JPS58158606A - Optical transmission line of far infrared light - Google Patents

Optical transmission line of far infrared light

Info

Publication number
JPS58158606A
JPS58158606A JP57041547A JP4154782A JPS58158606A JP S58158606 A JPS58158606 A JP S58158606A JP 57041547 A JP57041547 A JP 57041547A JP 4154782 A JP4154782 A JP 4154782A JP S58158606 A JPS58158606 A JP S58158606A
Authority
JP
Japan
Prior art keywords
dielectric
infrared light
plastic layer
far
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57041547A
Other languages
Japanese (ja)
Inventor
Hisanori Nakai
中居 久典
Koichi Mikoshiba
御子柴 晃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57041547A priority Critical patent/JPS58158606A/en
Publication of JPS58158606A publication Critical patent/JPS58158606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To form an optical transmission line for far-infrared light which has less loss by providing a plastic layer which has an index of refraction equal to that of a dielectric on either of the internal and external surfaces of the dielectric as a pipe material, and obtaining a specific relation among the thickness of the plastic layer, thickness of the dielectric, wavelength of far-infrared light, and indexes of refraction of the dielectric and plastic layer corresponding to said wavelength. CONSTITUTION:On either of the external and internal surfaces of the dielectric 2 as the pipe material, the plastic layer 1 having the index of refraction equal to that of the dielectric is provided. Then, the equation holds, where t2 and t1 are the thicknesses of the plastic layer 1 and dielectric, lambda and (n) are the wavelength of far-infrared light and the index of reflection of the dielectric and plastic layer 1 corresponding to the wavelength lambda, and (m) is a constant.

Description

【発明の詳細な説明】 本発明は光伝送路に係り、特に遠赤外光伝送路に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical transmission line, and particularly to a far-infrared optical transmission line.

遠赤外光の伝送路としては、現在主として次の2つの方
式が用いられている。その1つは重金属酸化系又はカル
コゲナイド系又は・・ロゲン化物系からなる光フアイバ
方式であり、他の1つは中空導波路方式である。。
Currently, the following two systems are mainly used as far-infrared light transmission lines. One is an optical fiber system made of a heavy metal oxide system, a chalcogenide system, or a logenide system, and the other is a hollow waveguide system. .

第1図は光フアイバ方式で用いらハる材料の透過波良域
を示す線図である。この図かられかるLうに8μm 、
+>十の遠赤外波長域ではその光を透祠させる材料が非
常に僅少である。例えばCO21/−ザ光10,6μm
を透過させる旧材は6種類程度である。更に、これらの
材料の中で実際にガラス状となってファイバ化されるも
のは極めて小数(C限定される。捷だ、ファイバ化され
たものでも非常に脆かったり、光伝送損失が理論値より
も1−廻ることが多い。
FIG. 1 is a diagram showing the transmission range of the material used in the optical fiber system. From this figure, the L sea urchin is 8 μm,
In the far-infrared wavelength range of +>10, there are very few materials that allow the light to pass through. For example, CO21/-the light 10,6μm
There are about 6 types of old materials that allow light to pass through. Furthermore, the number of these materials that actually become glassy and become fibers is very small (limited to C). More often than not, it goes around 1-.

例えば、、Ge53の伝送損失の理論値は1O−2dB
/に−であるが、W状では360dB/に一程度である
。寸だ、KH2−5と呼ばれるT ] B r −T 
I Tの多結晶タイプの光ファイバの伝送損失の理論値
は10〜10 ”dB/km  であるが、現状では3
0 oaB/に778度にとど1つている。これらの月
相の中で最も有望視されているのはKH2−5であるが
、製造方法および材料の毒性等で多くの問題点をもって
いる。
For example, the theoretical transmission loss value of Ge53 is 1O-2dB
/, but in the W shape it is about 360 dB/. It's called KH2-5] B r -T
The theoretical transmission loss of polycrystalline optical fiber for IT is 10 to 10 dB/km, but currently it is 3.
There is one at 778 degrees at 0 oaB/. Among these lunar phases, KH2-5 is considered to be the most promising, but it has many problems such as the manufacturing method and the toxicity of the materials.

一方後者の中空導波路方式では2枚の金属板の間に遠赤
外光を導入している。例えば10,6μm光用の中空導
波路として設計されたものでは、2枚のアルミ板からな
るものが提案されている。この波長光を導波する中空部
の広さが0,4 X 6 、、で1.2m伝送したとき
の出力は200Wであったが、このときの透過率は80
%である。
On the other hand, in the latter hollow waveguide method, far-infrared light is introduced between two metal plates. For example, for a hollow waveguide designed for 10.6 μm light, one made of two aluminum plates has been proposed. When the width of the hollow part that guides this wavelength light is 0.4 x 6, the output is 200 W when it is transmitted for 1.2 m, but the transmittance at this time is 80
%.

しかしながらこの導波路を構成している材料が金属板で
あるので面」熱性が低く、構造不均一による伝送損失が
大きいという問題点をもっている。
However, since the material constituting this waveguide is a metal plate, it has a problem of low surface thermal properties and large transmission loss due to structural non-uniformity.

本発明は」二記従来技術の欠点を解消し、低損失で丈夫
である簡易な構造の遠赤外光伝送路を提供することを目
的とし、その特徴とするところは、管制の誘電体の内面
および外面の少なくともいずれか1面に誘電体と等しい
屈折率のプラスチック層を設け、このプラスチック層の
L7さt、、誘電体の厚さをtl、遠赤外光の波長をλ
、この波長2における誘電体およびプラスチック層の屈
折率をn1寄数である定数をmとすると、 1、+1.、−ス(n2−1)−アmが成立するごとく
構成したことにある。
The present invention aims to eliminate the drawbacks of the prior art described in section 2 and provide a far-infrared optical transmission line with a simple structure that is low loss and durable. A plastic layer having a refractive index equal to that of the dielectric is provided on at least one of the inner and outer surfaces, L7st of the plastic layer, tl the thickness of the dielectric, and λ the wavelength of far-infrared light.
, the refractive index of the dielectric and plastic layers at wavelength 2 is n1, and the constant m is 1, +1. , -s(n2-1)-am holds true.

第2図f:j本発明の一実施例である凍赤外尤伝送路の
断面図である。1は石英ガラス、2はシリコン樹脂であ
る。即ち、厚さL2の誘電体である石矢ガラス管1の内
面に屈折率が等しい/IJ =+ y樹脂2のプラスチ
ック補強層を施し、その;tさtlとしである。
FIG. 2f:j is a sectional view of a frozen infrared transmission line which is an embodiment of the present invention. 1 is quartz glass, and 2 is silicone resin. That is, a plastic reinforcing layer of resin 2 having the same refractive index is provided on the inner surface of the Ishiya glass tube 1, which is a dielectric material and has a thickness of L2, and the thickness is set to t and tl.

第3図は本発明の他の実施例である・市赤外九伝送路の
断面図である。これも中空導波路の実施例であり、3は
誘電体よりなる管である。従来のこの方式では誘電率(
@折率)の大きな誘電体に電磁パワーを集中させて伝送
するものであったが、この場合は誘電体制質による…失
がその伝送路の伝送損失を決定している。したがって、
世失の大きな誘電体を使用すれば伝送損失は太となる。
FIG. 3 is a sectional view of an infrared transmission line according to another embodiment of the present invention. This is also an example of a hollow waveguide, and 3 is a tube made of a dielectric material. In this conventional method, the dielectric constant (
Electromagnetic power was transmitted by concentrating it on a dielectric material with a large refractive index, but in this case, the loss due to the dielectric material determines the transmission loss of the transmission path. therefore,
If a dielectric material with high deterioration is used, the transmission loss will be large.

また、伝送路設言」の自由度を大きくするために誘電体
を2層にすることが考えられるが、伝送パワーの大部分
が誘電体部分にあるために2層の界面の状態の乱れや層
j7の変化等による伝送損失への影響が大きいと考えら
れる。それに対して誘電体3の肉厚tを次式のように設
定すると洩れモード(リ−キイモ−ド)が励振され、伝
送路中空部分に伝送エネルギーが集中する。
In addition, it is possible to use two dielectric layers to increase the degree of freedom in designing transmission paths, but since most of the transmitted power is in the dielectric layer, the state of the interface between the two layers may be disturbed. It is thought that changes in layer j7 and the like have a large influence on transmission loss. On the other hand, if the thickness t of the dielectric body 3 is set as shown in the following equation, a leaky mode is excited, and the transmission energy is concentrated in the hollow portion of the transmission path.

一± t=−!−(n2−1)2m ・・・・・ ・・・・・
・・(1)但し、nは誘電体のIi′!訴率 mは寄数 である。即ち、(1)式は誘電体3の管外への放射エネ
ルギーと管内蓄積エネルギーを最小てする条件式である
1±t=-! -(n2-1)2m ・・・・・・ ・・・・・・
...(1) However, n is Ii' of the dielectric! The appeal rate m is a decimal number. That is, equation (1) is a conditional equation that minimizes the radiated energy of the dielectric 3 to the outside of the tube and the energy stored inside the tube.

この時の伝送損失は減衰定数αとして次式 で表わされ
る。
The transmission loss at this time is expressed as the attenuation constant α by the following equation.

但し、kは2π/λ I】はJo (u) = OT Mom T EomJ
n (u)= OHE (n+1)  mEH(n−1
)m (J・は。次のベッセル関数である) Cは C=1.    TEom   モートC= n
’    T Mom   モートc −:  (n4
モ1 )   HEnm F: Hnmモードまた、損
失量をLとすると、 L = 10 loglOe 2a[dR/unit 
l〔:ngth ]この方式によれば、低損失で簡易な
直光開光伝送路が得られることになる。
However, k is 2π/λ I] is Jo (u) = OT Mom T EomJ
n (u) = OHE (n+1) mEH (n-1
) m (J. is the following Bessel function) C is C=1. TEom mote C= n
' T Mom mote c -: (n4
Mo1) HEnm F: Hnm mode Also, if the loss amount is L, L = 10 loglOe 2a[dR/unit
l[:ngth] According to this method, a simple direct optical transmission line with low loss can be obtained.

例えば、λ−10,6μmで肉jりtが77.43μm
1内半径Tが400μmであるとすると、伝送損失は0
.56 dB/m  が可能である。しかしながらこの
方式では伝送路の強度については殆んど考慮されていな
い。即ち、石英ガラス1だけでは機械的に極めて弱いの
で、石英ガラス1と屈折率が等[2いプラスチックで表
面を被覆すると丈夫てなる。具体的には石英ガラス管1
の表向に屈折率が等しいシリコン樹脂をコートする。そ
の時のガラス層厚と/リコン樹脂層厚との和が(1)式
の条件を満足するように設定すれば、低損失で強度のあ
る直光外光伝送路が得られる。即ち、第2図のような断
面形状となる。
For example, at λ-10.6μm, the thickness t is 77.43μm.
If the inner radius T is 400 μm, the transmission loss is 0.
.. 56 dB/m is possible. However, in this method, the strength of the transmission path is hardly considered. That is, since the quartz glass 1 alone is mechanically extremely weak, covering the surface with a plastic whose refractive index is equal to that of the quartz glass 1 becomes strong. Specifically, quartz glass tube 1
Coat the surface with silicone resin having the same refractive index. If the sum of the glass layer thickness and the recon resin layer thickness is set so as to satisfy the condition of equation (1), a direct external optical transmission line with low loss and high strength can be obtained. That is, the cross-sectional shape is as shown in FIG.

本実楕例の遠赤外光伝送路は、誘電体である石灸ガラス
管の少なくとも一方の面を/リコン樹脂で被覆し、その
石英ガラス管の17さと/リコン樹脂層の厚さを所定の
厚さて調節することによって、遠赤外光を効率良く伝送
することができるという効果が得られる。
The far-infrared light transmission path of this practical example is constructed by coating at least one surface of a dielectric glass tube with /recon resin, and adjusting the thickness of the quartz glass tube and the /recon resin layer to a predetermined value. By adjusting the thickness of the film, it is possible to efficiently transmit far-infrared light.

上記実施例は/リコノ樹脂を一層としてコート1、であ
るが、これを屈折率の等[7い複数層に(7て同じ厚さ
とすることもできる。そして例えばその最外層を着色層
として防害光の侵入を減少させることも可能である。な
お、/リコ/樹脂層(1: ’or 廃性をもっている
ので、変形しても差支えないという利点ももっている。
In the above example, Coat 1 is made of a single layer of licon resin, but this can be made into multiple layers with the same refractive index (7) and the same thickness.For example, the outermost layer can be used as a colored layer for protection. It is also possible to reduce the intrusion of harmful light. Since the resin layer (1: 'or) has a discardability, it also has the advantage that it does not cause any problem even if it is deformed.

本発明の遠赤外光伝送路は、低損失で簡易な構成で可撓
性があるという効果をもっている。
The far-infrared light transmission line of the present invention has the advantages of low loss, simple structure, and flexibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光ファイバに用いられる月別の濾過波長域を示
す線図、第2図、第3図は本発明の実施例である遠赤外
光伝送路を示す断面図である。 1 ・・・・プラスチック、 2・・・・石英ガラス管、 3・・・・/リコ/樹脂。
FIG. 1 is a diagram showing monthly filtering wavelength ranges used in optical fibers, and FIGS. 2 and 3 are cross-sectional views showing far-infrared light transmission lines according to embodiments of the present invention. 1...Plastic, 2...Quartz glass tube, 3.../Rico/Resin.

Claims (1)

【特許請求の範囲】 1、管状の誘電体の内面および外面の少なくともいずれ
か1面に上記誘電体と等しい屈折率のグラスチック層を
設け、このプラスチック層の厚さをt2、上記誘電体の
厚さをtl、遠赤外光の波長をλ、この波長λにおける
上記誘電体および上記プラスチック層の屈折率をn1寄
数である定数をmとすると、 一↓ t1+t2−ス(n2−1)   m が成立するごとく構成したことを特徴とする遠赤外光伝
送路。
[Claims] 1. A plastic layer having a refractive index equal to that of the dielectric is provided on at least one of the inner and outer surfaces of a tubular dielectric, and the thickness of this plastic layer is t2, and the thickness of the dielectric is t2. If the thickness is tl, the wavelength of far-infrared light is λ, and the refractive index of the dielectric and the plastic layer at this wavelength λ is n1, a constant is m, then 1↓ t1+t2-s(n2-1) A far-infrared optical transmission line characterized in that it is configured so that m holds true.
JP57041547A 1982-03-16 1982-03-16 Optical transmission line of far infrared light Pending JPS58158606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57041547A JPS58158606A (en) 1982-03-16 1982-03-16 Optical transmission line of far infrared light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57041547A JPS58158606A (en) 1982-03-16 1982-03-16 Optical transmission line of far infrared light

Publications (1)

Publication Number Publication Date
JPS58158606A true JPS58158606A (en) 1983-09-20

Family

ID=12611445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57041547A Pending JPS58158606A (en) 1982-03-16 1982-03-16 Optical transmission line of far infrared light

Country Status (1)

Country Link
JP (1) JPS58158606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113707U (en) * 1989-02-27 1990-09-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113707U (en) * 1989-02-27 1990-09-12

Similar Documents

Publication Publication Date Title
NL193330C (en) Optical waveguide and method for its manufacture.
US4465336A (en) Waveguide and method of manufacturing same
US3997241A (en) Optical waveguide transmitting light wave energy in single mode
US8204350B2 (en) Optical fiber structure with filtering thin film
US4851025A (en) Process for producing a planar optical waveguide
JPH0366642B2 (en)
US4725113A (en) Form birefringent cutoff polarizer and method
US4717225A (en) Form polarizing fibers and method of fabrication
JPS6363005A (en) Infrared fiber
US4006964A (en) Integrated optical waveguide having a filter
JPS58158606A (en) Optical transmission line of far infrared light
EP1536252A1 (en) Photonic crystal optical waveguide
Rengarajan et al. Single‐mode propagation in multi‐layer elliptical fiber waveguides
US20060078263A1 (en) Waveguide element using photonic crystal
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
JPS6172207A (en) Thick film waveguide
JPS6053285B2 (en) Constant polarization optical fiber
US20070058915A1 (en) Waveguide element using photonic crystal
Lenz et al. Bragg reflection waveguide composite structures
JPS57100409A (en) Optical coupler
JPH03185402A (en) Optical frequency filter
JP2828251B2 (en) Optical fiber coupler
JP2641238B2 (en) Polarizer
JPS6363006A (en) Laminated optical waveguide
JPS6022103A (en) Transmission cable