JPH0537174Y2 - - Google Patents

Info

Publication number
JPH0537174Y2
JPH0537174Y2 JP9936888U JP9936888U JPH0537174Y2 JP H0537174 Y2 JPH0537174 Y2 JP H0537174Y2 JP 9936888 U JP9936888 U JP 9936888U JP 9936888 U JP9936888 U JP 9936888U JP H0537174 Y2 JPH0537174 Y2 JP H0537174Y2
Authority
JP
Japan
Prior art keywords
ice
making
condenser
temperature
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9936888U
Other languages
Japanese (ja)
Other versions
JPH0220067U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9936888U priority Critical patent/JPH0537174Y2/ja
Publication of JPH0220067U publication Critical patent/JPH0220067U/ja
Application granted granted Critical
Publication of JPH0537174Y2 publication Critical patent/JPH0537174Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 この考案は、空冷式凝縮器を備える自動製氷機
において、外気温が変動しても凝縮器の目詰りを
確実に検知して、製氷能力の低下を有効に防止し
得る検知装置に関するものである。
[Detailed description of the invention] Industrial application field This invention is an automatic ice maker equipped with an air-cooled condenser that can reliably detect clogging of the condenser even when the outside temperature fluctuates, thereby reducing ice-making capacity. This invention relates to a detection device that can effectively prevent this.

従来技術 角氷や板氷その他各種形状の氷を多数連続的に
製造するための自動製氷機が、その用途に応じて
好適に使い分けられている。例えば、製氷室に
画成されて下方に開放する多数の製氷小室を、水
皿により開閉自在に閉成し、この水皿から製氷水
を噴射供給して当該製氷小室中に角氷を徐々に形
成する所謂クローズドセル方式の製氷機や、下
方に開放する多数の製氷小室に、水皿を介するこ
となく製氷水を直接供給し、角氷を該小室中に形
成する所謂オープンセル方式の製氷機や、製氷
板を傾斜配置し、この製氷板の表面または裏面に
製氷水を流下供給し、当該製氷板面上に板氷を形
成する流下式製氷機等が広く普及している。
BACKGROUND ART Automatic ice making machines for continuously producing large numbers of ice cubes, ice sheets, and other ice shapes of various shapes are suitably used depending on their purpose. For example, a large number of ice-making compartments defined in the ice-making compartment and open downwards are closed by a water tray so that they can be opened and closed, and ice-making water is injected from the water tray to gradually pour ice cubes into the ice-making compartments. There are so-called closed-cell type ice-making machines that form ice cubes, and so-called open-cell type ice-making machines that directly supply ice-making water to a number of ice-making chambers that open downward, without going through a water tray, and form ice cubes in the chambers. 2. Description of the Related Art Drop-down ice making machines are widely used in which an ice making plate is arranged at an angle, and ice making water is supplied flowing down onto the front or back side of the ice making plate to form ice sheets on the surface of the ice making plate.

これらの自動製氷機は、一般に機体上方に製氷
機構を備えると共に、機体下部に前記製氷機構の
製氷部を冷却する冷凍系を備え、前記冷凍系は、
圧縮機、凝縮機、キヤピラリーチユーブ、蒸発器
等の諸部材から構成されている。前記蒸発器は、
冷凍系から導出されて製氷機構の製氷部に配設さ
れ、製氷水をこの製氷部に循環供給することによ
つて所要形状の氷が生成される。当該氷が所定の
大きさに成長すると、これを製氷完了検知装置が
検知して製氷氷の供給を停止し、弁体を切換えて
圧縮機からの高温冷媒ガスを蒸発器に供給して製
氷部を加熱する。これにより該製氷部で生成され
た氷を自重落下させ、下方に配置したストツカー
に回収貯留する。なお冷凍系の凝縮器としては、
一般にフインアンドチユーブ形が用いられ、冷却
フアンにより該凝縮器の強制空冷がなされる。
These automatic ice making machines generally include an ice making mechanism above the machine body and a refrigeration system below the machine body that cools the ice making section of the ice making mechanism, and the refrigeration system includes:
It consists of various parts such as a compressor, condenser, capillary reach tube, and evaporator. The evaporator is
The ice is extracted from the refrigeration system and placed in the ice making section of the ice making mechanism, and ice having a desired shape is generated by circulating and supplying ice making water to the ice making section. When the ice has grown to a predetermined size, the ice-making completion detection device detects this and stops the supply of ice-making, and switches the valve body to supply high-temperature refrigerant gas from the compressor to the evaporator to start the ice-making section. heat up. As a result, the ice produced in the ice making section falls under its own weight and is collected and stored in a stocker located below. As a refrigeration system condenser,
Generally, a fin-and-tube type is used, and the condenser is forcedly air-cooled by a cooling fan.

また製氷運転の完了を検知するには、一般に次
の如き方法が採用されている。すなわち、製氷
水が氷結した際の温度変化を電気抵抗変化に変換
するサーモスタツト等の温度検知装置により監視
し、製氷部における所定の温度降下を検知して製
氷運転の終了を判断する。あるいは、製氷開始
から終了までに要する時間を実験的に求めて、こ
れを予めタイマに設定し、その設定時限のタイム
アツプにより製氷運転の完了を検知する。更
に、前記,を併用する場合もある。
Further, the following method is generally used to detect the completion of the ice-making operation. That is, it is monitored by a temperature detection device such as a thermostat that converts a temperature change when ice-making water freezes into an electrical resistance change, and a predetermined temperature drop in the ice-making section is detected to determine the end of the ice-making operation. Alternatively, the time required from the start to the end of ice making is determined experimentally, this time is set in advance in a timer, and the completion of the ice making operation is detected by the time-up of the set time limit. Furthermore, the above may be used in combination.

考案が解決しようとする課題 前述した空冷式の凝縮器を備える製氷機では、
筐体下部に空気吸込口と吐出口とが開設され、筐
体内に配設した冷却フアンの回転により吸込口か
ら吸引された空気は、凝縮器に接触して熱交換に
よる冷却を行なつた後、温度上昇した空気は前記
吐出口を介して外部に吐出される。この場合に、
空気と共に塵埃も筐体内に吸込まれるが、この塵
埃が凝縮器に経時的に付着成長すると、熱交換効
率を低下させオーバーヒート等による故障の原因
となる。そこで、前記冷却フアンにより吸込まれ
た空気は、凝縮器に接触する以前に浄化して、空
気中の塵埃を可能な限り除去しておく必要があ
り、このため前記空気吸込口や凝縮器に塵埃捕集
用のフイルタを取付ける構成が一般に採用されて
いる。
Problems that the invention aims to solve In the ice maker equipped with the air-cooled condenser mentioned above,
An air suction port and a discharge port are provided at the bottom of the casing, and the air sucked in from the suction port by the rotation of a cooling fan installed inside the casing comes into contact with a condenser and is cooled by heat exchange. The air whose temperature has increased is discharged to the outside through the discharge port. In this case,
Dust is also sucked into the housing along with air, but if this dust adheres to the condenser and grows over time, it reduces heat exchange efficiency and causes failures due to overheating and the like. Therefore, the air sucked in by the cooling fan needs to be purified to remove as much dust as possible from the air before it comes into contact with the condenser. A configuration in which a collection filter is attached is generally adopted.

前記フイルタは、捕集した塵埃により次第に目
詰りを生ずるから、該フイルタの定期的な交換ま
たはフイルタ洗浄を行なう必要がある。また、フ
イルタを取付けても、凝縮器の目詰りを完全には
防止し得ず、前述の如く経時的には凝縮器に塵埃
が付着し、熱交換効率の低下およびこれに起因す
る消費電力の浪費を招来すると共に、日産製氷能
力も減少する問題があつた。
Since the filter gradually becomes clogged with the collected dust, it is necessary to periodically replace or clean the filter. Furthermore, even if a filter is installed, clogging of the condenser cannot be completely prevented, and as mentioned above, dust will accumulate on the condenser over time, reducing heat exchange efficiency and reducing power consumption due to this. There was a problem in that it not only led to waste, but also reduced Nissan's ice making capacity.

そこで、製氷機に凝縮器の目詰り検知装置を配
設し、凝縮器に目詰りを生じたままの状態での運
転が継続されるのを防止するべく、何等かの警報
装置を介して作業者に凝縮器の目詰りを覚知さ
せ、該製氷機の運転を中止してフイルタや凝縮器
の清掃を行なうようにしている。この検知装置と
しては、例えば冷媒回路内に高圧スイツチを配設
し、凝縮器の圧力を検出して(冷却不足により液
化冷媒の温度が高くなると凝縮器の圧力が高くな
る)、警報装置を作動させるものがある。また、
凝縮器の出口側の冷媒配管に温度センサを配設
し、これにより該冷媒配管の表面温度を検出し
て、所定の値に到達した時に警報装置を作動させ
るよう構成した装置も提案されている。
Therefore, we installed a condenser clogging detection device in the ice maker, and in order to prevent the ice maker from continuing to operate with a clogged condenser, we installed an alarm system to prevent the operation from continuing. The system makes the person aware that the condenser is clogged, and then stops the operation of the ice maker and cleans the filter and condenser. An example of this detection device is to install a high-pressure switch in the refrigerant circuit, detect the pressure in the condenser (if the temperature of the liquefied refrigerant increases due to insufficient cooling, the pressure in the condenser will increase), and activate an alarm device. There is something that makes me Also,
A device has also been proposed in which a temperature sensor is installed in the refrigerant pipe on the outlet side of the condenser, and the surface temperature of the refrigerant pipe is detected by the sensor, and an alarm device is activated when the surface temperature of the refrigerant pipe reaches a predetermined value. .

しかし前者の方式では、一時的に外気温が上昇
した際に、液化冷媒の温度が高くなつて高圧スイ
ツチが誤作動してしまう欠点があつた。また後者
の方式では、温度センサが外気温の変化に大きく
左右され易いために、正確な検知をなし得ないと
云う問題が指摘される。すなわち、外気温度が低
い場合は、凝縮器の目詰りに起因して冷媒温度が
高くなつたにも拘らず、目詰り状態の検知がなさ
れず、冷却能力の低下した状態での運転が継続さ
れる難点があつた。更に、外気温が高くなると、
逆に凝縮器が目詰りを生じていなくても、外気温
の上昇により警報装置を誤作動させる欠点があつ
た。
However, the former method had the disadvantage that when the outside temperature temporarily rose, the temperature of the liquefied refrigerant would rise, causing the high-pressure switch to malfunction. Furthermore, in the latter method, a problem has been pointed out that accurate detection cannot be performed because the temperature sensor is easily affected by changes in the outside temperature. In other words, when the outside air temperature is low, even though the refrigerant temperature rises due to clogging of the condenser, the clogging condition is not detected and operation continues with reduced cooling capacity. There was a problem. Furthermore, as the outside temperature increases,
On the other hand, even if the condenser was not clogged, a rise in outside temperature could cause the alarm system to malfunction.

考案の目的 本考案は、前述した従来の凝縮器における各種
の目詰り検知手段に内在している前記欠点に鑑
み、これを好適に解決するべく提案されたもので
あつて、外気温の変化に影響されることなく、確
実に凝縮器の目詰りを検知し得る手段を提供する
ことを目的とする。
Purpose of the Invention The present invention was proposed in order to suitably solve the above-mentioned drawbacks inherent in various clogging detection means in conventional condensers. It is an object of the present invention to provide a means that can reliably detect clogging of a condenser without being affected.

課題を解決するための手段 前述の課題を克服し、所期の目的を達成するた
め本考案は、空冷式凝縮器を備える冷凍系と接続
する蒸発器を配設した製氷室と、該製氷室の所定
温度降下を検知して製氷完了信号を出力する温度
検知装置と、製氷開始時点から所定時間の経過に
より製氷完了信号を出力するタイマ装置とを備
え、前記温度検知装置およびタイマ装置の何れか
からの製氷完了信号により、製氷運転から除氷運
転に切換わるよう制御される自動製氷機におい
て、前記温度検知装置による製氷完了信号の出力
に先立ちタイマ装置から製氷完了信号が出力さ
れ、かつこれによる製氷運転から除氷運転への切
換え動作が所定回数連続したことを条件として、
所要の警報を発するよう構成したことを特徴とす
る。
Means for Solving the Problems In order to overcome the above-mentioned problems and achieve the intended purpose, the present invention provides an ice-making compartment equipped with an evaporator connected to a refrigeration system equipped with an air-cooled condenser; a temperature detection device that detects a predetermined temperature drop and outputs an ice-making completion signal, and a timer device that outputs an ice-making completion signal when a predetermined time has elapsed from the start of ice making, the temperature detection device and the timer device In an automatic ice maker that is controlled to switch from ice making operation to deicing operation in response to an ice making completion signal from On the condition that the switching operation from ice-making operation to de-icing operation has been repeated a predetermined number of times,
It is characterized by being configured to issue a required alarm.

実施例 次に、本考案に係る凝縮器の目詰り検知装置に
つき、好適な実施例を挙げて、添付図面を参照し
ながら以下説明する。なお、本考案が好適に実施
される製氷機として、噴射式自動製氷機を例に挙
げて説明するが、本考案は、実施例に示した製氷
方式のみに限定されるものではなく、前述したオ
ープンセル方式や流下式等の製氷方式を採用した
製氷機にも適用できる。
Embodiments Next, a preferred embodiment of the condenser clogging detection device according to the present invention will be described below with reference to the accompanying drawings. Although the present invention will be explained using an example of an automatic ice making machine as an example of an ice making machine in which the present invention is suitably implemented, the present invention is not limited to the ice making method shown in the embodiments. It can also be applied to ice-making machines that employ ice-making methods such as the open-cell method and the flowing-down method.

第1図は、本考案が好適に実施される自動製氷
機の一例を示す。この自動製氷機は、下向きに開
口する多数の製氷小室2を画成した製氷室1を備
え、この製氷室1の外側上面には冷凍系に接続す
る蒸発器3が配設されている。また製氷室1の下
方には、水皿4が傾動自在に配設されて、常には
製氷小室2を下方から水平に閉成している。この
水皿4は、その一端部において図示しない枢軸に
枢支され、除氷運転時には、アクチユエータによ
り強制的に傾動されて、製氷小室2を開放するよ
うになつている。水皿4の下面には、製氷水を各
製氷氷小室2に供給するための分配管6が配設さ
れ、更に水皿4の下方に製氷水タンク5が設けら
れている。このタンク5には、一回の製氷サイク
ルに必要な所要量の製氷水が、外部水道系10か
ら給水弁WVを介して供給貯留される。
FIG. 1 shows an example of an automatic ice maker in which the present invention is suitably implemented. This automatic ice-making machine includes an ice-making chamber 1 defining a large number of ice-making compartments 2 that open downward, and an evaporator 3 connected to a refrigeration system is disposed on the outer upper surface of the ice-making chamber 1. Further, a water tray 4 is tiltably disposed below the ice-making chamber 1, and normally closes the ice-making chamber 2 horizontally from below. The water tray 4 is pivotally supported at one end by a shaft (not shown), and is forcibly tilted by an actuator to open the ice making chamber 2 during deicing operation. A distribution pipe 6 for supplying ice-making water to each ice-making compartment 2 is provided on the lower surface of the water tray 4, and an ice-making water tank 5 is further provided below the water tray 4. A required amount of ice-making water necessary for one ice-making cycle is supplied and stored in this tank 5 from an external water supply system 10 via a water supply valve WV.

製氷水タンク5内の水は、底部より送水パイプ
11およびポンプPMを介して分配管6に送ら
れ、水皿4に各製氷小室2と対応的に穿設した多
数の噴水孔7から、各製氷小室2内へ噴射され
る。この製氷水の一部は、各製氷小室2の内壁面
に氷結し、氷結するに至らなかつた水は、水皿4
に前記噴水孔7と隣接して穿設した排水孔9を介
して、製氷水タンク5へ還流される。この構成に
係る製氷水供給系8に製氷水を循環させることに
より、製氷室1内に漸次氷を層状に成長させる。
The water in the ice-making water tank 5 is sent from the bottom to the distribution pipe 6 via the water supply pipe 11 and the pump PM, and from the numerous fountain holes 7 formed in the water tray 4 corresponding to each of the ice-making compartments 2. It is injected into the ice making compartment 2. A part of this ice-making water freezes on the inner wall surface of each ice-making compartment 2, and the water that has not yet frozen is left in the water tray 4.
The ice water is then returned to the ice-making water tank 5 through a drainage hole 9 formed adjacent to the fountain hole 7. By circulating ice-making water through the ice-making water supply system 8 having this configuration, ice is gradually grown in layers within the ice-making chamber 1.

製氷室1の外側面には、例えばサーモスタツト
やサーミスタ等の感温素子からなる温度検知装置
Th1が密着配設されている。この温度検知装置
Th1は製氷室射1の温度を検知するものであつ
て、製氷小室2内に氷が充分に成長して製氷室1
の温度が低下すると、温度検知装置Th1が作動し
て製氷運転を終了させ、除氷運転に移行させるよ
うになつている。
On the outer surface of the ice-making compartment 1, there is a temperature detection device consisting of a temperature sensing element such as a thermostat or a thermistor.
Th 1 is closely placed. This temperature sensing device
Th 1 detects the temperature of the ice making compartment 1, and indicates that the ice has grown sufficiently in the ice making compartment 2.
When the temperature drops, the temperature detection device Th1 is activated to end the ice making operation and shift to the deicing operation.

第2図は、冷凍系統の概略構成を示すものであ
る。圧縮機20で圧縮された冷媒ガスは、凝縮器
21で凝縮されて液化し、ドライヤ22で脱湿さ
れた後、キヤピラリーチユーブ23で減圧され、
前記製氷室1の外側上面に配設した蒸発器3で蒸
発し、各製氷小室2内に噴水供給される製氷水と
熱交換することによつて、各製氷小室2内での氷
結を行なわせる。蒸発器3で蒸発気化した冷媒と
蒸発しきれなかつた液冷媒とが、気液混相状態で
アキユムレータ24に流入し、ここで気相冷媒と
液相冷媒とが分離され、気相冷媒は吸入管25を
経て圧縮機20に帰還し、液相冷媒はアキユムレ
ータ24内に貯留される。なお、第2図中の符号
FMは、凝縮器21用のフアンモータを示してい
る。
FIG. 2 shows a schematic configuration of the refrigeration system. The refrigerant gas compressed by the compressor 20 is condensed and liquefied by the condenser 21, dehumidified by the dryer 22, and then decompressed by the capillary reach tube 23.
Freezing is performed in each ice making compartment 2 by evaporating in the evaporator 3 disposed on the outer upper surface of the ice making compartment 1 and exchanging heat with ice making water supplied from a fountain into each ice making compartment 2. . The refrigerant that has evaporated and vaporized in the evaporator 3 and the liquid refrigerant that has not been completely evaporated flow into the accumulator 24 in a gas-liquid mixed phase state, where the gas-phase refrigerant and liquid-phase refrigerant are separated, and the gas-phase refrigerant is passed through the suction pipe. The liquid refrigerant is returned to the compressor 20 via the refrigerant 25 and stored in the accumulator 24. In addition, the symbols in Figure 2
FM indicates a fan motor for the condenser 21.

更に、圧縮機20の吐出側から分岐したホツト
ガス管26は、ホツトガス弁HVを経て蒸発器3
の入口側に連通され、除氷時に圧縮機20から吐
出された高温冷媒は、前記ホツトガス管26から
ホツトガス弁HVを経て蒸発器3に流入し、製氷
室1を暖めて各製氷小室2内に生成された氷塊の
周面を加熱し、各氷塊を自重により落下させる。
蒸発器3から流出した高温冷媒は、アキユムレー
タ24に流入し、アキユムレータ24内に滞留し
ている液相冷媒を加熱して蒸発させ、気相冷媒と
して吸入管25から圧縮機20に帰還させる。
Further, a hot gas pipe 26 branched from the discharge side of the compressor 20 is connected to the evaporator 3 via a hot gas valve HV.
The high-temperature refrigerant discharged from the compressor 20 during deicing flows into the evaporator 3 from the hot gas pipe 26 through the hot gas valve HV, warms the ice making chamber 1, and flows into each ice making compartment 2. The surrounding surface of the generated ice blocks is heated, and each ice block is caused to fall under its own weight.
The high-temperature refrigerant flowing out of the evaporator 3 flows into the accumulator 24, heats and evaporates the liquid phase refrigerant staying in the accumulator 24, and returns it to the compressor 20 from the suction pipe 25 as a gas phase refrigerant.

第3図は、本実施例に係る自動製氷機の電気制
御回路の一例を示すものであつて、この図におい
て、電源供給ラインAと電源供給ラインBとの間
に、各種電装品や電気部品等の動作制御を行なう
マイクロコンピユータを内蔵した制御装置27が
接続されている。また、この制御装置27と電源
供給ラインBとの間には、圧縮機CM、凝縮器2
1の冷却用フアンモータFM、製氷水循環用ポン
プモータPM、給水弁WV、ホツトガス弁HV、
水皿4を傾動・復帰させるアクチユエータモータ
AMが並列に接続されている。
FIG. 3 shows an example of the electric control circuit of the automatic ice maker according to this embodiment. In this figure, various electrical equipment and parts are connected between power supply line A and power supply line B. A control device 27 having a built-in microcomputer for controlling operations such as the like is connected. Also, between this control device 27 and the power supply line B, a compressor CM and a condenser 2 are connected.
1 cooling fan motor FM, ice making water circulation pump motor PM, water supply valve WV, hot gas valve HV,
Actuator motor that tilts and returns the water tray 4
AMs are connected in parallel.

また、制御装置27に前記温度検知装置Th1
よび外気温検知装置Th2が接続され、この外気温
検知装置Th2の検知温度に基づいて、後述するタ
イマ装置Tの設定時限を外気温の変化に応動して
調整するよう構成されている。すなわち、制御装
置27には、予め実験等により判明したデータ
(第5図参照)が入力されており、このデータと
新たに入力された外気温との比較検討を行なつ
て、タイマ装置Tへの時限が設定される。
Further, the temperature detection device Th 1 and the outside temperature detection device Th 2 are connected to the control device 27, and based on the detected temperature of the outside temperature detection device Th 2 , the set time limit of the timer device T, which will be described later, is determined based on the change in outside temperature. It is configured to adjust in response to the That is, the control device 27 has previously inputted data determined through experiments etc. (see Fig. 5), compares this data with the newly inputted outside temperature, and sends the data to the timer T. A time limit is set.

更に、制御装置27には、タイマ装置Tおよび
警報ランプLが接続されている。このタイマ装置
Tの設定時限は、正常な製氷動作が行なわれる際
の製氷時間より長目に設定されており、通電開始
からこの設定時限をタイムアツプしたときに、製
氷完了信号を出力する。すなわち、正常な製氷動
作が行なわれている場合には、製氷運転から除氷
運転に切換わる制御は、前記温度検知装置Th1
製氷完了信号の出力に基づいて行なわれる。な
お、制御装置27は、温度検知装置Th1からの出
力信号か、タイマ装置Tからの出力信号かの判別
を行ない、その判定回数をカウントするよう構成
されている。そして、後述する如く、タイマ装置
Tからの出力信号により運転の切換えが連続して
所定回数行なわれた場合、前記警報ランプLを作
動するよう設定されている(第3図参照)。
Further, a timer device T and an alarm lamp L are connected to the control device 27. The set time limit of this timer device T is set longer than the ice making time when normal ice making operation is performed, and when the set time limit expires from the start of energization, an ice making completion signal is output. That is, when normal ice-making operation is being performed, control for switching from ice-making operation to de-icing operation is performed based on the output of the ice-making completion signal from the temperature detection device Th1 . The control device 27 is configured to determine whether the output signal is from the temperature sensing device Th1 or the timer device T, and to count the number of times the determination is made. As will be described later, the alarm lamp L is set to be activated when the operation has been switched a predetermined number of times in succession based on an output signal from the timer T (see FIG. 3).

実施例の作用 次に、前述した実施例に係る自動製氷機の動作
について説明する。先ず、自動製氷機に電源(電
源スイツチは図示せず)を投入する。電源投入と
同時に、圧縮機(CM)20、フアンモータFM
およびポンプモータPMに通電が開始されて製氷
運転に入る。これにより、第1図と第2図とに関
して説明した冷媒循環および製氷水循環がなさ
れ、製氷水および製氷室1の各温度は徐々に低下
する。そして製氷動作が正常の場合は、製氷開始
から所要時間経過後に製氷水の温度は0℃とな
り、製氷室1中で氷が成長し始める。なお、前記
タイマ装置Tは、通電と同時にその設定時限の積
算を開始する。
Operation of the embodiment Next, the operation of the automatic ice maker according to the embodiment described above will be explained. First, the automatic ice maker is powered on (the power switch is not shown). At the same time as the power is turned on, compressor (CM) 20, fan motor FM
Then, power is started to be applied to the pump motor PM and ice making operation begins. As a result, the refrigerant circulation and ice-making water circulation described with reference to FIGS. 1 and 2 are performed, and the temperatures of the ice-making water and the ice-making chamber 1 gradually decrease. When the ice-making operation is normal, the temperature of the ice-making water becomes 0° C. after the required time has elapsed from the start of ice-making, and ice begins to grow in the ice-making chamber 1. Note that the timer device T starts integrating its set time period at the same time as the power is turned on.

製氷が完了すると、製氷室1における所定の温
度降下を温度検知装置Th1が検知し、フアンモー
タFM、ポンプモータPMへの通電が停止され、
アクチユエータモータAMに通電がなされて除氷
運転に移行する。このアクチユエータモータAM
の回転により、水皿4および製氷水タンク5が傾
動すると共に給水弁WVが開放し、常温の水が外
部水道系からタンク5に新たに供給され、またホ
ツトガス弁HVも切換えられて蒸発器3にホツト
ガスが供給され、これにより除氷が促進される。
なお、製氷運転から除氷運転に切換わつた際に、
前記タイマ装置Tはクリアされる。
When ice making is completed, the temperature detection device Th 1 detects a predetermined temperature drop in the ice making chamber 1, and the power supply to the fan motor FM and pump motor PM is stopped.
Actuator motor AM is energized and the deicing operation begins. This actuator motor AM
As the water tray 4 and ice-making water tank 5 rotate, the water tray 4 and the ice-making water tank 5 are tilted, and the water supply valve WV is opened, and water at room temperature is newly supplied to the tank 5 from the external water supply system, and the hot gas valve HV is also switched to the evaporator 3. Hot gas is supplied to the ice, which facilitates deicing.
Furthermore, when switching from ice making operation to deicing operation,
Said timer device T is cleared.

前記製氷小室2内の氷が自重により落下する
と、製氷室1の温度が上昇し、この除氷完了を検
知装置(図示せず)が検知すると、前記アクチユ
エータモータAMを逆転させて水皿4を水平状態
に復帰させ、再び製氷運転に入る。前述した動作
を繰り返すことにより、貯氷庫(図示せず)に所
定量の氷が貯留される。
When the ice in the ice-making compartment 2 falls due to its own weight, the temperature of the ice-making compartment 1 rises, and when a detection device (not shown) detects the completion of ice removal, the actuator motor AM is reversed and the water tray is removed. 4 returns to the horizontal position and starts ice making operation again. By repeating the above-described operations, a predetermined amount of ice is stored in the ice storage (not shown).

ここで、凝縮器21に目詰りが生じると、該凝
縮器21での液化冷媒の冷却不足により冷媒温度
が上昇し、製氷室1に生成される氷塊の生成速度
が遅くなる。すなわち、製氷室1が温度検知装置
Th1の検知温度に達するのに、通常の場合よりも
時間が掛かり、該温度検知装置Th1が製氷完了信
号を出力する前に、前記タイマ装置Tがタイムア
ツプし、このタイマ装置Tの製氷完了信号により
製氷運転から除氷運転に移行する。
If the condenser 21 becomes clogged, the temperature of the refrigerant increases due to insufficient cooling of the liquefied refrigerant in the condenser 21, and the rate at which ice cubes are produced in the ice making compartment 1 slows down. In other words, the ice making compartment 1 is a temperature detection device.
It takes longer than normal to reach the detected temperature of Th 1 , and before the temperature detection device Th 1 outputs the ice making completion signal, the timer device T times out, and the ice making of this timer device T is completed. The signal shifts from ice making operation to deicing operation.

このように、凝縮器21の目詰りに起因して熱
交換効率が低下すると、製氷時間が長くなつて製
氷運転から除氷運転に移行する制御は、タイマ装
置Tの製氷完了信号によつてなされるようにな
る。また、前記制御装置27は、前述した如く、
温度検知装置Th1からの出力信号か、タイマ装置
Tからの出力信号かの判別を行ない、これをカウ
ントするよう構成されている。そして、タイマ装
置Tからの製氷完了信号によつて運転の切換えが
所定回数(例えば3回)連続して行なわれると、
制御装置27は警報ランプLを作動させ、ユーザ
ーに凝縮器21における目詰りの発生を視覚によ
り知らせる。またブザーの如き警音手段を設け、
前記警報ランプLと同時に動作させて、ユーザー
に聴覚によつても覚知させるようにしてもよい。
As described above, when the heat exchange efficiency decreases due to clogging of the condenser 21, the ice making time becomes longer and the control to shift from the ice making operation to the deicing operation is performed by the ice making completion signal of the timer device T. Become so. Further, the control device 27, as described above,
It is configured to determine whether the output signal is from the temperature detection device Th1 or the timer device T, and to count the output signal. Then, when the operation is switched a predetermined number of times (for example, three times) in succession based on the ice-making completion signal from the timer device T,
The control device 27 operates the alarm lamp L to visually notify the user of the occurrence of clogging in the condenser 21. In addition, a warning sound means such as a buzzer is installed,
It may be operated simultaneously with the alarm lamp L so that the user is also alerted by hearing.

なお、外気温の一時的な上昇によつて製氷時間
が長くなり、タイマ装置Tの製氷完了信号により
運転の切換えが行なわれる場合は、この制御が連
続して所定回数だけ続けられない限り警報装置は
作動しない。従つて、単なる外気温の変化に起因
する誤作動を、有効に防止することができる。
Note that if the ice making time becomes longer due to a temporary rise in outside temperature and the operation is switched by the ice making completion signal from the timer device T, the warning device will not activate unless this control is continued for a predetermined number of times doesn't work. Therefore, malfunctions caused by mere changes in outside temperature can be effectively prevented.

考案の効果 以上説明したように、本考案に係る凝縮器の目
詰り検知装置は、製氷完了を検知する温度検知装
置とタイマ装置とから入力される信号を判別し、
タイマ装置からの信号により運転の切換えが連続
して行なわれた場合に、凝縮器の目詰りを警報す
るようにしたものである。また、タイマ装置は外
気温の変化に応じてその設定時限が自動的に調整
されるので、外気温の変化に影響されることなく
正確な目詰り検知を行ない得る。更に、警報装置
が作動するため、消費電力の浪費防止や製氷能力
の低下を未然に回避できる。
Effects of the Invention As explained above, the condenser clogging detection device according to the present invention distinguishes the signals input from the temperature detection device and the timer device that detect the completion of ice making, and
This system is designed to warn of clogging of the condenser when the operation is continuously switched based on a signal from the timer device. Further, since the timer device automatically adjusts its set time period according to changes in outside temperature, accurate clogging detection can be performed without being affected by changes in outside temperature. Furthermore, since the alarm device is activated, it is possible to prevent wasted power consumption and a decrease in ice making capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案に係る凝縮器の目詰り検知装置の
好適な実施例を示すものであつて、第1図は実施
例に係る装置が採用される噴射式自動製氷機の概
略縦断面図、第2図は実施例に係る自動製氷機の
冷凍系統図、第3図は実施例に係る自動製氷機の
電気制御回路図、第4図は実施例に係る検知装置
のフローチヤート図、第5図はタイマ装置の設定
時間と外気温との関係を示すグラフである。 1……製氷室、3……蒸発器、21……凝縮
器、Th1……温度検知装置、T……タイマ装置、
L……警報装置。
The drawings show a preferred embodiment of the condenser clogging detection device according to the present invention, and FIG. 2 is a refrigeration system diagram of the automatic ice maker according to the embodiment, FIG. 3 is an electrical control circuit diagram of the automatic ice maker according to the embodiment, FIG. 4 is a flowchart of the detection device according to the embodiment, and FIG. 5 is a graph showing the relationship between the set time of the timer device and the outside temperature. 1...Ice making room, 3...Evaporator, 21...Condenser, Th1 ...Temperature detection device, T...Timer device,
L...Alarm device.

Claims (1)

【実用新案登録請求の範囲】 〔1〕 空冷式凝縮器21を備える冷凍系と接続
する蒸発器3を配設した製氷室1と、該製氷室
1の所定温度降下を検知して製氷完了信号を出
力する温度検知装置Th1と、製氷開始時点から
所定時間の経過により製氷完了信号を出力する
タイマ装置Tとを備え、前記温度検知装置Th1
およびタイマ装置Tの何れかからの製氷完了信
号により、製氷運転から除氷運転に切換わるよ
う制御される自動製氷機において、 前記温度検知装置Th1による製氷完了信号の
出力に先立ちタイマ装置Tから製氷完了信号が
出力され、かつこれによる製氷運転から除氷運
転への切換え動作が所定回数連続したことを条
件として、所要の警報を発するよう構成した ことを特徴とする凝縮器の目詰り検知装置。 〔2〕 前記タイマ装置Tは、外気温検知装置
Th2の検知温度に基づき設定時限が自動的に変
更される請求項1記載の凝縮器の目詰り検知装
置。
[Scope of Claim for Utility Model Registration] [1] An ice-making compartment 1 equipped with an evaporator 3 connected to a refrigeration system equipped with an air-cooled condenser 21, and an ice-making completion signal detected by detecting a predetermined temperature drop in the ice-making compartment 1. and a timer device T that outputs an ice-making completion signal when a predetermined time elapses from the start of ice-making .
In an automatic ice maker that is controlled to switch from ice making operation to deicing operation in response to an ice making completion signal from either of the timer device T and the timer device T, prior to the output of the ice making completion signal by the temperature detection device Th 1 , the timer device T A condenser clogging detection device characterized in that it is configured to issue a required alarm on condition that an ice-making completion signal is output and the switching operation from ice-making operation to de-icing operation is performed a predetermined number of times in succession. . [2] The timer device T is an outside temperature detection device
The condenser clogging detection device according to claim 1, wherein the set time period is automatically changed based on the detected temperature of Th2 .
JP9936888U 1988-07-26 1988-07-26 Expired - Lifetime JPH0537174Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9936888U JPH0537174Y2 (en) 1988-07-26 1988-07-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9936888U JPH0537174Y2 (en) 1988-07-26 1988-07-26

Publications (2)

Publication Number Publication Date
JPH0220067U JPH0220067U (en) 1990-02-09
JPH0537174Y2 true JPH0537174Y2 (en) 1993-09-20

Family

ID=31326463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9936888U Expired - Lifetime JPH0537174Y2 (en) 1988-07-26 1988-07-26

Country Status (1)

Country Link
JP (1) JPH0537174Y2 (en)

Also Published As

Publication number Publication date
JPH0220067U (en) 1990-02-09

Similar Documents

Publication Publication Date Title
WO2008053975A1 (en) Automatic ice making machine and operation method therefor
JPH0532668B2 (en)
US5035118A (en) Automatic ice making machine
US5025637A (en) Automatic ice making machine
JPH0638292Y2 (en) Automatic ice machine
JPH0537174Y2 (en)
JP2854078B2 (en) Operation control device for ice machine
JPH0452622Y2 (en)
JPH0452621Y2 (en)
JPH0451330Y2 (en)
JPH043868A (en) Operation control device for ice maker
JPH0638299Y2 (en) Automatic ice machine
JP3301810B2 (en) Ice machine
JP3412677B2 (en) How to operate an automatic ice maker
JPH07122536B2 (en) Operation control device for ice maker
JP2004278991A (en) Ice making machine
KR19990041499U (en) water purifier
JP2006177600A (en) Ice maker
JPH0674626A (en) Flowing down type ice making machine
JPS5815706B2 (en) Incomplete ice generation prevention device in water circulation type ice making mechanism
JPH0419424Y2 (en)
JPS5813250Y2 (en) automatic ice maker
JPH0735450A (en) Ice-making machine
JPS5934942B2 (en) Fully automatic ice making control device
JPS5938688Y2 (en) automatic ice maker