in the groove in this way not only provides excellent impact resistance, but also makes it easier to set the vibrator, and further improves workability.

振動子がマウントされた支持台は次にリード線4Ciウ
ントされ、その後で真空中、あるいはN、中で封止され
る。次に、振動子の厚みについて説明する。振動子を作
る上で、特に、歩留の低下の原因としてスプリアス振動
がその大きな要因となるが本発明の場合も板厚の選択に
よってはスプリアス振動が主振動の近(に発生し、好ま
しくない、そこで、本発明はスプリアス振動を除去する
板厚IP50μ〜100Pの間で除去しようとするもの
で6ff、5011下限として選んだ理由は取扱いが容
易に出来て、しかも、量産上の最小板厚である。上限の
板厚1too、wとした理由は、本発明の振動子形状は
複雑で到底機械加工は不可能でToり、フォトリングラ
フィでエツチング加工できる板厚を上限として決めてい
る。実際に振動子はこの板厚の範囲から選択されるが本
発明の場合周波数によって轟然異なシ、共振周波数が高
くなるほど、即ち、振動子の幅W寸法が小さくなるほど
、板厚は小さくすることができる。第32図は本発明に
よって得られた温f特性の一実施例を示す、第32図か
ら明らかなようKすばらしい温度特性を示す事が分かる
The support base on which the vibrator is mounted is then mounted with 4C lead wires, and then sealed in a vacuum or N gas. Next, the thickness of the vibrator will be explained. In the production of vibrators, spurious vibration is a major factor in reducing the yield, but in the case of the present invention, depending on the selection of plate thickness, spurious vibration may occur near the main vibration, which is undesirable. Therefore, the present invention aims to eliminate spurious vibrations at a plate thickness IP between 50μ and 100P, and the reason why 6ff and 5011 were selected as the lower limit is that it is easy to handle and has the minimum plate thickness for mass production. The reason for setting the upper limit of the plate thickness to 1too, w is that the shape of the resonator of the present invention is complex and cannot be machined, so the upper limit is set to the plate thickness that can be etched by photolithography.Actually. The resonator is selected from this range of plate thickness, but in the case of the present invention, the plate thickness varies greatly depending on the frequency.The higher the resonant frequency, that is, the smaller the width W of the vibrator, the smaller the plate thickness can be. Fig. 32 shows an example of the temperature f characteristics obtained by the present invention.As is clear from Fig. 32, it can be seen that K exhibits excellent temperature characteristics.

以上、述べたように本発明は振動子の幾動部と支持部を
フォトリングラフィによって一体に成形し、特に、支持
部の構造を改善し、振動子のカット、辺比t−最適に選
び、振動子の振動部の全面、あるいは、部分に励振電極
を配置し、更に、振動部には共振周波数と周波数温度特
性調整用の錘夛を設け、前記振動子を支持台座にマウン
トする事によって、周波数温度特性の優れた、OX値の
小さい、耐衝撃性に優れた、しかも、マウント作業が容
易な結合水晶振動子を提供することがで龜t、それ故、
本発明の振動子は色々な民生機器に応用でき、その効果
は著しく大きい。
As described above, the present invention integrally molds the moving part and the support part of the vibrator by photolithography, and in particular, improves the structure of the support part, cuts the vibrator, and selects the side ratio t-optimally. , by arranging an excitation electrode on the entire surface or part of the vibrating part of the vibrator, further providing a weight for adjusting the resonance frequency and frequency temperature characteristics in the vibrating part, and mounting the vibrator on a support pedestal. It is possible to provide a coupled crystal resonator with excellent frequency-temperature characteristics, a small OX value, excellent impact resistance, and easy mounting.
The vibrator of the present invention can be applied to various consumer devices, and its effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、(ロ)は本発明の結合振動子の形状の一
実施例で、紀1図G&)は平面図、第1図に)扛上面図
を示す、第2図(4)2g3)は本発明の結合振動子の
形状の他の実施例で、第2図に)は平面図、第2図に)
は上面図會示す、第3図に)2g3)は本発明の結合振
動子の形状の他の実施例で、7s3図に)は平面図、第
3図(ロ)は上面図を示す、第4図り本発明の0丁カッ
ト水晶振動子の切断方位図、纂511i!11は本発明
の結合水晶振動子のカット角優とi!度係数α、βとの
関係を示すグラフ、第6図は本発明のGTカット水晶振
動子の辺比と温度係数α、βとの関係を示すグラフ、第
7図は本発明のGTカット水晶振動子の支持部の寸法サ
イズをパラメーターにしたときの辺比と温度係数aとの
関係を示すグラフ、第8図に)、(至)は本発明の結合
振動子形状の電極に!、tの一実施例で、第8図に)は
平面図、第8図(ロ)は上面図を示す、第9図に)、 
(B)は本発明の結合振動子形状の電極配置の他の実施
例で、#l、9図(ト)は平面図、1I9i!![1)
は上面図を示す、第1θ図は本発明の結合振動子形状の
電極配置の他の実施例で平面図を示す。第11図は本発
明の結合振動子形状の電極配置の他の実施例の平面図を
示す、第12図から第19図はそれぞれ本発明の結合振
動子形状の電極配置の他の実施例の平面図である。第」
図(A)。 0は本発明の結合振動子形状の電極配置の他の実施例で
、第20111はに)は平面図、第I上第)は上面図を
示す、3121図は本発明の結合振動子形状の電極配置
と錘りの他の実施例の平向図である。 第n図は本発明の結合振動子形状の電極配置と鍾りの他
の実施例の平面図を示す、第幻図は本発明の水晶振動子
の振動部と支持部が一体に形成されているGTカット水
晶振動子の1/2図である。 第あ図は第n図の振動子の各位置に対する歪みとの関係
を示すグラフ、第5図に)ricI恒の分布を示すヒス
トグラムでおる。#!5図(ハ)FiaI値の分布を示
す他のヒストグラムである。第3図は錘りの除去量に対
する一次温度係数aの変化Δaとの関係を示すグラフ、
第n図は他の@りの除去量に対する一次温度係数αの変
化Δaとの関係を示すグラフ、第u図は他の錘〕除去量
に対する一次温度係数声の変化Δαとの関係を示すグラ
フ、第3図は錘9除去量に対する主振動の共振周波数の
変化との関係を示すグラフ、第(資)図(尋、(ハ)、
0はGTカット水晶振動子を本発明の支持台座にマウン
トしたときの一実施例で、第加図(ト)は平面図、第(
資)上第)はlN30図(勾の下面図、第1図ρ)は第
箕図に)の下面図を示す、@31図に)、P、0は()
Tカット水晶振動子を本発明の支持台座にマウントした
ときの他の実施例で、W、31図C!k)に平面図、第
31図C)は第31図に)の下面図、第31図(0)は
第31図(ロ)の下面図を示す。432図は本発明によ
って得られた温度特性の一実施例を示すグラフである。 1 、5 、9.15.19,23.’28,34.7
6 、 sea振動@   2,6,10.7?、、支
持部3 、7 、11 、 、溝  4,8,12.、
マウント部  14,18,22,27.75 、90
 、 、 、水晶振動子  20,21,24,29,
35.40 、51 、54.57,62,71.73
,78,79,78゜820.励振電極 ’6 、26 、30 、31 、32 、33 、3
6 、37 、38 、39 、40.41〜5G、5
2.53.55,56.5B。 59.6G、61.63〜70.72,74,80.8
1,85,86,87,88.、錘994.106.、
支持台座 以上 出願人 株式会社第二精玉舎 ゲ7 4’  +9   svr/   Q  93 
尊や’+ ) F) f (11) 第6図 θテθ 匈勘 /、oo  lnケ /、/6  、/
ls  /2θθ’?o     J、oo     
 /、Jθ     /、 26LI:11−1びA) ゴ121Jl 第74図          第1g Q第20図CB
) 仲 7 ts zo図(A) 927図 第22図 第23E #24図 第29wJCB)        $2!;54 (A
)第24図      第27図 1Jzyt図 (%C) 11iz?図 惰 第3I図CB) 第311!iQ (c) 第3z図
Figures 1 (A) and (B) show an example of the shape of the coupled resonator of the present invention. )2g3) are other embodiments of the shape of the coupled resonator of the present invention, FIG. 2) is a plan view, and FIG. 2)
2g3) is another embodiment of the shape of the coupled resonator of the present invention, 7s3) is a top view, and FIG. 3(b) is a top view. 4 Cutting orientation diagram of the 0-cut crystal resonator of the present invention, 511i! 11 is the cut angle of the coupled crystal resonator of the present invention and i! 6 is a graph showing the relationship between the temperature coefficients α and β of the GT-cut crystal resonator of the present invention, and FIG. 7 is a graph showing the relationship between the side ratio and temperature coefficients α and β of the GT-cut crystal resonator of the present invention. Figure 8 is a graph showing the relationship between the side ratio and the temperature coefficient a when the size of the supporting part of the vibrator is used as a parameter), (to) the electrode of the coupled vibrator shape of the present invention! , t, in which FIG. 8) shows a plan view, FIG. 8(b) shows a top view, and FIG. 9),
(B) is another example of the coupled oscillator-shaped electrode arrangement of the present invention, #l, Figure 9 (g) is a plan view, 1I9i! ! [1)
1A shows a top view, and FIG. 1θ shows a plan view of another embodiment of the coupled oscillator-shaped electrode arrangement of the present invention. FIG. 11 shows a plan view of another embodiment of the coupled oscillator-shaped electrode arrangement of the present invention, and FIGS. 12 to 19 respectively show other embodiments of the coupled oscillator-shaped electrode arrangement of the present invention. FIG. "No."
Figure (A). 0 shows another example of the electrode arrangement of the coupled resonator shape of the present invention, No. 20111) shows a plan view, No. FIG. 7 is a plan view of another embodiment of the electrode arrangement and weight. Fig. n shows a plan view of another embodiment of the coupled resonator-shaped electrode arrangement and sill of the present invention, and the phantom figure shows that the vibrating part and the supporting part of the crystal resonator of the present invention are integrally formed. This is a 1/2 diagram of a GT cut crystal resonator. Figure A is a graph showing the relationship between strain and each position of the vibrator in Figure N, and Figure 5 is a histogram showing the distribution of ricI constants. #! Figure 5 (c) is another histogram showing the distribution of FiaI values. FIG. 3 is a graph showing the relationship between the amount of weight removed and the change Δa in the primary temperature coefficient a.
Figure n is a graph showing the relationship between the change Δa in the primary temperature coefficient α and the removal amount of other weights, and Figure U is a graph showing the relationship between the change Δα in the primary temperature coefficient and the removal amount of other weights. , Figure 3 is a graph showing the relationship between the amount of weight 9 removed and the change in the resonance frequency of the main vibration.
0 is an example when a GT-cut crystal resonator is mounted on the support base of the present invention, FIG.
(Figure 1) shows the bottom view of Figure 1N30 (bottom view of the slope, Figure 1 ρ) shows the bottom view of Figure 31), P, 0 ()
Another example when a T-cut crystal resonator is mounted on the support base of the present invention, W, Figure 31C! 31(k) is a plan view, FIG. 31(C) is a bottom view of FIG. 31(B), and FIG. 31(0) is a bottom view of FIG. 31(B). Figure 432 is a graph showing an example of temperature characteristics obtained by the present invention. 1, 5, 9.15.19, 23. '28, 34.7
6, sea vibration @ 2, 6, 10.7? , , support portions 3 , 7 , 11 , , grooves 4 , 8 , 12 . ,
Mount part 14, 18, 22, 27.75, 90
, , , crystal oscillator 20, 21, 24, 29,
35.40, 51, 54.57, 62, 71.73
,78,79,78°820. Excitation electrode '6, 26, 30, 31, 32, 33, 3
6, 37, 38, 39, 40.41-5G, 5
2.53.55, 56.5B. 59.6G, 61.63-70.72, 74, 80.8
1, 85, 86, 87, 88. , weight 994.106. ,
Support pedestal and above Applicant Daini Seigokusha Co., Ltd. Ge7 4' +9 svr/Q 93
Takiya'+) F) f (11) Fig. 6 θteθ 匈kan /, oo lnke /, /6, /
ls /2θθ'? o J,oo
/, Jθ /, 26LI:11-1 and A) Go121Jl Figure 74 Figure 1g Q Figure 20 CB
) Naka7 ts zo diagram (A) 927 figure 22 figure 23E #24 figure 29wJCB) $2! ;54 (A
) Figure 24 Figure 27 1Jzyt diagram (%C) 11iz? Figure 3I Figure CB) No. 311! iQ (c) Figure 3z

Claims (1)

【特許請求の範囲】[Claims] a)複数の縦振動モードが結合し究結合水晶揚動子にお
いて、前記水晶振動子はIR]!表示YXttCC48
°〜 53 °ン /± (45’ 〜560〕〕なる
カット角で成形され、前記水晶振動子の辺比は0.90
〜1.2の範囲内にTon、更に、1ItI記水晶振動
子の厚みは504s〜150P鵠の範囲内から選択され
、前記水墨振動子の振動部と支持部はエツチングによっ
て一体に形ritされ、前記水晶振動子の上下面には励
振用電極が配置され、前記水晶振動子は支持台座に−w
ウントされている事を**とする結合水墨振動子。
a) In a quartz crystal lifter in which a plurality of longitudinal vibration modes are coupled to each other, the crystal oscillator is IR]! DisplayYXttCC48
The crystal resonator is formed with a cut angle of 45' to 560 degrees, and the side ratio of the crystal resonator is 0.90.
The thickness of the crystal resonator is selected from the range of 504s to 150P, and the vibrating part and the support part of the ink resonator are integrally formed by etching, Excitation electrodes are arranged on the upper and lower surfaces of the crystal oscillator, and the crystal oscillator is mounted on a support base with -w
Combined ink oscillator that is mounted**.
JP4115982A 1982-03-16 1982-03-16 Coupling crystal oscillator Pending JPS58159014A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4115982A JPS58159014A (en) 1982-03-16 1982-03-16 Coupling crystal oscillator
GB08307141A GB2117968B (en) 1982-03-16 1983-03-15 Gt-cut piezo-electric resonator
US06/475,446 US4633124A (en) 1982-03-16 1983-03-15 Mount for quartz crystal resonator
CH145783A CH657498GA3 (en) 1982-03-16 1983-03-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4115982A JPS58159014A (en) 1982-03-16 1982-03-16 Coupling crystal oscillator

Publications (1)

Publication Number Publication Date
JPS58159014A true JPS58159014A (en) 1983-09-21

Family

ID=12600635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4115982A Pending JPS58159014A (en) 1982-03-16 1982-03-16 Coupling crystal oscillator

Country Status (1)

Country Link
JP (1) JPS58159014A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311810A (en) * 1987-06-15 1988-12-20 Seiko Electronic Components Ltd Longitudinal crystal vibrator
JPH03191607A (en) * 1989-12-21 1991-08-21 Seiko Electronic Components Ltd Thickness slip crystal resonator
JPH03291010A (en) * 1990-04-06 1991-12-20 Seiko Electronic Components Ltd Thickness-shear crystal resonator
DE4321949A1 (en) * 1992-07-03 1994-01-05 Murata Manufacturing Co Vibrator unit using piezoelectric resonator - has coupling between resonator and resonance element attached at oscillation mode
JP2012151651A (en) * 2011-01-19 2012-08-09 River Eletec Kk Piezoelectric vibrator
US9543923B2 (en) 2013-12-24 2017-01-10 Nihon Dempa Kogyo Co., Ltd. Crystal resonator including blank and supporting portion
JP2022155430A (en) * 2021-03-30 2022-10-13 台灣晶技股▲ふん▼有限公司 Vibration-absorbing structure for packaging crystal resonator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311810A (en) * 1987-06-15 1988-12-20 Seiko Electronic Components Ltd Longitudinal crystal vibrator
JPH03191607A (en) * 1989-12-21 1991-08-21 Seiko Electronic Components Ltd Thickness slip crystal resonator
JPH03291010A (en) * 1990-04-06 1991-12-20 Seiko Electronic Components Ltd Thickness-shear crystal resonator
DE4321949A1 (en) * 1992-07-03 1994-01-05 Murata Manufacturing Co Vibrator unit using piezoelectric resonator - has coupling between resonator and resonance element attached at oscillation mode
JP2012151651A (en) * 2011-01-19 2012-08-09 River Eletec Kk Piezoelectric vibrator
US9543923B2 (en) 2013-12-24 2017-01-10 Nihon Dempa Kogyo Co., Ltd. Crystal resonator including blank and supporting portion
JP2022155430A (en) * 2021-03-30 2022-10-13 台灣晶技股▲ふん▼有限公司 Vibration-absorbing structure for packaging crystal resonator

Similar Documents

Publication Publication Date Title
KR100863876B1 (en) Piezoelectric resonator structures and electrical filters
EP0155145A2 (en) Piezoelectric resonating device
GB2043995A (en) Contour vibration mode piezo-electric resonator
JPH0352249B2 (en)
JP5789914B2 (en) Tuning fork type piezoelectric vibrating piece and piezoelectric device
JP5789913B2 (en) Tuning fork type piezoelectric vibrating piece and piezoelectric device
JP6719313B2 (en) Piezoelectric resonator element and piezoelectric vibrator
JPH0514442B2 (en)
JPS58159014A (en) Coupling crystal oscillator
JPH0435108A (en) Ultra thin plate multiple mode crystal filter element
JP5824958B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
KR20020038462A (en) Lame mode quartz crystal resonator
US4926086A (en) Piezoelectric resonator
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
US11283423B2 (en) Resonator and resonance device
JPH0214608A (en) Piezoelectric resonator
JPH0124368B2 (en)
JPS5923908A (en) Piezoelectric element
JP2001024470A (en) Extremely high frequency at cut crystal oscillatory
JP7491675B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JPS58136125A (en) Coupled crystal oscillator
JPH04220009A (en) High-frequency piezoelectric resonator
JP2007104431A (en) Piezoelectric oscillator
JP3258078B2 (en) Crystal oscillator
JP2003023337A (en) Piezoelectric resonator and filter