JPS58158983A - Sealing type carbonic acid gas laser - Google Patents

Sealing type carbonic acid gas laser

Info

Publication number
JPS58158983A
JPS58158983A JP4206182A JP4206182A JPS58158983A JP S58158983 A JPS58158983 A JP S58158983A JP 4206182 A JP4206182 A JP 4206182A JP 4206182 A JP4206182 A JP 4206182A JP S58158983 A JPS58158983 A JP S58158983A
Authority
JP
Japan
Prior art keywords
cathode
laser
sealed
heating
laser tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4206182A
Other languages
Japanese (ja)
Other versions
JPH0113237B2 (en
Inventor
Norio Karube
規夫 軽部
Yukio Sakamoto
幸雄 坂本
Nobuaki Iehisa
信明 家久
Takashi Kuno
尚 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4206182A priority Critical patent/JPS58158983A/en
Publication of JPS58158983A publication Critical patent/JPS58158983A/en
Publication of JPH0113237B2 publication Critical patent/JPH0113237B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To improve the rising characteristic after a laser is fired by forming a side branch for containing a cathode and an anode in the vicinity of both ends of a laser tube sealed with mixture gas containing at least CO2 gas, forming the cathode of catalytic cathode, providing a heater at the outer periphery of the branch surrounding the cathode, and always heating the cathode. CONSTITUTION:Reflecting mirrors 6, 6' forming an external resonator are provided through brewstar windows 5, 5 at both ends of a laser tube 1 enclosed with a coolant jacket 4 having coolant outlet and inlet 3, 3'. Further, branches 7, 7' for coupling the laser tube are mounted in the vicinity of both ends of the laser tube, a catalytic cathode 8 made of LaSrMnO3 is contained in the branch 7, and a Pd rod type anode 9 is contained in the branch 7'. Further, a combination of a heater, heat radiation means, infrared ray lamp and reflecting means enclosed with heat insulator 11, and heating means 10 made of induction heater are provided, and controlled by a temperature controller 12, and the cathode 8 is maintained at approx. 300 deg.C.

Description

【発明の詳細な説明】 本発明は封止型炭酸ガスレーザ(以下CO2レーザと記
す)に関するものであり、放電開始直後のレーザ出力立
上り特性を改良することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sealed carbon dioxide laser (hereinafter referred to as a CO2 laser), and an object of the present invention is to improve the laser output rise characteristics immediately after the start of discharge.

002レーザは短期現象としての002分子の電子衝撃
などによる解離、長期現象としての02および002分
子の消耗による解離平衡点の移動の二種類の現象のため
通常は放電管内にレーザガス流を作って発振させており
装置寸法および重量の大型化および価格の上昇をまねき
その普及が阻止されていると云ってよい。本出願人は触
媒を放電管内に封入し002分子の解離生成物であるC
Oと02の再結合をはかることにより封止型C02レー
ザを構成し得ることを明らかにした。CO2分子の解離
は電了一温度が高い陰極付近で活発に起ることが実測さ
れた。発明者らの実験によれば、陰極付近に固体触媒を
配置すること、その−例として陰極自体を固体触媒の一
種であるペロプスカイト導電性酸化物L a S r 
Mn O5で構成することにより封止管レーザ出力55
W/Mを得ることができた。これは拡散冷却型CO2レ
ーザの出力の上限値であり、封止管出力としても上限値
でありこの放電管内では002分子の解離がほぼ防止で
きたものと考えられる。
The 002 laser usually oscillates by creating a laser gas flow in the discharge tube because of two types of phenomena: a short-term phenomenon of dissociation of 002 molecules due to electron bombardment, and a long-term phenomenon of movement of the dissociation equilibrium point due to consumption of 02 and 002 molecules. It can be said that this has led to an increase in the size and weight of the device and an increase in price, and has prevented its widespread use. The present applicant sealed a catalyst in a discharge tube and produced C, which is a dissociation product of 002 molecules.
It has been revealed that a sealed C02 laser can be constructed by recombining O and O2. It was actually observed that the dissociation of CO2 molecules occurs actively near the cathode where the temperature is high. According to experiments conducted by the inventors, it is possible to arrange a solid catalyst near the cathode, and for example, the cathode itself can be made of perovskite conductive oxide L a S r , which is a type of solid catalyst.
By constructing with MnO5, the sealed tube laser output is 55
I was able to obtain W/M. This is the upper limit of the output of the diffusion-cooled CO2 laser, and also the upper limit of the output of the sealed tube, and it is considered that dissociation of 002 molecules could be almost prevented in this discharge tube.

同電極は触媒作用の他、酸化物であるので通常の金属電
極の場合のように002やo2を酸化によって消耗する
ことがないとと、スパッタリングが少〈ゲッター作用で
レーザガスを吸着消耗することがないことなどの特徴が
あり、封止管co2o−レーザ料としては最適のもので
ある。第1図は本発明者らが実験に用いた封止型C02
レーザ管の構成を示す。1はレーザ管、2はレーザガス
であり、GO27%、N212%、He 81%の混合
レーザガスが30 Tor封入されている。ガス封入領
域の内径は共振器径を決定しており10mφに選ばれて
いる。3および3′は水冷用ジャケット4の冷却水出入
口である。6および5′はレーザ管封止窓であり Co
2レーザ光10.6μに対して透明なZn5eブリユー
スター窓である。これは内部鏡反射鏡であってもよい。
In addition to its catalytic effect, the electrode is an oxide, so 002 and O2 are not consumed by oxidation, as is the case with ordinary metal electrodes, and sputtering is reduced. It is the most suitable as a sealed tube CO2O laser material. Figure 1 shows the sealed C02 used by the inventors in the experiment.
The configuration of the laser tube is shown. 1 is a laser tube, and 2 is a laser gas, in which a mixed laser gas of 27% GO, 12% N2, and 81% He is sealed at 30 Torr. The inner diameter of the gas-filled region determines the resonator diameter and is selected to be 10 mφ. 3 and 3' are cooling water inlets and outlets of the water cooling jacket 4. 6 and 5' are laser tube sealing windows.
2 Zn5e Breustar window transparent to 10.6μ of laser light. This may be an internal mirror reflector.

6および6′は外部光学系でありR−60ooIIII
の2枚の凹面鏡である。7およびデはレーザ管1の電極
用側枝であり電極用側枝7の内部には陰極8が、また他
方の電極用側枝7′の内部には陽極9が設けられている
。陰極8は焼成セラミックであるLaSrMnO3電極
であり、陽極9は直径2IEllφのPdロッドである
。AC放電の場合には陽陰極の区別なく双方を触媒電極
で構成する。
6 and 6' are external optical systems R-60ooIII
These are two concave mirrors. 7 and D are electrode side branches of the laser tube 1, and a cathode 8 is provided inside the electrode side branch 7, and an anode 9 is provided inside the other electrode side branch 7'. The cathode 8 is a fired ceramic LaSrMnO3 electrode, and the anode 9 is a Pd rod having a diameter of 2IEl1φ. In the case of AC discharge, both the anode and the cathode are composed of catalyst electrodes, regardless of whether they are anode or cathode.

この構成により前記したレーザ出力55 W/Mを得る
ことができた。第2図にレーザ点灯後の出力変化の様子
を示す。点灯直後にパルス状出力が見られるがこれはC
O2分子の解離が時定数1秒で平衡に達することに符合
する過渡現象である。その後一度低下した出力は徐々に
一様増大を示して約10分後に定常出力値55W/Mに
達する。これは放電時のイオン衝撃により陰極の加熱が
生じ触媒活性度が増大することによって説明できる。す
なわち第1図に示すような陰極の外部加熱を伴わない封
止型C02レーザでは、レーザ点灯後の立上り時間に約
10分必要であることが分る。本出願人が先に提案した
触媒陰極封止型C02レーザは放電の断続に伴い第2図
に示す出力過渡現象があり出力の断続を放電断続で行う
ことができなかった。
With this configuration, the aforementioned laser output of 55 W/M could be obtained. Figure 2 shows how the output changes after the laser is turned on. A pulse-like output is seen immediately after lighting, but this is C
This is a transient phenomenon that corresponds to the dissociation of O2 molecules reaching equilibrium with a time constant of 1 second. Thereafter, the output that once decreased shows a gradual uniform increase and reaches a steady output value of 55 W/M after about 10 minutes. This can be explained by the fact that ion bombardment during discharge causes heating of the cathode and increases catalyst activity. That is, it can be seen that in a sealed C02 laser without external heating of the cathode as shown in FIG. 1, about 10 minutes are required for the rise time after the laser is turned on. The catalyst cathode-sealed C02 laser previously proposed by the present applicant had an output transient phenomenon as shown in FIG. 2 due to intermittent discharge, and could not intermittent the output by intermittent discharge.

このため放電および発振を継続したままにしておき、外
部シャッタでレーザビームを断続させざるを得す電力費
の無駄が多かった。
For this reason, the discharge and oscillation have to continue, and the laser beam has to be intermittent using an external shutter, resulting in a lot of wasted power costs.

本発明は上記欠点を解消するもので、陰極として触媒陰
極を用い、この陰極を加熱する手段を設けることによっ
てレーザ点灯後の出力立上り特性を改良することにある
。この場合陰極加熱状態のみを維持しておいて放電は切
っておきレーザビームが使用される間だけ放電を行わせ
ることができ加熱に基〈ものであり、本発明のごとく陰
極を加熱状態に維持しておいて放電点滅を行う時、出力
が十分な速さでもって立上ることが実証された。
The present invention solves the above-mentioned drawbacks by using a catalyst cathode as the cathode and providing means for heating the cathode, thereby improving the output rise characteristics after the laser is turned on. In this case, it is possible to maintain only the cathode heating state, turn off the discharge, and allow the discharge to occur only while the laser beam is used. It has been demonstrated that the output rises with sufficient speed when the battery is discharged and blinked.

第3図に本発明の一実施例を示す。同図中1より9迄は
第1図に示す従来のものと同一であり、触媒陰極8を囲
むヒータ10、断熱材11、温度コントローラ12のみ
が異っている。これらの加熱装置によって陰極8は常に
3oo′C程度の設定温度に維持される加熱装置の点灯
と同時にレーザ発振を開始する時は出力は第2図に示す
過渡応答を示すが、陰極加熱が十分に行われている状態
で放電の点滅を行わせると出力は第4図に示すように過
渡応答を示さない断続を行うことができた。
FIG. 3 shows an embodiment of the present invention. 1 to 9 in the figure are the same as the conventional one shown in FIG. 1, and only the heater 10 surrounding the catalyst cathode 8, the heat insulating material 11, and the temperature controller 12 are different. With these heating devices, the cathode 8 is always maintained at a set temperature of about 3oo'C.When laser oscillation is started at the same time as the heating device is turned on, the output shows a transient response as shown in Figure 2, but the cathode is not sufficiently heated. When the discharge was made to blink while the discharge was being carried out, the output could be intermittent without showing any transient response, as shown in FIG.

なお、ムC放電の場合や内部鏡の場合も本発明がそのま
ま適用できることは云うまでもない。なおムC放電の場
合は陽極・陰極の区別がないので、双方の電極を加熱す
る必要がある。
It goes without saying that the present invention can be applied as is to the case of MuC discharge and the case of internal mirrors. Note that in the case of MuC discharge, there is no distinction between an anode and a cathode, so it is necessary to heat both electrodes.

本実施例のように触媒陰極の外部加熱を行い、放電の点
滅を行うと過渡応答を伴うことなくレーザ出力を点滅さ
せることができる。レーザメスのような応用例では実際
にレーザビームを射出する時間は一日の使用を通じて総
合10分程度と限られたものである。通常のガス70−
レーザでは放電の断続によりレーザビームを断続するこ
とができ、電力費を節約することができる。
If the catalyst cathode is externally heated and the discharge is blinked as in this embodiment, the laser output can be blinked without any transient response. In an application example such as a laser scalpel, the time for actually emitting a laser beam is limited to about 10 minutes in total during one day of use. Normal gas 70-
With lasers, the laser beam can be interrupted by intermittent discharge, which can save power costs.

第5図に本発明の第2の実施例を示す。同図中1より9
は第1図に示す従来のものと同一であり、陰極8を外部
より加熱するランプ13およびランプ13よりの熱線を
陰極8上に集光する反射鏡14を新たに付加したもので
ある。これらの加熱装置によって陰極8は常に300℃
程度の設定温度に維持される。加熱装置の点灯と同時に
レーザ発振を開始する時は出力は第2図に示す過渡応答
を示すが、陰極加熱が十分に行なわれている状態で放電
の点滅を行なわせると出力は第1の実施例の結果と全く
同様に過渡応答を示さない断続を行うことができる。第
1の実施例のように陰極の加熱をヒータを用いて行う場
合は、陰極などレーザ放電管電極には一般に10〜20
KVO高電圧が印加されるのでヒータを用いる時は十分
な絶縁性を確保することが必要であるが、本実施例のよ
うに非接触加熱法によれば十分な安全性を確保できる特
徴をもっている。なお、ムC放電の場合は陽極・陰極の
区別がないので双方の電極を加熱する必要がある。また
第6図に示したのは外部鐘の場合であるが内部鐘レーザ
では同図に示すブリュースター窓が共振器用反射焼でお
き代るなど若干変更されるだけであって本発明の基本原
理を変えることなく適用されるものである。
FIG. 5 shows a second embodiment of the invention. 9 from 1 in the same figure
is the same as the conventional one shown in FIG. 1, with the addition of a lamp 13 for heating the cathode 8 from the outside and a reflecting mirror 14 for focusing the heat rays from the lamp 13 onto the cathode 8. These heating devices keep the cathode 8 at 300°C.
The set temperature is maintained at a certain level. When laser oscillation is started at the same time as the heating device is turned on, the output shows a transient response as shown in Figure 2, but if the discharge is blinked with sufficient cathode heating, the output changes to the first response. It is possible to perform interruptions that exhibit no transient response exactly as in the example results. When heating the cathode using a heater as in the first embodiment, the laser discharge tube electrode such as the cathode generally has a
Since KVO high voltage is applied, it is necessary to ensure sufficient insulation when using a heater, but the non-contact heating method as in this example has the feature of ensuring sufficient safety. . In the case of MuC discharge, there is no distinction between an anode and a cathode, so it is necessary to heat both electrodes. Furthermore, although the case shown in FIG. 6 is for an external bell, in the case of an internal bell laser, there are only slight changes such as replacing the Brewster window shown in the same figure with a reflection firing for the resonator, and the basic principle of the present invention is It will be applied without any change.

本実施例の如く触媒陰極の外部加熱を赤外線ランプなど
の熱輻射源で行い触媒を高温に維持した上で放電の点滅
を行なうと過渡応答を伴うことなくレーザ出力を断続さ
せることができる。
As in this embodiment, if the catalyst cathode is externally heated with a thermal radiation source such as an infrared lamp, the catalyst is maintained at a high temperature, and then the discharge is flashed, the laser output can be intermittent without transient response.

第6図に本発明の第3の実施例を示す。側枝7の構造を
除いては第1図の従来のものと同じ構造であるので同じ
部位に同符号を付して説明を省略する。側枝7の内部に
は導電性酸化物である触媒電極8が封入されている。側
枝7の外部には誘電加熱のための高周波コイル15が設
けられておりコイル15中の高周波電流が電極8に誘起
電流を惹起しそのジュール熱で直接電極兼触媒8が加熱
されることは周知の技術の応用であるのでここでは詳述
しない。本実施例の特徴は第2図に示した過渡現象を防
止することができる他、側枝7の壁は直接加熱されない
ので高温になることがなく側枝7の壁からのガス放出や
Heガス透過によシ封大ガス組成が変化して封止寿命が
短縮されることがないことである。
FIG. 6 shows a third embodiment of the present invention. Since the structure is the same as the conventional one shown in FIG. 1 except for the structure of the side branch 7, the same parts are given the same reference numerals and the explanation will be omitted. A catalyst electrode 8 made of a conductive oxide is sealed inside the side branch 7 . It is well known that a high frequency coil 15 for dielectric heating is provided outside the side branch 7, and that the high frequency current in the coil 15 induces an induced current in the electrode 8, and the Joule heat directly heats the electrode/catalyst 8. Since this is an application of the same technology, it will not be described in detail here. The feature of this embodiment is that in addition to being able to prevent the transient phenomenon shown in FIG. 2, the wall of the side branch 7 is not directly heated, so it does not become high temperature, which prevents gas release from the wall of the side branch 7 and He gas permeation. The seal life is not shortened due to changes in the seal gas composition.

第7図に誘電加熱による本発明の第4の実施例を示す。FIG. 7 shows a fourth embodiment of the present invention using dielectric heating.

この場合も触媒は電気伝導度が低く誘導加熱が困難な場
合である。側枝7を除いては第1図と等しいので説明を
省略する。側枝7の内部には電気伝導性の低い触媒電極
8が設置されている。
In this case as well, the catalyst has low electrical conductivity and induction heating is difficult. Since it is the same as FIG. 1 except for the side branch 7, the explanation will be omitted. A catalyst electrode 8 with low electrical conductivity is installed inside the side branch 7 .

また側枝7の外部には誘電加熱用平板電極16が設けら
れている。加熱された触媒の作用効果は前箱3の実施例
とまったく同様である。
Further, a dielectric heating flat plate electrode 16 is provided outside the side branch 7 . The action and effect of the heated catalyst are exactly the same as in the previous box 3 embodiment.

なお、上記実施例は側校内の電極がある場合について述
べたが、本発明はこれに限定されるものではなく、電極
がレーザ管内になっても同様に適用される。
In addition, although the above-mentioned embodiment described the case where the electrode is located inside the side chamber, the present invention is not limited to this, and is similarly applicable even if the electrode is located inside the laser tube.

以上のように本発明は封止型炭酸ガスレーザの放電電極
の少なくとも1個を触媒電極とし、この触媒電極を加熱
する加熱手段を設けたもので、本発明では触媒は常時加
熱されており十分活性状態におかれるのでレーザ出力制
御を放電の断続によって行う場合、第2図に示すような
約1o分の出力過渡応答が消失して、十分なる速さで出
力の立上シが見られた。この結果放電のための電力、冷
却器のための電力が大幅に低減させることができる。ま
た長時間の放電状態の維持が不要になるので封止管レー
ザ寿命を大幅に延長することができる。またレーザビー
ムの使用に先立ち陰極加熱を開始しておくことによりレ
ーザ発振の早立上りも可能にするものである。
As described above, the present invention uses at least one of the discharge electrodes of a sealed carbon dioxide laser as a catalyst electrode, and is provided with a heating means for heating this catalyst electrode.In the present invention, the catalyst is constantly heated and is sufficiently activated. When the laser output was controlled by intermittent discharge, the output transient response of about 10 minutes as shown in FIG. 2 disappeared, and the output started to rise at a sufficient speed. As a result, the electric power for discharge and the electric power for the cooler can be significantly reduced. Furthermore, since it is no longer necessary to maintain a discharge state for a long time, the life of the sealed tube laser can be significantly extended. Furthermore, by starting cathode heating prior to use of the laser beam, it is possible to start up laser oscillation quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は触媒電極を用いた従来型の封止型CO2レーザ
の構成を示す断面図、第2図は従来のレーザの出力立上
り特性を示す図、第3図は本発明の封止型CO2レーザ
の第1の実施例を示す断面図、第4図は本発明のレーザ
の断続放電に対する出力応答特性を示す図、第5図、第
6図および第7図は本発明の封止型C02レーザの他の
実施例を示す断面図である。 1・・・・・・レーザ管、2・・・・・・封入ガス、3
・・・・・・冷却水出入口、4・・・・・・冷却水用ジ
ャケット、61g・・・・・・ブリー−スター窓、e、
e・・・・・・外部共振器を構成する反射鏡、7,7′
・・・・・・電極用側枝、8・・・・・・触媒陰電極、
9・・・・・・陽極、1o・・・・・・陰極加熱用ヒー
タ、11・・・・・・ヒータ用断熱被膜、12・・・・
・・温度コントローラ、13・・・・・・ランプ、14
・川・・反射鏡。 16・・・・・・高周波コイル、16・・・・・・誘電
加熱用平板電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 I3図 第4図 一 時間 5図
Figure 1 is a cross-sectional view showing the configuration of a conventional sealed CO2 laser using a catalyst electrode, Figure 2 is a diagram showing the output rise characteristics of the conventional laser, and Figure 3 is a sealed CO2 laser of the present invention. 4 is a cross-sectional view showing the first embodiment of the laser, FIG. 4 is a diagram showing the output response characteristics of the laser of the present invention to intermittent discharge, and FIGS. 5, 6, and 7 are the sealed type C02 of the present invention. FIG. 7 is a cross-sectional view showing another embodiment of the laser. 1... Laser tube, 2... Filled gas, 3
...Cooling water inlet/outlet, 4...Cooling water jacket, 61g...Breestar window, e,
e...Reflector 7, 7' constituting the external resonator
... Side branch for electrode, 8 ... Catalyst negative electrode,
9... Anode, 1o... Heater for cathode heating, 11... Heat insulating coating for heater, 12...
... Temperature controller, 13 ... Lamp, 14
・River...Reflector. 16... High frequency coil, 16... Flat plate electrode for dielectric heating. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 2 Figure I3 Figure 4 Figure 1 Hour Figure 5

Claims (1)

【特許請求の範囲】 (1)炭酸ガスを少なくとも含む混合ガスを封入したレ
ーザ管と、前記レーザ管の内部または外部に設けられた
2個以上の電極を有し、前記電極の少なくとも1個が触
媒電極であシ、少なくとも前記触媒電極には加熱手段が
設けられていることを特徴とする封止型炭酸ガスレーザ
。 し)加熱手段がヒーターであることを特徴とする特許請
求の範囲第1項記載の封止型炭酸ガスレーザ。 (3)加熱手段が熱輻射装置であることを特徴とする特
許請求の範囲第1項記載の封止型炭酸ガスレーザ。 G4)  熱輻射装置が赤外線ランプと反射手段の組合
せであることを特徴とする特許請求の範囲第3項記載の
封止型炭酸ガスレーザ。 (5)加熱手段が誘導加熱装置であることを特徴とする
特許請求の範囲第1項記載の封止型炭酸ガスレーザ。 (6)加熱手段が誘電加熱装置であることを特徴とする
特許請求の範囲第1項記載の封止型炭酸ガスレーザ。
[Scope of Claims] (1) A laser tube sealed with a mixed gas containing at least carbon dioxide, and two or more electrodes provided inside or outside the laser tube, and at least one of the electrodes is A sealed carbon dioxide laser comprising a catalyst electrode, and at least the catalyst electrode is provided with heating means. (b) The sealed carbon dioxide laser according to claim 1, wherein the heating means is a heater. (3) The sealed carbon dioxide laser according to claim 1, wherein the heating means is a thermal radiation device. G4) The sealed carbon dioxide laser according to claim 3, wherein the thermal radiation device is a combination of an infrared lamp and a reflecting means. (5) The sealed carbon dioxide laser according to claim 1, wherein the heating means is an induction heating device. (6) The sealed carbon dioxide laser according to claim 1, wherein the heating means is a dielectric heating device.
JP4206182A 1982-03-16 1982-03-16 Sealing type carbonic acid gas laser Granted JPS58158983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4206182A JPS58158983A (en) 1982-03-16 1982-03-16 Sealing type carbonic acid gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4206182A JPS58158983A (en) 1982-03-16 1982-03-16 Sealing type carbonic acid gas laser

Publications (2)

Publication Number Publication Date
JPS58158983A true JPS58158983A (en) 1983-09-21
JPH0113237B2 JPH0113237B2 (en) 1989-03-03

Family

ID=12625582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4206182A Granted JPS58158983A (en) 1982-03-16 1982-03-16 Sealing type carbonic acid gas laser

Country Status (1)

Country Link
JP (1) JPS58158983A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547679A (en) * 1977-06-20 1979-01-20 Mitsubishi Acetate Co Ltd Acetate filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547679A (en) * 1977-06-20 1979-01-20 Mitsubishi Acetate Co Ltd Acetate filter

Also Published As

Publication number Publication date
JPH0113237B2 (en) 1989-03-03

Similar Documents

Publication Publication Date Title
JP3152950B2 (en) Low power metal halide lamp
USRE32626E (en) Microwave generated plasma light source apparatus
JPS58158983A (en) Sealing type carbonic acid gas laser
JP2001266797A (en) High-pressure mercury lamp emission device and its lighting method
JPH09293482A (en) Metal vapor discharge lamp
JP3404788B2 (en) High pressure discharge lamp and light source device using the same
JPS57141981A (en) Sealed type carbon dioxide gas laser oscillator
JPS6079663A (en) High-output low-pressure mercury lamp
JP2602919B2 (en) Metal vapor laser device
SU1038981A1 (en) Gas-discharge spectral lamp recuperation method
JPH0578142A (en) Optical fiber wire drawing furnace
JPS58123784A (en) Ion laser tube
CN102332389A (en) The manufacturing approach of extra-high-pressure mercury vapour lamp and this extra-high-pressure mercury vapour lamp
JP2011204492A (en) Ultra high pressure mercury lamp
JPS6243350B2 (en)
JPS58188176A (en) Ion laser device
JPH01196883A (en) Sealed-type co2 laser oscillating tube
JPH0479387A (en) Apparatus for generating metallic vapor
JPS63252489A (en) Metal vapor laser device
JPH0453282A (en) Laser device
JPS58111383A (en) Laser tube
JPS5821891A (en) Noiseless discharge type carbon dioxide gas laser
JPH01196881A (en) Sealed-type co2 laser tube
JPS59217382A (en) Gas laser oscillator
JPS62159483A (en) Metallic vapor laser oscillation device