JPS58157896A - Operating method of co converter in cyclic type town gas plant - Google Patents
Operating method of co converter in cyclic type town gas plantInfo
- Publication number
- JPS58157896A JPS58157896A JP57040209A JP4020982A JPS58157896A JP S58157896 A JPS58157896 A JP S58157896A JP 57040209 A JP57040209 A JP 57040209A JP 4020982 A JP4020982 A JP 4020982A JP S58157896 A JPS58157896 A JP S58157896A
- Authority
- JP
- Japan
- Prior art keywords
- waste heat
- temperature
- gas
- steam
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Industrial Gases (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、サイクリック式都市ガスプランジにおける
CO変成器の稼動方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for operating a CO transformer in a cyclic city gas plunge.
ナフサやLPGなどを主原料として都市ガス管製造する
サイクリック式のガスプラントは公知である。Cyclic gas plants that manufacture city gas pipes using naphtha, LPG, etc. as main raw materials are well known.
このサイクリック式ガスプラントの特徴は、低圧で運転
が容易であるため中小都市のガスプラントとして多く採
用されている。This cyclic gas plant is characterized by low pressure and easy operation, so it is often used as a gas plant in small and medium-sized cities.
ところが、ナ7すやI、PGなど石油系の原料をガス化
した場合、生成ガス中に多量(20外前後)のCOを含
有するので、それを無害化することが必要である。However, when petroleum-based raw materials such as Na7suya I and PG are gasified, the generated gas contains a large amount of CO (about 20% CO), so it is necessary to make it harmless.
そこで一般には、そのCOt無害化するため触媒を用い
てCO@に一変成するCO変成器を系内に付設している
。Therefore, in order to render the COt harmless, a CO transformer is generally installed in the system, which converts the COt into CO@ using a catalyst.
しかし、サイクリック方式を採るプラントにおいては、
ガスの製造期(メータ期)と反応炉の加熱期(ヒート期
又はブロー期)とが交互に繰返されて運転されるため、
系内温度がそれに応じて周期的に変化する。However, in plants that use the cyclic system,
Because the gas production period (meter period) and the reactor heating period (heat period or blow period) are repeated alternately,
The temperature within the system changes periodically accordingly.
その結果、ガスの製造期に生成されたガスをCO弯成器
に誘導し、変成運転をしてもその運転初期においては、
触媒の温度が低下しているため変成効率が著しく低下し
、CO含有量の高いガスが消費者へ供給されてしまう欠
点がある。As a result, even if the gas produced during the gas production stage is guided to the CO generator and converted operation is performed, in the initial stage of operation,
Since the temperature of the catalyst is lowered, the conversion efficiency is significantly lowered, resulting in a disadvantage that gas with a high CO content is supplied to consumers.
すなわち、変成運転の立上り時点においては、触媒温度
が活性温度である300〜400℃まで昇温されていな
いため、変成効率が低下してしまう。That is, at the start of the shift operation, the catalyst temperature has not been raised to the activation temperature of 300 to 400° C., resulting in a decrease in shift efficiency.
甲たサイクリック式ガスプラントガスが多用される中小
都市においては、ガス需要のピークおよびオフビークの
時間的変動が大きく、場合によってはその調整のため1
日に1〜2回運転を停止するケースもある〇
いずれにしてもCO変成運転の立上り時点において、C
O衛成効率を所定に維持するためには、00変成器の運
転立上り時点での触媒温度を活性温度に維持することが
必要である。Cyclic gas plantsIn small and medium-sized cities where gas is used extensively, peak and off-peak gas demand fluctuates greatly over time, and in some cases, one
There are cases where operation is stopped once or twice a day. In any case, at the start of CO conversion operation, C
In order to maintain O-hybridization efficiency at a predetermined level, it is necessary to maintain the catalyst temperature at the activation temperature at the start of operation of the 00 shift converter.
そこで本発明は、当該ガスプラントの廃熱を利用してr
′0変成器の運転初期における変成触媒温度を活性温度
に昇廖させるようにしたCO麦成器の稼動システムを開
発したものである。Therefore, the present invention utilizes the waste heat of the gas plant to
We have developed an operating system for a CO malt generator that raises the temperature of the shift catalyst to the activation temperature at the initial stage of operation of the '0 shift converter.
その発明の特徴とするところは、ool成器にプラント
の廃熱を利用して生成した蒸気をさらに廃熱利用の過熱
器を通して過熱蒸気とし、これを00変成器に通してC
O変成触媒の温度を活性温度(300〜400℃)に昇
温させるようにしたものである。The feature of this invention is that the steam generated by using the waste heat of the plant in the OO converter is further passed through a superheater that utilizes waste heat to become superheated steam, which is then passed through the 00 transformer to produce CO2.
The temperature of the O shift catalyst is raised to the activation temperature (300 to 400°C).
さらにこれをサイクリック式都市ガスプラントに組込ん
だ実施例に基づいて具体的に説明すると次の通りである
。Further, a specific explanation will be given below based on an example in which this is incorporated into a cyclic city gas plant.
そこで、まず第1WJに基づいてLPGを原料とする従
来のサイクリック式ガスプラン)について説明する。First, a conventional cyclic gas plan using LPG as a raw material will be explained based on the first WJ.
111は反応炉、(唱j反応炉(1)に接続された廃熱
ボイラ、(3)はこの廃熱ボイラ(2)のスタック、+
4)はそのスタック弁である。111 is a reactor, a waste heat boiler connected to the reactor (1), (3) is a stack of this waste heat boiler (2), +
4) is the stack valve.
151は反応炉用により生成された生成ガス中のCOを
変成するCO炭成器、(・)はその変成触媒である。151 is a CO coalizer for converting CO in the product gas produced by the reactor, and (.) is its conversion catalyst.
け)は生成ガスの逆流防止の水封装置で、生成ガスはこ
の水封装置(ηを通り、図示においては省略したが、ス
クラバーを経てリリーフホルダーへ移送されるようにな
っている。1) is a water sealing device for preventing backflow of produced gas, and the produced gas passes through this water sealing device (η) and is transferred to a relief holder via a scrubber (not shown).
(8)はガスの製造期すなわちメーク期におけるメーク
I・PGを反応炉(1)へ供給する管路で、(9(はメ
ータLPGを廃熱ボイラ(2)によって生成されたプロ
セススチームと霧化混合させるアトマイザ−でアトマイ
ズされたものが反応炉(1)の頂部から炉内へ供給され
るものである。−はプロセススチームの供給管路である
。軸はこの供給管路−の途中に綻続された過熱器で反応
炉μ)と廃熱ボイラ1!lとを結ぶ通路に設けられてい
るものである。この廃熱利用による過熱器・lは、プロ
セススチームなスパ−ヒートシ、メークLPGとの霧化
混合を高めることを目的としたものである。(8) is a pipe line that supplies make I/PG to the reactor (1) during the gas production period, that is, the make period; The atomized material is supplied from the top of the reactor (1) into the reactor (1) from the top of the reactor (1). - is the process steam supply pipe. The shaft is located in the middle of this supply pipe -. This superheater is installed in the passage connecting the reactor μ) and the waste heat boiler 1!L. The purpose is to improve atomization mixing with LPG.
なお、(12)はメータ期および加熱期すなわちプロー
期におけるエアー供給管路で、(2)はプロー期におけ
るヒー) LPnの供給管路である。Note that (12) is an air supply pipe during the meter period and the heating period, that is, the plow period, and (2) is the air supply pipe during the plow period.
以上が従来のサイクリック式ガスプラントの7!−シー
トで、ガスのメーク期においては原料であるメークLP
Gをアトマイザ−+ll+によってプロセススチームと
霧化混合させて反応炉(11内へ送り込み触媒層を通過
させて接触分解によるガス化を行う。次にプルー期にお
いてはヒー)LPGを反応炉す)内で燃焼させ反応炉(
1)内の触媒層を所定温度に加熱する。These are the 7 things about conventional cyclic gas plants! - Make LP, which is a sheet and is a raw material during the gas make stage.
G is atomized and mixed with process steam by an atomizer +ll+ and fed into the reactor (11, passed through a catalyst layer and gasified by catalytic cracking.Next, in the pull stage, heat) LPG is transferred to the reactor). Burn it in a reactor (
1) Heat the catalyst layer inside to a predetermined temperature.
以上の操作をサイクリックに繰返し、所定のガスを製造
するものである。The above operations are cyclically repeated to produce a predetermined gas.
ところで、W頭に説明したように、メータ期に生成され
たガスはaO変成器(5]を通ってCo、に変成され無
毒化されてリリーフホルダーへ移送されるのであるが、
メーク期からプロー期へ転換された時点あるいはプラン
トの稼動を一部ストップし再瞭動させた初期においては
、aO変成器15+の触媒層(6)温度が低下している
。そのためその00変成効率が低下してしまう。By the way, as explained to Mr. W, the gas generated during the meter period is transformed into Co through the aO transformer (5), detoxified, and transferred to the relief holder.
At the time of transition from the make period to the prow period or at the initial stage when the operation of the plant is partially stopped and restarted, the temperature of the catalyst layer (6) of the aO shift converter 15+ is decreasing. Therefore, the 00 metamorphism efficiency decreases.
そこで、第2図が本発明方法である変成触媒温度を昇温
させるだめの70−シートで、まず反応炉11夏の加熱
期すなわちブロー期に廃熱ボイラ(2)によって生成さ
れる大量のスチームを前述過熱器06を通してスパーヒ
ートし、これをo。Therefore, Fig. 2 shows a 70-sheet diagram for raising the temperature of the shift catalyst according to the method of the present invention. is superheated through the superheater 06 mentioned above, and then heated to o.
変成器1B+内に送り込むことによりCO変成触媒層(
6)を加熱昇温させるようにしたものである。By feeding it into the shift converter 1B+, the CO shift catalyst layer (
6) is heated to raise the temperature.
すなわち、従来プロー期に大量に生成され余剰スチーム
として放出されるスチームを過熱器01)を通してスパ
ーヒートシ、これによってCO変成触媒を活性温度30
0〜400℃に昇温させるものである。That is, the steam that is conventionally produced in large quantities during the blowing stage and released as surplus steam is passed through the superheater 01) to superheat the CO conversion catalyst, thereby increasing the activation temperature to 30°C.
The temperature is raised to 0 to 400°C.
したがって、プラントがメーク期に切り替えられた時点
でただちに00変成運転を行うことができるものである
。Therefore, the 00 shift operation can be performed immediately when the plant is switched to the make period.
第21i!Jの(2)は過熱器(11)を通ってスーパ
ーヒートされたスチ−AをCO変成II(81内へ送り
込むためのスーパーヒートスチームの供給管路、−はそ
の開閉弁、a+utao変成!(61へのスーパーヒー
トスチームの流量制御弁、(ロ)は流量計である。21st i! (2) of J is the superheat steam supply pipe for sending the superheated steam A through the superheater (11) into the CO transformation II (81), - is its on/off valve, a+utao transformation! ( 61 is a super heat steam flow control valve, and (b) is a flow meter.
なお、上述はサイクリック運転時のブロー期におけるC
O変成触媒の昇温方法であるが、ガスの製造期すなわち
メーク期においての昇温も可能である。Note that the above is the C during the blowing period during cyclic operation.
Although this is a method for raising the temperature of the O shift catalyst, it is also possible to raise the temperature during the gas production period, that is, the make period.
まずメーク期に使用されるプロセススチームの一部をc
。First, some of the process steam used during the makeup period is
.
変成器(6)へ導入して昇温を行う方法である。In this method, the temperature is increased by introducing the gas into the transformer (6).
一般的にメーク期においても余剰スチームは確保するこ
とが可能であり、したがってその余剰スチームを利用し
て衛成触媒層(6)の温度を活性温度に昇温させること
ができる。Generally, surplus steam can be secured even during the make period, and therefore, the temperature of the sanitary catalyst layer (6) can be raised to the activation temperature using the surplus steam.
本拠明方法は以上説明したことから理解されるように、
廃熱を利用して余剰スチームをスーパーヒートし、それ
でCO蛮成触媒の活性温度を保持する方法であるため廃
熱の有効利用とプラント機能の向上に役立ち、かつ生成
ガ成触媒の昇温か可能であるため、CO変成器の稼動率
の向上に役立ち、かつCO変成器の機能を存分に発揮さ
せることができるものである。As can be understood from the above explanation, the base method is
This method uses waste heat to superheat excess steam and thereby maintains the activation temperature of the CO production catalyst, which helps to effectively utilize waste heat and improve plant functionality, and allows for raising the temperature of the CO production catalyst. Therefore, it is useful for improving the operating rate of the CO transformer, and the function of the CO transformer can be fully exhibited.
第1図はサイクリック式ガスプラントの7o−シートを
示す。第2図は本発明方法を実施するための70−を組
込んだサイクリック式ガスプラントの70−シートな示
すものである。
1・・・反応炉
2・・−廃熱ボイラ
3ψ・Qスタック
4・拳−スタ′ンク弁
5・・・CO変成器
6・・・CO変成触媒層
7・・・水封器
8・・−メークLPG供給管路
9a−囃アトマイザー
10−・・アロセススチーム供給9FM11・・・過熱
器
12・・・エアー供給管路
1S−参−ヒートLPG供給管路
14・・・スーパーヒートスチーム供給管m15・・・
開閉弁
16・・・流量制御弁
17・・・流量計
特詐出願人
株式会社 石井鐵工所FIG. 1 shows a 7o-sheet of a cyclic gas plant. FIG. 2 shows a 70-sheet of a cyclic gas plant incorporating a 70-sheet for carrying out the method of the invention. 1...Reactor 2...-waste heat boiler 3ψ/Q stack 4/fist-stunk valve 5...CO shift converter 6...CO shift catalyst layer 7...water seal 8... - Make LPG supply line 9a - Musical atomizer 10 - Allocess steam supply 9FM11... Superheater 12... Air supply line 1S - Reference Heat LPG supply line 14... Super heat steam supply pipe m15...
Opening/closing valve 16...Flow rate control valve 17...Flow meter special fraud applicant Ishii Iron Works Co., Ltd.
Claims (3)
成器にプラントの廃熱を利用して生成した蒸気をさらに
廃熱利用の過熱器を通して過熱蒸気とし、これを00変
成器を通し、ρO変成餉媒の温度を活性温度(500〜
400℃)に昇温させることを特徴とするサイクリック
式都市ガスプラントにおけるOO変成器の稼動方法。(1) The steam generated in the CO maltizer in a cyclic city gas plant using the waste heat of the plant is further passed through a superheater using waste heat to become superheated steam, which is then passed through a 00 transformer and converted into ρO transformer. Adjust the temperature of the medium to the activation temperature (500~
A method for operating an OO transformer in a cyclic city gas plant characterized by raising the temperature to 400°C.
気をさらに廃熱利用の過熱1@を通して過熱蒸気とし、
これを00変成器に通Tことを特徴とする前記第1項記
載のサイクリック式都市ガスプラントにおけるCO変成
器の稼動方法。(2) Steam using waste heat generated during the heating period of the plant is further passed through superheating 1@ using waste heat to become superheated steam,
2. The method for operating a CO transformer in a cyclic city gas plant according to item 1 above, characterized in that the CO transformer is passed through a CO transformer.
利用の過熱器を通して過熱蒸気とし、これをaO@成器
に通すことを特徴とする前記第1項記載のサイクリック
式都市ガスプラントにおけるCO変成器の稼動方法。(3) CO transformation in the cyclic city gas plant according to item 1 above, characterized in that during the production period of the plant, process steam is passed through a superheater using waste heat to become superheated steam, and this is passed through an aO@ generator. How to operate the device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57040209A JPS58157896A (en) | 1982-03-16 | 1982-03-16 | Operating method of co converter in cyclic type town gas plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57040209A JPS58157896A (en) | 1982-03-16 | 1982-03-16 | Operating method of co converter in cyclic type town gas plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58157896A true JPS58157896A (en) | 1983-09-20 |
Family
ID=12574385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57040209A Pending JPS58157896A (en) | 1982-03-16 | 1982-03-16 | Operating method of co converter in cyclic type town gas plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58157896A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8536385B2 (en) | 2003-03-06 | 2013-09-17 | Inpex Corporation | Process for preparing dimethyl ether and process for preparing a mixture of dimethyl ether and methanol |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4993302A (en) * | 1972-11-15 | 1974-09-05 | ||
JPS5182201A (en) * | 1974-09-06 | 1976-07-19 | Parsons Co Ralph M | Chikantennengasuno seiho |
JPS5714691A (en) * | 1980-06-19 | 1982-01-25 | Gen Electric | Coal gasifying method and modifying of gas product |
-
1982
- 1982-03-16 JP JP57040209A patent/JPS58157896A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4993302A (en) * | 1972-11-15 | 1974-09-05 | ||
JPS5182201A (en) * | 1974-09-06 | 1976-07-19 | Parsons Co Ralph M | Chikantennengasuno seiho |
JPS5714691A (en) * | 1980-06-19 | 1982-01-25 | Gen Electric | Coal gasifying method and modifying of gas product |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8536385B2 (en) | 2003-03-06 | 2013-09-17 | Inpex Corporation | Process for preparing dimethyl ether and process for preparing a mixture of dimethyl ether and methanol |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4631915A (en) | Gas turbine and steam power-generating plant with integrated coal gasification plant | |
US4552741A (en) | Method and apparatus for manufacturing synthesis gas | |
US20120131898A1 (en) | Integrated solar-gas turbine cogeneration plant | |
CN102099283A (en) | Low energy process for the production of ammonia of methanol | |
Verkhivker et al. | The use of chemical recuperation of heat in a power plant | |
GB1408832A (en) | Non-polluting steam generator system | |
CN104340958B (en) | high-CO raw gas conversion process obtained by pressure gasification of pulverized coal | |
JPS58157896A (en) | Operating method of co converter in cyclic type town gas plant | |
CN112939023A (en) | System and method for storing energy and denitrating ammonia produced by thermal power plant | |
JPH07119491A (en) | Lng reformed gas combustion gas turbine composite generating plant | |
UA150817U (en) | Method of burning liquid together with fuel | |
CN204097079U (en) | A kind of CO transformation system water-gas ratio setting device | |
CN208684403U (en) | A kind of partial oxidation produces the device of suitable hydrogen-carbon ratio synthesis gas | |
RU2708936C1 (en) | Multigenerating complex with combined fuel at additional production of hydrogen and oxygen | |
Svishchev et al. | A thermodynamic analysis of operating conditions under which coal-water fuel is gasified in flow | |
RU2679770C1 (en) | Thermal-chemical generator | |
CN215886925U (en) | Gas supply device for reaction furnace | |
CA2267469C (en) | A method in supplying combustion air to a combustion chamber, arrangements in said combustion chamber as well as use of oxygen-containing exhaust from a gas turbine | |
JPH04313604A (en) | Method for raising temperature of steam from boiler in waste-incineration plant | |
CN2697100Y (en) | Double-fire layer water gas generating furnace from bituminous coal | |
CN214653677U (en) | System for ammonia production energy storage and denitration of thermal power plant | |
CN210671483U (en) | Process system for applying natural gas distributed energy system to agricultural greenhouse | |
CN211688281U (en) | Urea hydrolysis ammonia production steam heating system | |
CN207095319U (en) | A kind of metallurgical waste heat utilization system | |
CN102275871A (en) | Method for producing by-product superheated steam by using water gas latent heat in shift process flow |