JPS5815706B2 - Incomplete ice generation prevention device in water circulation type ice making mechanism - Google Patents

Incomplete ice generation prevention device in water circulation type ice making mechanism

Info

Publication number
JPS5815706B2
JPS5815706B2 JP391779A JP391779A JPS5815706B2 JP S5815706 B2 JPS5815706 B2 JP S5815706B2 JP 391779 A JP391779 A JP 391779A JP 391779 A JP391779 A JP 391779A JP S5815706 B2 JPS5815706 B2 JP S5815706B2
Authority
JP
Japan
Prior art keywords
water
ice
ice making
making
making mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP391779A
Other languages
Japanese (ja)
Other versions
JPS5596881A (en
Inventor
西尾智之
石黒文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP391779A priority Critical patent/JPS5815706B2/en
Publication of JPS5596881A publication Critical patent/JPS5596881A/en
Publication of JPS5815706B2 publication Critical patent/JPS5815706B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

【発明の詳細な説明】 この発明は水循環式製氷機構に特有の、氷結寸前に不完
全水(以下、純水または泥水と呼ぶ)の発生する現象を
未然に防止する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that prevents the phenomenon of incomplete water (hereinafter referred to as pure water or muddy water) occurring just before freezing, which is unique to water circulation type ice making mechanisms.

水循環式製氷機構とは、製氷板の表面に水を流し、それ
を繰返して板面に含有不純物の排除された純粋の氷を生
成させる方式の製氷機構で、その製氷板の形状によって
垂直平板式、垂直管式、傾斜上面流下式、傾斜下面流下
式、凹面流下式、噴水式等の通称で一般に知られている
が、いずれも流水を氷結させるためにその氷点が必ず0
℃より低くなっているのが特徴で、まだこれから氷結が
はじまるという寸前に純水または泥水が発生する点が共
通である。
The water circulation type ice making mechanism is an ice making mechanism that flows water over the surface of the ice making plate and repeatedly generates pure ice without any impurities on the plate surface. Depending on the shape of the ice making plate, it can be , vertical pipe type, sloped top flow type, sloped bottom flow type, concave flow type, fountain type, etc., but all of them require that the freezing point of the flowing water be 0 in order to freeze it.
It is characterized by being lower than ℃, and the common feature is that pure water or muddy water occurs just before freezing begins.

その発生態様は流速や板面温度によって異なるが、上記
のうちでもつとも流速が速くて板面温度の低い噴水式の
場合には綿状に、瞬間的に、そして未氷結水が落下する
集水樋または水タンク内で一斉に発生するのが特徴であ
るが、もつとも流速の遅く、板面温度の高い垂直平板式
の場合には泥状に、漸増的に、板面に部分的に発生する
The manner in which it occurs varies depending on the flow velocity and plate surface temperature, but among the above, in the case of a fountain type where the flow velocity is high and the plate surface temperature is low, it occurs in a cotton-like form, instantaneously, and in a collection where unfrozen water falls. It is characterized by occurring all at once in the gutter or water tank, but in the case of a vertical plate system where the flow velocity is slow and the plate surface temperature is high, it occurs gradually and locally on the plate surface in the form of mud. .

しかしいずれの場合にも、純水または泥水は発生するだ
け発生してしまえばそのうちに逐次完全な氷に移行し、
最終的には完全な氷塊が得られるから致命的な事故には
ならずに済むが、一時的に循環が停止してその分だけ製
氷量が減少したり、管路が閉塞したり、溢水する等の支
障はまぬがれない。
However, in either case, once enough pure water or muddy water is generated, it gradually transitions to complete ice.
In the end, a complete block of ice can be obtained, so there will be no fatal accident, but the circulation will be temporarily stopped and the amount of ice produced will be reduced accordingly, resulting in blockage of pipes and flooding. Such problems cannot be avoided.

発生した純水または泥水を効果的に解消する方法および
装置としては、本願と同一の出願人による昭和53年特
許願第126100号「水循環式製氷機の泥状乃量綿状
氷解消方法および装置」に開示されたものがあるが(特
開昭55−53668号公報)、これは純水または泥水
が発生してしまった後に解消しようとするものであるか
ら、根本的な解決とはならない。
A method and device for effectively eliminating generated pure water or muddy water is disclosed in Patent Application No. 126100 filed in 1973 by the same applicant as the present application, “Method and device for eliminating muddy and flocculent ice in a water circulation type ice maker”. '' (Japanese Patent Laid-Open No. 55-53668), but this is an attempt to eliminate pure water or muddy water after it has been generated, so it is not a fundamental solution.

従って、この発明の目的は、純水または泥水の発生その
ものを未然に防止して、その発生による前述した諸問題
を根本から解決する水循環式製氷機構における不完全米
の発生防止装置を提供することである。
Therefore, an object of the present invention is to provide a device for preventing the generation of incomplete rice in a water circulation type ice making mechanism, which prevents the generation of pure water or muddy water itself, and fundamentally solves the above-mentioned problems caused by the generation. It is.

上記目的を達成するため、本願の発明者は純水または泥
水発生の仕組みを解明し、その結果、製氷板面に不完全
米の発生する時点を捉えて、またはその直前に、循環水
流の供給を一時的に所定の時間中断しまだは減少させる
ことによって、板面を過冷却するかまだは初期氷膜の形
成を強制し、その後に循環水流を復活させることにより
、所期の効果を奏しうろことを知見した。
In order to achieve the above object, the inventor of the present application has elucidated the mechanism of generation of pure water or muddy water, and as a result, the inventor of the present application has discovered that the circulating water flow is supplied at the point when incomplete rice is generated on the ice making plate surface, or just before that point. By temporarily interrupting and reducing the water flow for a predetermined period of time, the plate surface is supercooled or forced to form an initial ice film, and then the circulating water flow is restored to achieve the desired effect. I learned about scales.

所定の時間とは、その製氷機構の製氷板面が流水の中断
によって過冷却されるか、または流水負荷の減少によっ
て初期氷膜を形成するとかの現象を呈し、次の循環再開
を迎えても不完全米を発生させない程度にまで冷却され
るだめの必要最低時間である。
The predetermined period of time means that the ice-making plate surface of the ice-making mechanism becomes supercooled due to the interruption of flowing water, or forms an initial ice film due to a decrease in the flowing water load, and even when the next cycle of circulation resumes. This is the minimum amount of time necessary for the rice to be cooled to a level that does not result in incomplete rice.

この発明を更によく理解するため、先ず純水または泥水
発生の仕組みについて、最も相違した二つの実例、即ち
垂直平板式の場合と噴水式の場合について比較的に記述
すれば、垂直平板式の場合は、第5図にグラフで表示し
たように冷凍回路および循環ポンプをONにして製氷運
転を開始して間もなく、そろそろ板面に氷膜の形成が予
想される時間Cの前になると、板面のあちこちに泥状の
小塊が発生して付着しく6)、次第にその数を増し、古
いものから順に重量に負けて脱落しては製氷板下方の集
水樋を流下する。
In order to better understand this invention, we will first give a comparative description of the two most different examples of the mechanisms for generating pure water or muddy water, namely the case of a vertical plate type and the case of a fountain type. As shown in the graph in Figure 5, soon after turning on the refrigeration circuit and circulation pump to start ice-making operation, and before time C when ice film is expected to form on the plate surface, the plate surface Small mud-like lumps form and stick to ice cubes6), and their number gradually increases, and the oldest ones fall off under the weight and flow down the water collection gutter below the ice-making plate.

この時、これを手に取って観察すると、それは鱗片状の
小片の集合体であることが判る。
At this time, if you pick it up and observe it, you will see that it is a collection of small scale-like pieces.

板面での発生は時と共にその数を増し、落下するものの
量を上回るほどの発生量で板面が覆われるほどになるが
、この頃には板面にいつしか正常な氷の膜が生成してい
て(C)、落ち残った団塊もその中に包み込ぼれて固着
している薄い氷膜はそのまま成長してやがて氷板になっ
てゆくが、中に包み込まれた団塊の変化はやや興味があ
る。
The number of ice formations on the board surface increases over time, and the amount of ice generated on the board surface exceeds the amount of falling objects, to the point where the board surface is covered, but by this time, a normal film of ice has already formed on the board surface. (C), the remaining nodules are also wrapped up in the thin ice film that is firmly attached to it, which continues to grow and eventually becomes an ice plate, but the change in the nodules that are wrapped inside is somewhat interesting. be.

即ち、一見シャーベット状の不透明で軟弱な泥水が、最
初のうちは板面から盛り上がって板面に辛うじて付着し
ているが、その付着面から次第に強固になり、いつしか
透明になって周囲の氷板と見分けがつかなくなり、完全
に同化してもとの痕跡も残さない0°また脱落して集水
樋を落下して行った泥水団も、一時は集水樋を詰まらせ
たり溢水させたりの事故を惹起するものの、そのうち完
全に融解して解消し、製氷機能そのものを破壊するよう
なことはない。
In other words, the opaque and soft muddy water, which looks like sherbet at first, rises up from the surface of the board and barely sticks to it, but the surface it adheres to gradually becomes more solid, and before you know it, it becomes transparent and covers the surrounding ice sheets. It becomes indistinguishable, and completely assimilates, leaving no trace of the original.Also, the mud particles that fell off and fell down the water collection gutter could temporarily clog the water collection gutter or cause it to overflow. Although it may cause an accident, it will eventually melt and disappear completely, and will not destroy the ice-making function itself.

一方、噴水式の場合は、下向きに開口した多数の製氷室
に向けて下から噴射した水が流れ落ちる製氷水タンクの
中で変化が起こる。
On the other hand, in the case of the fountain type, the change occurs in the ice-making water tank where water is sprayed from below and flows down into the numerous ice-making chambers that open downward.

即ちタンクに貯留された水の水面には、上から夕立ちの
ように落水が降りそそいでいるが、製氷運転からしばら
くたってそろそろ製氷室の内壁に薄い氷膜が形成される
と思われる頃、即ち水温が逐次低下しである微妙な温度
(噴水式の場合の実験では約−0,5〜−0,7℃)に
達した瞬間、貯留水の全体が不意に綿状の大団塊に魯変
する。
In other words, water is falling from above like a shower on the surface of the water stored in the tank, but after a while of ice-making operation, when it seems that a thin film of ice is about to form on the inner wall of the ice-making chamber, The water temperature gradually decreases, and the moment it reaches a delicate temperature (approximately -0.5 to -0.7 degrees Celsius in fountain-type experiments), the entire stored water suddenly transforms into a large cotton-like mass. do.

従ってタンクから循環ポンプに向かう管口は瞬時に閉塞
して循環ポンプは空転し、噴水もそれにともなう落水の
夕立ちも止む。
Therefore, the pipe port from the tank to the circulation pump is instantly blocked, the circulation pump idles, and the fountain and accompanying shower of water stop.

このまま数分を経過すると純水の団塊はその外周部から
僅かづつ融けはじめる(これは外温の影響で季節によっ
てその早さが違う)。
If this continues for a few minutes, the pure water nodule will begin to melt little by little from its outer periphery (the speed of this will vary depending on the season due to the influence of external temperature).

この融けた水が空転中の循環ポンプに吸引され、噴水が
僅かに復活し、落水が僅かに復活するとタンク内がまた
僅かに撹乱される。
This melted water is sucked into the idling circulation pump, causing the fountain to revive slightly, and when the falling water revives slightly, the inside of the tank is again slightly disturbed.

この僅かな撹乱が量水の融解を助勢して融解量が僅かに
増え、かくして連鎖的に融解が促進されて遂に循!は元
どおりに回復し、残存する純水塊は一気に解消する。
This slight disturbance helps the melting of the water, the amount of melting increases slightly, and thus the melting is promoted in a chain reaction, finally circulating! will return to normal, and the remaining pure water mass will disappear at once.

この間、循環流の停止している時間は夏なら約3分前後
冬ならその倍程度である。
During this period, the time during which the circulating flow is stopped is approximately 3 minutes in summer, and about twice that time in winter.

さらに前述の不完全米の発生によって生ずる実害を考え
てみると、垂直平板式の場合には集水樋の詰まり、温水
等の事故を惹起したりして目に見える支障があるが、脱
落した泥水の再融解される量は冷凍効果がやや遅れるた
めに製氷能力を損することになる。
Furthermore, considering the actual damage caused by the occurrence of incomplete rice mentioned above, in the case of the vertical flat plate type, there are visible problems such as clogging of the water collection gutter and causing accidents such as hot water, but if the rice falls off, The amount of muddy water that is remelted will cause a slight delay in the freezing effect, resulting in a loss of ice-making capacity.

一方の噴水式では目に見えだ事故は起こらない1代りに
(また目に見えた事故がないためにこの対策が講ぜられ
ないままで今日に至っているが)、製氷サイクルが一時
中断されることによって日量製氷量が削減されることに
なり、例えば製氷サイクル30分の製氷機構においては
この3分間の停止は一側の損失につながっている。
On the other hand, with the fountain type, there are no visible accidents (although this countermeasure has not been taken to this day because there have been no visible accidents), but the ice making cycle is temporarily interrupted. This results in a reduction in the daily amount of ice making, and for example, in an ice making mechanism with an ice making cycle of 30 minutes, this 3 minute stoppage leads to a loss on one side.

このためにこの中断時間を短縮させねばならぬ。For this reason, it is necessary to shorten this interruption time.

第1図はこの発明を適用できる垂直平板式の水循環式製
氷機構を一例としてだけ示すもので、図中、符号1で総
括的に示しだ製氷機構は垂直に立設した製氷部または製
氷板2と、この□製氷板2の下方に若干傾斜して配置さ
れ上方に開口する集水樋3と、集水樋3の斜め下方に配
置した製氷水タンク4とを備える。
FIG. 1 shows only one example of a vertical flat plate type water circulation type ice making mechanism to which the present invention can be applied. In the figure, the ice making mechanism is generally indicated by the reference numeral 1. A water collecting gutter 3 which is arranged at a slight inclination below this square ice-making plate 2 and opens upward, and an ice-making water tank 4 arranged diagonally below the water collecting gutter 3 are provided.

製氷板2の一側面には冷凍系に接続する蒸発管5を蛇行
配置し、前記製氷板2の水平方向に延びる頂部近傍には
これと平行に散水管6を配置し、散水管6に多数穿設し
た散水孔7を製氷板2の製氷面に指向させておく。
An evaporation pipe 5 connected to the refrigeration system is arranged in a meandering manner on one side of the ice-making plate 2, and a water sprinkling pipe 6 is arranged parallel to this near the horizontally extending top of the ice-making plate 2. The drilled water sprinkling holes 7 are directed toward the ice-making surface of the ice-making plate 2.

製氷水タンク4の底部からは製氷用水供給管8を導出し
、循環ポンプ9および水圧調節弁10を経て散水管6に
接続する。
An ice-making water supply pipe 8 is led out from the bottom of the ice-making water tank 4 and connected to the water sprinkler pipe 6 via a circulation pump 9 and a water pressure control valve 10.

従って、弁10を開放し循環ポンプ9を駆動すれば、製
氷水タンク4中の製氷水は供給管8内を矢印方向に圧送
され、散水管6の散水孔7あ・ら製氷板2に向けて均一
に散水される。
Therefore, when the valve 10 is opened and the circulation pump 9 is driven, the ice-making water in the ice-making water tank 4 is forced into the supply pipe 8 in the direction of the arrow, and directed toward the ice-making plate 2 through the water sprinkling holes 7 of the water sprinkling pipe 6. water is evenly distributed.

製氷水夕/す4には皿状の支持部材11を着脱自在に嵌
め込み、この支持部材11より上方の部分と下方の部分
とはフィルタ12を介してのみ連□通し得るように構成
しておく。
A dish-shaped support member 11 is removably fitted into the ice-making water tray 4, and the structure is such that a portion above the support member 11 and a portion below the support member 11 can communicate only through the filter 12. .

まだ、支持部材11には垂直方向に延びるオーバーフロ
ー管13ヲ設ケ、コのオーバーフロー管13は製氷水タ
ンク4の底部から水密的に導出して予備タンク14に臨
ませる。
An overflow pipe 13 extending vertically is also provided on the support member 11, and the overflow pipe 13 is led out from the bottom of the ice-making water tank 4 in a watertight manner and faces the reserve tank 14.

予備タンク14は製氷完了時に製氷板2から氷板を剥離
(除氷)するために使用する水の貯留用であって、予備
タンク14の底部から除氷水供給管15を導出し、循環
ポン716および水圧調節弁17を経て製氷板2に近接
配置した除氷用散水管(図示せず)に接続する。
The reserve tank 14 is used to store water used to peel (de-ice) the ice plate from the ice-making plate 2 when ice making is completed. It is connected via a water pressure regulating valve 17 to a deicing water pipe (not shown) disposed close to the ice making plate 2.

なお、符号18は、予備タンク14に除氷“用水または
外部水道水を供給するためのフロート式主弁を示す。
Note that reference numeral 18 indicates a float type main valve for supplying deicing water or external tap water to the reserve tank 14.

かかる製氷機構1において、冷凍系の運転を開始して製
氷板2を冷却し、同時に循環ポンプ9を駆動することに
より製氷水タンク4内の製氷水は供給管8内を圧送され
、適宜の開口度に調節した弁10を経て散水管6に到り
、散水孔7から製氷板2の製氷面に散布される。
In this ice-making mechanism 1, by starting the operation of the refrigeration system to cool the ice-making plate 2, and at the same time driving the circulation pump 9, the ice-making water in the ice-making water tank 4 is pumped through the supply pipe 8, and the ice-making water is pumped through the supply pipe 8, and the ice-making water is pumped through the supply pipe 8. It reaches the water sprinkling pipe 6 through the valve 10 which is adjusted at the same time, and is sprayed onto the ice making surface of the ice making plate 2 through the water sprinkling hole 7.

散布された製氷用水は製氷板面を一様に流下し、未氷結
水は製氷板2から流下して集水樋3に回収され、若干傾
斜した集水樋3を流れて、フィルタ12を通って沢過さ
れた後、製氷水タンク4に戻る。
The sprayed ice-making water flows uniformly down the ice-making plate surface, and unfrozen water flows down from the ice-making plate 2 and is collected in the water collection gutter 3, flows through the slightly inclined water collection gutter 3, and passes through the filter 12. After being drained, it returns to the ice making water tank 4.

°帰還した製氷水は再び供給管8を通って製氷板面へと
循環供給されるので、未氷結水は氷結温度以下にまで冷
却され、瞬間的に氷結可能な状態にまでなっている(但
し、流動しているため氷結固化は未だしていない)。
°The returned ice-making water passes through the supply pipe 8 again and is circulated and supplied to the ice-making plate surface, so that the unfrozen water is cooled to below the freezing temperature and is in a state where it can be frozen instantaneously. (Since it is flowing, it has not yet solidified.)

このだめ、製氷板面が最も氷結し易い条件の部分となっ
ているので、純水まだは泥水が前述した仕組与で製氷板
面上に形成される。
Unfortunately, since the ice-making plate surface is the part most likely to freeze, pure water and muddy water are formed on the ice-making plate surface in the manner described above.

この発明によれば、かかる純水まだは泥水の発生を防止
するため、製氷板面に純水または泥水の発生する時点を
予め捉えて、その時点まだは直前に、循環ポンプ9から
の製氷水の供給を一時的に所定の期間中断まだは減少さ
せる。
According to this invention, in order to prevent the generation of such pure water or muddy water, the point in time when pure water or muddy water is generated on the ice-making plate surface is detected in advance, and immediately before that point, the ice-making water from the circulation pump 9 is pumped. supply is temporarily interrupted for a predetermined period of time, but not yet reduced.

これにより製氷板面が過冷却され、或は初期氷膜の形成
が強制され、上記所定期間後に製氷水の供給を再開して
も最早純水は発生しない。
As a result, the surface of the ice-making plate is supercooled, or the formation of an initial ice film is forced, and even if the supply of ice-making water is restarted after the above-mentioned predetermined period, pure water is no longer generated.

従って、上記所定の期間とは、製氷板面が製氷水の中断
によって過冷却されるか、まだは製氷水負荷の減少によ
って初期氷膜を形成するとかの現象を呈し、次に製氷水
の正常な供給を行なっても純水を発生させない程度にま
で冷却されるまでの必要最低時間である。
Therefore, the above-mentioned predetermined period means that the ice-making plate surface is supercooled due to the interruption of the ice-making water, or that an initial ice film is formed due to a decrease in the ice-making water load, and then the ice-making water becomes normal. This is the minimum time necessary until the water is cooled to a point where pure water will not be generated even if the water is supplied.

純水の発生時期は諸条件によって異なる。The timing of pure water generation differs depending on various conditions.

この現象が発生し易い条件は次の通りであって、これ等
の条件を勘案して上記の所定期間を適宜決定することが
”できる。
The conditions under which this phenomenon is likely to occur are as follows, and the above-mentioned predetermined period can be appropriately determined in consideration of these conditions.

(1)製氷板の材質がアルミ製の場合は銅製の場合より
も多発する。
(1) If the ice making plate is made of aluminum, this will occur more often than if it is made of copper.

(2)蒸発器(製氷板)の効率と圧縮機能力とのバラン
スがとれていなくて、圧縮機能力の方が下回っている場
合に多い。
(2) There is often an imbalance between the efficiency of the evaporator (ice-making plate) and the compression function, and the compression function is lower than the other.

(3)循環水量が多すぎる場合、まだは流下する流速が
早い場合。
(3) When the amount of circulating water is too large, or when the flow velocity is still fast.

(4)気温、水温の高い場合、夏季など。(4) When the air and water temperatures are high, such as during the summer.

(5) 60H2地区より50H2地区のほうがこの傾
向が強い(圧縮機および循環ポンプの回転数。
(5) This tendency is stronger in the 50H2 area than in the 60H2 area (rotational speed of compressor and circulation pump).

(6)長時間休止していた機械が運転再開した場合など
のその初回。
(6) The first time a machine resumes operation after being out of service for a long time.

(7)凝縮機の冷却水量不足又は空冷式凝縮機にあって
は風量不足の場合。
(7) Insufficient amount of cooling water in the condenser or insufficient air volume for air-cooled condensers.

(8)製氷用水と除氷用水とを兼用して循環させる垂直
平板式製氷機構においては、除氷の直後などに操作ミス
で製氷用水が高温となった場合。
(8) In a vertical plate ice making mechanism that circulates both ice making water and deicing water, if the ice making water reaches a high temperature due to an operational error, such as immediately after deicing.

第6図は、この発明による純水または泥水の前述した発
生防止の仕組みを、第5図の場合と同様な垂直平板式製
氷機構の循環ポンプON1OFFの場合についてグラフ
で表わしたもので、泥水が発生すると予想される時点B
(第5図)の約15秒前Aに循環ポンプ9を停止し、B
の時点で循環ポンプ9を再起動する。
FIG. 6 is a graph showing the mechanism for preventing the generation of pure water or muddy water according to the present invention in the case where the circulation pump of the vertical flat plate ice making mechanism is turned ON and OFF, similar to the case in FIG. Time B when expected to occur
The circulation pump 9 is stopped at A about 15 seconds before (Fig. 5), and B
At the point in time, the circulation pump 9 is restarted.

循環ポンプ停止の時点Aは必ずしも泥水発生予想時点B
の約15秒前でなくても、時点Bと殆ど同じか直前の時
点とし、その約15秒後に循環ポンプを再起動してもよ
い。
Time A when the circulation pump stops is not necessarily time B when muddy water is expected to occur.
The circulating pump may be restarted approximately 15 seconds after the time point B, rather than approximately 15 seconds before the time point B, at a time point that is almost the same as or just before the time point B.

第6図から分かるように、この発明によれば純水まだは
泥水の発生は完全に防止される。
As can be seen from FIG. 6, according to the present invention, generation of muddy water is completely prevented even when pure water is not present.

また、第5図と第6図のグラフを第1図に示すように重
ね両者を比較して見ると、多少ともこの発明の場合の製
氷量(グラフ「ハ」)の方が多いことが分かる。
Furthermore, when comparing the graphs in Figures 5 and 6 by overlapping them as shown in Figure 1, it can be seen that the amount of ice produced in the case of this invention (graph "C") is more or less larger. .

なお、グラフ「イ」、「口」、「ハ」はともに大体の傾
向を示すもので、特にグラフ「ノ・」が直線であるか曲
線であるかは今のところ実測されていない。
Note that the graphs ``I'', ``口'', and ``HA'' all indicate general trends, and it has not been actually measured so far whether the graph ``NO・'' is a straight line or a curve.

第2図は前述した不完全水の発生防止装置の一実施例を
示すもので、この実施例では、不完全水の発生を予想す
る製氷機構における可変因子(この例では運転開始から
の時間)を検知する手段として、一つのタイマー19を
循環ポンプ9を駆動するだめのポンプモータ20の電気
回路に組み込んで、上述のポンプ制御を行なうもので、
予め実験的に不完全水の発生時期を求めておいて運転開
始と同時にタイマー19を連動させ、不完全水の発生時
期に合わせた設定時間に達するとポンプモータ20をO
FFさせる。
FIG. 2 shows an embodiment of the above-mentioned incomplete water generation prevention device. In this embodiment, a variable factor (in this example, time from the start of operation) in the ice making mechanism that predicts the generation of incomplete water is used. As a means for detecting this, one timer 19 is incorporated into the electric circuit of the pump motor 20 that drives the circulation pump 9, and the above-mentioned pump control is performed.
The timing of generation of incomplete water is experimentally determined in advance, and the timer 19 is activated at the same time as the start of operation, and when the set time corresponding to the timing of generation of incomplete water is reached, the pump motor 20 is turned off.
Make it FF.

従って、循環ポンプ9は検知手段であるタイマー19に
よる検知に応動して供給管8中の水の循環量を必要に応
じて所定量以下に減少させる手段である。
Therefore, the circulation pump 9 is a means for reducing the amount of water circulated in the supply pipe 8 to a predetermined amount or less as necessary in response to the detection by the timer 19, which is a detection means.

また、タイマー19に連動して遅延リレー21が作動し
、ポンプモータ20のOFF後、上記所定時間を経過す
るとポンプモータ20を再びONにする。
Further, a delay relay 21 is operated in conjunction with the timer 19, and after the pump motor 20 is turned off, the pump motor 20 is turned on again after the predetermined time has elapsed.

タイマー19および水の循環量減少を解除する遅延リレ
ー21の設定時間は前述した諸条件に適応するよう設定
可能であり、例えばタイマー19は数分、遅延リレー2
1は0〜60秒の範囲内で可変とすることができる。
The setting times of the timer 19 and the delay relay 21 for canceling the reduction in water circulation amount can be set to adapt to the conditions described above. For example, the timer 19 is set to several minutes, and the delay relay 2
1 can be variable within the range of 0 to 60 seconds.

またこの発明の応用例として、製氷機構における可変因
子を検知することなく、製氷運転開始と同時に冷凍回路
だけ起動させて循環水のほうは停止のままで保持し、一
定時間後に循環水を再開させることによって同様の効果
を上げようとする方法も考えられるが、これは実験の結
果下記の長所と短所とが明らかになり、短所のほうが大
きいために実用には供せられなかった。
In addition, as an application example of this invention, only the refrigeration circuit is started at the same time as the ice-making operation starts, the circulating water remains stopped, and the circulating water is restarted after a certain period of time, without detecting the variable factors in the ice-making mechanism. Although it is possible to consider a method to achieve a similar effect by doing this, experiments have revealed the following advantages and disadvantages, and the disadvantages are greater, so this method could not be put to practical use.

長所 (1)可変因子を検知するための装置・器具が不要。Strong Points (1) No equipment or instruments are required to detect variable factors.

短所 (1)製氷運転の途中で中断して無負荷(又は微負荷)
冷却されるのと異なって、初期段階または除氷直後の常
温状態から製氷板が無負荷(又は微負荷)冷却されるた
め、過冷却されるまでにより長時間を要し、かつ製氷板
の伸縮歪が大きくて、特に冷媒出入口部での疲労破損が
心配された。
Disadvantages (1) No load (or slight load) due to interruption in the middle of ice making operation
Unlike cooling, the ice-making plate is cooled with no load (or slight load) from the initial stage or from room temperature immediately after deicing, so it takes a longer time to reach supercooling, and the ice-making plate does not expand or contract. The strain was so large that there was concern about fatigue damage, especially at the refrigerant inlet and outlet sections.

(2)過冷却のだめの所要時間が本発明の場合約15程
度度であるのに比べて約3〜5分と長く、日量製氷量の
面から無視できなかった。
(2) The time required for supercooling is about 3 to 5 minutes compared to about 15 degrees in the case of the present invention, which cannot be ignored in terms of daily ice production.

(3)この休止時間は圧縮機の起動時の過電流の保護の
面からは役立ったが、不完全水の発生防止の面からはこ
れでもなお満足ではなかった。
(3) Although this downtime was useful in terms of protection against overcurrent during startup of the compressor, it was still unsatisfactory in terms of preventing the generation of incomplete water.

(4)この休止時間の間に、当然ながら冷媒回路の高低
圧スイッチの低圧側が作動して運転を停止してしまった
(4) During this downtime, naturally the low pressure side of the high/low pressure switch in the refrigerant circuit was activated and the operation was stopped.

(5) この休止時間は外温によって大きく変動し、
前述のタイマー検知式と同様に気温に応じた調節の必要
があった。
(5) This rest time varies greatly depending on the external temperature,
Like the timer detection type mentioned above, it was necessary to adjust according to the temperature.

またこの調節は微妙で面倒な操作を要した。Moreover, this adjustment required delicate and troublesome operations.

(6)製氷板は乾燥状態となるため板面へのスケールの
付着が強まった。
(6) Since the ice-making plate was in a dry state, scale adhesion to the plate surface was increased.

第3図は不完全水の発生防止装置の別の実施例を示すも
ので、この装置は製氷機構における可変因子として循環
水の所定温度をサーモスタット24で検知してポンプモ
ータ20を停止させ、同時に遅延リレー21を作動させ
て所定時間後にポンプモータ20をONさせる。
FIG. 3 shows another embodiment of a device for preventing the generation of incomplete water. This device detects a predetermined temperature of circulating water as a variable factor in the ice making mechanism with a thermostat 24, stops the pump motor 20, and at the same time The delay relay 21 is activated and the pump motor 20 is turned on after a predetermined time.

所定温度とは、純水または泥水の基になる薄い氷膜が形
成されると思われる温度、即ち循環水の温度が逐次低下
しである微妙な温度(噴水式の場合の実験では約−0,
5〜−0,7℃)になる前の温度であり、この実施例で
はサーモスタット24は1.5℃に設定する。
The predetermined temperature is the temperature at which a thin ice film, which is the base of pure water or muddy water, is thought to be formed, that is, the temperature at which the temperature of the circulating water gradually decreases (approximately -0 in experiments with fountain type). ,
5 to -0.7°C), and in this example, the thermostat 24 is set to 1.5°C.

しかし、サーモスタット感温筒の設置場所等により設定
温度は±0.5℃或はそれ以上の範囲で変わる。
However, the set temperature varies within a range of ±0.5°C or more depending on the installation location of the thermostat temperature sensor.

また、所定時間とは第2図の実施例について説明したも
のと同一である。
Further, the predetermined time is the same as that described for the embodiment of FIG.

感温筒は第1図に符号A−Eで示した部分のどこかに取
り付けるのが好適である。
It is preferable to attach the thermosensor tube somewhere in the area indicated by the symbols A-E in FIG.

ここで、A:散水管内の部分 B:集水樋内上流部 C:集水樋内の下流端 D:フィルタの枠付近 E:製氷水タンクの底から約1/3の部分この中で集水
樋内の部分BおよびCは製氷板面に近接しているので、
検知温度の誤差が少なく、また氷板落下通路から外れて
いるため何ら障害とならないばかりか、保守点検にも好
都合な有利な位置である。
Here, A: Part inside the water pipe B: Upstream part inside the water collection gutter C: Downstream end inside the water collection gutter D: Near the filter frame E: About 1/3 part from the bottom of the ice making water tank Since parts B and C in the water gutter are close to the ice plate surface,
There is little error in the detected temperature, and since it is outside the ice plate falling path, it does not pose any obstruction, and is also conveniently located for maintenance and inspection.

また、この方式は信頼性があり、且つ実施容易で安価で
ある。
Additionally, this method is reliable, easy to implement, and inexpensive.

この実施例も第2図のものと同様に、ポンプモータ20
をON10 F F制御する代りに、サーモスタツ)b
よび遅延リレーの組合せを使って散水管への製氷水の供
給量を適宜の手段で制御するように改変可能である。
This embodiment also has a pump motor 20 similar to the one in FIG.
ON10 FF Instead of controlling the thermostat)b
It can be modified to control the amount of ice-making water supplied to the water sprinkler pipe by any suitable means using a combination of a delay relay and a delay relay.

・更に、この発明によれば、製氷板面に細氷または泥水
の発生する時点を予め捉えて、その時点または直前に、
循環ポンプ9からの製氷水の供給を一時的に所定の期間
、所定量以下に減少させても所期の効果が得られるので
、タイマー19によりポンプモータ20をOFFにする
必要は必ずしもない。
・Furthermore, according to the present invention, the point in time when fine ice or muddy water is generated on the ice making plate surface is detected in advance, and at or just before that point,
Since the desired effect can be obtained even if the supply of ice-making water from the circulation pump 9 is temporarily reduced to a predetermined amount or less for a predetermined period of time, it is not necessarily necessary to turn off the pump motor 20 by the timer 19.

代りに、第1図に鎖線で示すように、電磁弁22を有す
る管路抵抗の大きいバイパス路23を弁10に関して設
け、タイマー19が設定時間に達した時に弁10を閉じ
、そして弁22を開き流量を急減させるようにしてもよ
い。
Instead, as shown in dashed lines in FIG. 1, a high-resistance bypass 23 with a solenoid valve 22 is provided for valve 10, which closes valve 10 when timer 19 reaches a set time and closes valve 22. The opening flow rate may be suddenly reduced.

或は供給管8自体に電磁弁を設けこれを全開位置と半開
位置とに制御するようにしてもよい。
Alternatively, a solenoid valve may be provided in the supply pipe 8 itself to control the valve between a fully open position and a half open position.

遅延リレー21が設定時間に達すると、逆に弁10が開
き、弁22が閉じて元の状態に戻る。
When the delay relay 21 reaches the set time, the valve 10 opens and the valve 22 closes, returning to the original state.

要するに、製氷水の供給を所定量以下に減じる手段があ
ればよく、ゼロに減じてもよい。
In short, it is sufficient if there is a means to reduce the supply of ice-making water to a predetermined amount or less, and it may be reduced to zero.

第8図は第3図の実施例を使って循環ポンプ9を0N1
OFF制御した場合の運転サイクルを示すもので、実線
のグラフaおよび一点鎖線のグラフbは、サーモスタッ
ト24をそれぞれ第9図に示す端面形状の製氷板2上の
位置aおよび位置すに取り付けて得た時間と温度の関係
を示しているAは循環ポンプの停止時点、Bは泥水発生
予想点であり循環ポンプ再起動の時点でもめる。
FIG. 8 shows the circulation pump 9 using the embodiment shown in FIG.
Graph a with a solid line and graph b with a dashed-dotted line show the operating cycles when the OFF control is performed. The relationship between time and temperature is indicated by A, which is the point at which the circulation pump is stopped, and B, which is the predicted point at which muddy water is generated, and which is determined by the point at which the circulation pump is restarted.

第10図はサーモスタットを上記の位置aおよびbに取
り付けて泥水発生予想点近傍の温度変化を実測したグラ
フa′ およびb′ を示す。
FIG. 10 shows graphs a' and b' obtained by actually measuring temperature changes in the vicinity of the expected muddy water generation point with thermostats installed at the above-mentioned positions a and b.

このグラフから分かるように、循環水の温度は泥水発生
予想点近傍で急激に変化するのでこれを予じめ求め、そ
の温度か或は若干高い温度にサーモスタットを設定して
おくことにより容易にポンプモータの制御ができる。
As you can see from this graph, the temperature of the circulating water changes rapidly near the point where muddy water is expected to occur, so by determining this in advance and setting the thermostat to that temperature or a slightly higher temperature, the pump can be easily adjusted. Can control motors.

第3図の実施例では循環水の温度をサーモスタットで検
知したが、状態量として冷媒の温度を検知することによ
っても前述した制御が可能である。
In the embodiment shown in FIG. 3, the temperature of the circulating water is detected by a thermostat, but the above-described control can also be performed by detecting the temperature of the refrigerant as a state quantity.

この場合の構成は第3図の実施例と全く同様であり、た
だ感温筒の取付場所が冷媒回路の低圧側の一個所になり
、また当然ながら設定基準温度が高温点で、使用するサ
ーモスタット特性もそれに合わせて選択されねばならな
い。
The configuration in this case is exactly the same as the embodiment shown in Fig. 3, except that the temperature sensing cylinder is installed at one place on the low pressure side of the refrigerant circuit, and of course the set reference temperature is the high temperature point, and the thermostat used is The characteristics must also be selected accordingly.

取付場所としては低圧側ならほぼ同じであるが、第1図
に符号F、G、Hで示した所が有利であり、中でも製氷
板裏面の蒸発管のほぼ中央Fがすべての場合に無難であ
る。
The mounting locations are almost the same on the low pressure side, but the locations indicated by symbols F, G, and H in Figure 1 are advantageous, and in particular, the location F, approximately in the center of the evaporation tube on the back of the ice-making plate, is safe in all cases. be.

さらにこの方法は第3図の方法と比べて、噴水式製氷機
構の場合に下記の理由で有利である。
Furthermore, this method is advantageous over the method of FIG. 3 in the case of a fountain ice making mechanism for the following reasons.

即ち、噴水形の場合は流水部が全面的に密閉された構造
になっているため感温筒を装着するにふされしい個所が
見当たらず、また仮に装着しても、流水部がすべて一団
となって開閉傾動するために配線上に無理があって耐久
性に乏しい。
In other words, in the case of a fountain type, the flowing water part is completely sealed, so there is no suitable place to attach a thermosensor, and even if it were installed, the flowing water part is all in one place. Since it tilts to open and close, it puts strain on the wiring and lacks durability.

その点この冷媒温度検知による方法では感温筒を蒸発管
に固着させるので不動であり、配線も被覆断熱する等の
処理ができる。
On the other hand, in this method of detecting refrigerant temperature, the temperature sensing tube is fixed to the evaporation tube, so it is immovable, and the wiring can also be covered and insulated.

実測の結果によれば、低圧配管内の冷媒温度は不完全水
の発生までは水温にほぼ比例して直線的に変化するので
、水温検知の場合とほぼ同じ程度の信頼性があると思わ
れる。
According to the actual measurement results, the refrigerant temperature in the low-pressure piping changes linearly in almost proportion to the water temperature until the occurrence of incomplete water, so it is thought that the reliability is almost the same as that of water temperature detection. .

更に第4図に示すように、冷媒回路の低圧側配管25の
一部にキャピラリーチューブ26を導出して圧力スイッ
チに接続し、冷媒圧力の変化を検知して不完全氷見生前
の時点にポンプモータ20をOFFにすることも可能で
ある。
Furthermore, as shown in FIG. 4, a capillary tube 26 is led out from a part of the low-pressure side piping 25 of the refrigerant circuit and connected to a pressure switch, and changes in the refrigerant pressure are detected and the pump motor is activated at the time before incomplete Himi. It is also possible to turn 20 off.

冷凍回路に往復圧縮機を使用した場合、圧力の脈動が生
じるが、低圧側に圧力スイッチを設ければ脈動の影響を
殆んど受けることはない。
When a reciprocating compressor is used in a refrigeration circuit, pressure pulsations occur, but if a pressure switch is provided on the low pressure side, the pulsations will hardly affect the pressure.

この方式の利点は、検知部が低圧回路であればどこでも
大差がないだめ、圧縮機に近い便利な場所に取り付ける
ことが可能であり、製氷板付近の悪条件区域に精密部品
を配設する必要がないため、保守点検、サービス等に有
利であり、製造も容易である。
The advantage of this method is that it can be installed in a convenient location near the compressor, since the detection part does not make much difference anywhere as long as it is a low-voltage circuit, and there is no need to install precision parts in areas with poor conditions near the ice-making plate. Since there are no holes, it is advantageous for maintenance, inspection, service, etc., and it is easy to manufacture.

以上の記載から明らかなように、この発明によれば細氷
まだは泥水の発生そのものを防ぐので、従来のように発
生したものを解消するだめの加熱とか熱交換などの処置
を必要とせず、冷却効率に何ら影響を及ぼさない。
As is clear from the above description, according to the present invention, the generation of fine ice and muddy water itself is prevented, so there is no need for conventional measures such as heating or heat exchange to eliminate the occurrence of muddy water. Does not affect cooling efficiency in any way.

また、使用する部品が可動部品ではないから、新だな故
障原因を生み出すことはなく、部品全てが安価である。
Additionally, since the parts used are not moving parts, there are no new causes of failure, and all parts are inexpensive.

循環水路の閉塞による事故が解消するので、事故防止の
だめのあらゆる処置が不要になる。
Since accidents caused by clogging of the circulation waterway are eliminated, there is no need to take any measures to prevent accidents.

また、噴水式および垂直管式では循環流の一時的停止に
よる製氷量の損失がなくなり、垂直平板式、傾斜下面流
下式および凹面流下式では、不完全氷塊の隆起によって
板面上の水流が阻害され、側流が生じたり飛沫が飛んで
付近の制御部品をぬらすことによる漏電事故が発生する
ようなことはない。
In addition, with the fountain type and vertical pipe type, there is no loss of ice production due to temporary stoppage of circulating flow, and with the vertical plate type, sloped bottom flow type, and concave flow type, the water flow on the plate surface is obstructed by the upheaval of incomplete ice blocks. Therefore, there is no risk of electrical leakage caused by side currents or splashes that wet nearby control parts.

特に、傾斜下面流下式製氷機構を使用する純水製造装置
では、泥水が貯水槽に脱落する不具合がなくなる。
Particularly, in a pure water production apparatus using an inclined downward flow type ice making mechanism, the problem of muddy water falling into a water storage tank is eliminated.

なお、この発明は主に垂直平板式製氷機構について説明
したが、水循環式のあらゆる形式の製氷機構に応用し得
るのは勿論であり、かかる製氷機構は製氷機、純水製造
装置等に当然利用できる。
Although this invention has mainly been described with respect to a vertical flat plate ice making mechanism, it is of course applicable to all types of water circulation type ice making mechanisms, and such ice making mechanisms can naturally be used in ice making machines, pure water production equipment, etc. can.

まだ、不完全水の発生時点の検出位置は、水温検出の場
合は前述の例のごとく循環水の流域のいかなる場所にも
限定されず、冷媒温度検出の場合も同様に冷媒回路のど
の位置にも限定されず、更に冷媒圧力検出の場合も冷媒
回路の低圧側であればどの位置でもよい。
However, the detection position when incomplete water is generated is not limited to any location in the circulating water basin in the case of water temperature detection, as in the above example, and similarly, the detection position at the time of generation of incomplete water is not limited to any location in the refrigerant circuit in the case of refrigerant temperature detection. Furthermore, in the case of refrigerant pressure detection, any position may be used as long as it is on the low pressure side of the refrigerant circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による不完全水の発生防止装置を実施
する製氷機構の概要図、第2図および第3図はこの発明
による不完全水の発生防止装置の異なる実施例の概要図
、第4図はこの発明による更に別の実施例における圧力
検出キャピラリーチューブの断面図、第5図は従来の製
氷機構における不完全水発生の仕組みを説明する図、第
6図はこの発明による不完全水の発生防止装置を備えた
製氷機構における氷生成過程を説明する図、第7図は第
5図および第6図のグラフの合成図、第8図はこの発明
を実施しだ垂直平板式製氷機構の運転サイクルと循環水
との温度の関係を説明する図、第9図は第8図における
循環水温度検出位置を示す側面図と端面図、第1σ図は
この発明を実施していない製氷機構における泥水発生予
想点近傍の循環水温度の変化状物を示す図である。 図中、1は製氷機構、2は製氷部(製氷板)、9は減少
手段である循環ポンプ、19は検知手段であるタイマー
、21は解除手段である遅延リレー、24は検知手段で
あるサーモスタットである。
FIG. 1 is a schematic diagram of an ice making mechanism that implements a device for preventing the generation of incomplete water according to the present invention, and FIGS. 2 and 3 are schematic diagrams of different embodiments of the device for preventing the generation of incomplete water according to the present invention. Figure 4 is a cross-sectional view of a pressure detection capillary tube in yet another embodiment of the present invention, Figure 5 is a diagram illustrating the mechanism of incomplete water generation in a conventional ice making mechanism, and Figure 6 is a diagram illustrating the mechanism of incomplete water generation according to the present invention. 7 is a composite diagram of the graphs of FIGS. 5 and 6, and FIG. 8 is a diagram illustrating the ice production process in an ice making mechanism equipped with an ice generation prevention device. FIG. Fig. 9 is a side view and end view showing the circulating water temperature detection position in Fig. 8, and Fig. 1 σ is an ice making mechanism that does not implement this invention. FIG. 2 is a diagram showing changes in circulating water temperature near the expected muddy water generation point in FIG. In the figure, 1 is an ice-making mechanism, 2 is an ice-making unit (ice-making plate), 9 is a circulation pump which is a reduction means, 19 is a timer which is a detection means, 21 is a delay relay which is a release means, and 24 is a thermostat which is a detection means. It is.

Claims (1)

【特許請求の範囲】 1 水を循環路中の製氷部に循環させて製氷する製氷機
構における不完全水の発生を防止するために、不完全水
の発生を予報する上記製氷機構における可変因孕の所定
値を検知する手段と、上記検知手段による検知に応動し
そ循環路中の水の循環量を所定量以下に減少させる″手
段と□、所定量以下の減少状態を所定時間後に解除する
よう上記減少手段、に関連する解除手段とを備える水循
環式製氷機構における不完全水の発生防止装置。 2 製氷機構における可変因子は製氷機構の運転開始か
らの時間であり、検知手段はタイマーであり、解除手段
は遅延リレーである特許請求の範囲第1項記載の水循環
式製氷機構における不完全水の発生防止装置。 3 製氷機構における可変因子は循環する水の温度であ
り、検知手段はサーモスタットであり、解除手段は遅延
リレーである特許請求の範囲第1項:JFh!ii”環
式製氷機構5おqる不完全水の発生4 製氷機構におけ
る可変因子は冷媒温度であり、検知手段はサーモスタッ
トであり、解除手段は遅延リレ′−である特許請求の範
囲第1項記載の水循環式製氷機構における不完全水の発
生防止装置。 5 減少手段は循環路に設けた循環ポンプである特許請
求の範囲第2項又は第3項記載の水循環式製氷機構にお
ける不完全水の発生防止装置。
[Scope of Claims] 1. In order to prevent the occurrence of incomplete water in an ice making mechanism that circulates water to an ice making section in a circulation path to make ice, a variable factor in the ice making mechanism that predicts the occurrence of incomplete water is provided. means for detecting a predetermined value of , and means for reducing the circulating amount of water in the circulation path to a predetermined amount or less in response to the detection by the detecting means; A device for preventing generation of incomplete water in a water circulation ice making mechanism, comprising a releasing means related to the reducing means. 2. The variable factor in the ice making mechanism is the time from the start of operation of the ice making mechanism, and the detecting means is a timer; A device for preventing generation of incomplete water in a water circulating ice making mechanism according to claim 1, wherein the release means is a delay relay. 3. The variable factor in the ice making mechanism is the temperature of the circulating water, and the detection means is a thermostat. , the release means is a delay relay.Claim 1: JFh!ii" Ring-type ice making mechanism 2. A device for preventing generation of incomplete water in a water circulation type ice making mechanism according to claim 1, wherein the releasing means is a delay relay. 5. A device for preventing generation of incomplete water in a water circulation type ice making mechanism according to claim 2 or 3, wherein the reducing means is a circulation pump provided in the circulation path.
JP391779A 1979-01-19 1979-01-19 Incomplete ice generation prevention device in water circulation type ice making mechanism Expired JPS5815706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP391779A JPS5815706B2 (en) 1979-01-19 1979-01-19 Incomplete ice generation prevention device in water circulation type ice making mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP391779A JPS5815706B2 (en) 1979-01-19 1979-01-19 Incomplete ice generation prevention device in water circulation type ice making mechanism

Publications (2)

Publication Number Publication Date
JPS5596881A JPS5596881A (en) 1980-07-23
JPS5815706B2 true JPS5815706B2 (en) 1983-03-26

Family

ID=11570508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP391779A Expired JPS5815706B2 (en) 1979-01-19 1979-01-19 Incomplete ice generation prevention device in water circulation type ice making mechanism

Country Status (1)

Country Link
JP (1) JPS5815706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123121U (en) * 1985-01-19 1986-08-02

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5052201B2 (en) * 2007-05-09 2012-10-17 ホシザキ電機株式会社 Automatic ice maker and operation method of automatic ice maker
JP5448618B2 (en) * 2009-07-16 2014-03-19 ホシザキ電機株式会社 Ice machine
JP6564265B2 (en) * 2015-07-29 2019-08-21 ホシザキ株式会社 Ice making equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123121U (en) * 1985-01-19 1986-08-02

Also Published As

Publication number Publication date
JPS5596881A (en) 1980-07-23

Similar Documents

Publication Publication Date Title
US6725675B2 (en) Flaked ice making machine
JP2009002607A (en) Operating method of ice making machine
JP2005201545A (en) Multiple ice-making determining method of automatic ice maker, and operation method
US5207761A (en) Refrigerator/water purifier with common evaporator
JP2009121768A (en) Automatic ice making machine and control method for it
JPS5815706B2 (en) Incomplete ice generation prevention device in water circulation type ice making mechanism
US5894734A (en) Water-circulating type ice maker
US5123948A (en) Icemaker/water purifier with by-pass condenser
JP2011179790A (en) Automatic ice making machine
JPH0638292Y2 (en) Automatic ice machine
JPH08338675A (en) Method and device for preventing imperfect ice generation in water circulation type ice making machine
JP7174552B2 (en) automatic ice machine
JPS5938688Y2 (en) automatic ice maker
JP7161946B2 (en) automatic ice machine
JP2004278991A (en) Ice making machine
JPH0674626A (en) Flowing down type ice making machine
JP2585376Y2 (en) Auger ice machine
JPH04273962A (en) Device for controlling operation of ice making machine
JPS5813250Y2 (en) automatic ice maker
JPH0537174Y2 (en)
JPH0410537Y2 (en)
JP4388155B2 (en) Ice storage type cold water supply system
JPH038924Y2 (en)
JPH0541326Y2 (en)
JPH02183781A (en) Method for preventing occurrence of incomplete ice in ice making machine