JPH0452621Y2 - - Google Patents

Info

Publication number
JPH0452621Y2
JPH0452621Y2 JP15565087U JP15565087U JPH0452621Y2 JP H0452621 Y2 JPH0452621 Y2 JP H0452621Y2 JP 15565087 U JP15565087 U JP 15565087U JP 15565087 U JP15565087 U JP 15565087U JP H0452621 Y2 JPH0452621 Y2 JP H0452621Y2
Authority
JP
Japan
Prior art keywords
ice
making
water
ice making
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15565087U
Other languages
Japanese (ja)
Other versions
JPH0160162U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15565087U priority Critical patent/JPH0452621Y2/ja
Publication of JPH0160162U publication Critical patent/JPH0160162U/ja
Application granted granted Critical
Publication of JPH0452621Y2 publication Critical patent/JPH0452621Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 この考案は自動製氷機に関し、更に詳細には、
その製氷運転中において、圧縮機が焼損したり電
力が浪費されたりするのを、有効に防止し得る保
護装置を備える自動製氷機に関するものである。
[Detailed description of the invention] Industrial application field This invention relates to an automatic ice maker, and more specifically,
The present invention relates to an automatic ice maker equipped with a protection device that can effectively prevent a compressor from burning out and power from being wasted during ice making operation.

従来技術 角氷や板氷その他各種形状の氷を多数連続的に
製造するための自動製氷機が、その用途に応じて
好適に使い分けられている。例えば、製氷室に
画成されて下方に開放する多数の製氷小室を、水
皿により開閉自在に閉成し、この水皿から製氷水
を噴射供給して当該製氷小室中に角氷を徐々に形
成するようにした所謂クローズドセル方式の製氷
機や、下方に開放する多数の製氷小室に、水皿
を介することなく製氷水を直接供給し、角氷を該
小室中に形成するようにした所謂オープンセル方
式の製氷機や、製氷板を傾斜配置し、この製氷
板の表面または裏面に製氷水を流下供給し、当該
製氷板面上に板氷を形成する流下式製氷機等が広
く普及している。
BACKGROUND ART Automatic ice making machines for continuously producing large numbers of ice cubes, ice sheets, and other ice shapes of various shapes are suitably used depending on their purpose. For example, a large number of ice-making compartments defined in the ice-making compartment and open downwards are closed by a water tray so that they can be opened and closed, and ice-making water is injected from the water tray to gradually pour ice cubes into the ice-making compartments. A so-called closed cell type ice maker is designed to form ice cubes, and a so-called closed cell ice maker is designed to directly supply ice making water to a large number of ice cube chambers that open downward, without going through a water tray, and form ice cubes in the chambers. Open-cell type ice makers, ice-making machines with ice-making plates arranged at an angle, ice-making water flowing down onto the front or back side of the ice-making plates, and sheet ice forming on the surface of the ice-making plates are now widely used. ing.

これらの自動製氷機は一般に、その機体上方に
製氷機構を備えると共に、機体下部に前記製氷機
構を冷却するための冷凍系を備え、前記冷凍系
は、圧縮機、凝縮器、キヤピラリーチユーブ、蒸
発器等の諸部材から構成されている。この冷凍系
から導出した蒸発器は、製氷機構における製氷部
に配設されて該製氷部を冷却する。他方製氷水を
この冷却保持した製氷部に循環供給することによ
つて氷を生成し、当該氷が所定の大きさに成長し
たことを製氷完了検知装置により検知して製氷水
の供給を停止する。次いで弁体の切換えにより、
圧縮機からの高温冷媒ガスを、バイパス管を介し
て蒸発器に供給して製氷部を加熱し、該製氷部で
生成された氷を自重落下させて、下方に配置した
ストツカーに回収貯留するようになつている。な
お冷凍系の凝縮器は、一般にフインアンドチユー
ブ形が用いられ、冷却フアンにより該凝縮器を強
制冷却する。
These automatic ice making machines generally include an ice making mechanism above the machine and a refrigeration system for cooling the ice making mechanism below the machine, and the refrigeration system includes a compressor, a condenser, a capillary reach tube, and an evaporator. It is composed of various parts such as vessels. The evaporator led out from this refrigeration system is disposed in the ice making section of the ice making mechanism and cools the ice making section. On the other hand, ice is generated by circulating and supplying ice-making water to the ice-making unit that is kept cooled, and when the ice-making completion detection device detects that the ice has grown to a predetermined size, the supply of ice-making water is stopped. . Then, by switching the valve body,
High-temperature refrigerant gas from the compressor is supplied to the evaporator via a bypass pipe to heat the ice making section, and the ice produced in the ice making section is allowed to fall under its own weight and collected and stored in a stocker located below. It's getting old. Note that a fin-and-tube type condenser is generally used in a refrigeration system, and the condenser is forcibly cooled by a cooling fan.

製氷運転中における冷凍系の保護装置として
は、圧縮機に配設したモータプロテクタ(過負荷
保護装置)や、冷媒の圧力を検知する圧力スイツ
チ等が一般に用いられている。また、冷媒の凝縮
温度をサーモスタツトやサーミスタ等の感温素子
によつて検知し、警報装置を作動させるものもあ
る。
As protection devices for the refrigeration system during ice-making operation, a motor protector (overload protection device) disposed on the compressor, a pressure switch that detects the pressure of the refrigerant, etc. are generally used. In addition, some devices detect the condensation temperature of the refrigerant using a temperature sensing element such as a thermostat or thermistor and activate an alarm device.

考案が解決しようとする問題点 従来の自動製氷機では、以下に述べるように、
製氷運転中に何等かの原因によつて、その保護装
置が作動しても、なお圧縮機やモータが焼損した
り、また消費電力や製氷水を浪費するという問題
が残されている。すなわち、 空冷凝縮器の冷却用フアンモータが、そのベ
アリングの破損等により回転不能(所謂フアン
ロツク)を来すと、凝縮器の凝縮能力が大幅に
低下し、冷凍系における圧縮機の吐出側からキ
ヤピラリーチユーブの入口側にまで至る高圧回
路内の冷媒圧力が上昇する。また、キヤピラリ
ーチユーブの出口側から圧縮機の吸入側に至る
低圧回路内の冷媒圧力も併せて上昇する。この
ように、圧縮機における冷媒循環量が増大する
にも拘らず、フアンモータによる圧縮機の強制
空冷と、冷媒ガスによる圧縮機内部の冷却とが
行なわれなくなると、当該圧縮機は過負荷状態
となつて消費電力が増加すると共に圧縮機が異
常高温を来すことになる。
Problems that the invention aims to solve In conventional automatic ice making machines, as described below,
Even if the protective device is activated for some reason during ice-making operation, there still remains the problem that the compressor and motor may burn out, and power consumption and ice-making water may be wasted. In other words, if the cooling fan motor of an air-cooled condenser becomes unable to rotate (so-called fan lock) due to damage to its bearings, the condensing capacity of the condenser will be significantly reduced, and the air will leak from the discharge side of the compressor in the refrigeration system. The refrigerant pressure in the high pressure circuit reaching the inlet side of the pillar reach tube increases. Moreover, the refrigerant pressure in the low pressure circuit extending from the outlet side of the capillary reach tube to the suction side of the compressor also increases. In this way, even though the amount of refrigerant circulating in the compressor increases, if forced air cooling of the compressor by the fan motor and cooling of the inside of the compressor by refrigerant gas are no longer performed, the compressor will be in an overload state. As a result, power consumption increases and the compressor reaches an abnormally high temperature.

この状態になると、圧縮機の過負荷保護装置
であるモータプロテクタが作動し、圧縮機への
通電を停止する。しかし、圧縮機が停止する
と、冷凍回路内の冷媒圧力は徐々に低下し、ま
た圧縮機本体の温度も自然放熱によつて徐々に
低下する。このため前記モータプロテクタが自
動復帰して、圧縮機への通電を再開し、従つて
圧縮機の過負荷運転が再開されることになる。
そしてモータプロテクタが再作動し、圧縮機が
停止するサイクルを反復する。すなわち前述の
フアンロツク状態になると、その製氷不能をユ
ーザーが気付いて電源を切らない限り、圧縮機
は前記過負荷運転と停止とを繰り返すことにな
る。これは、消費電力の浪費を招来するだけで
なく、圧縮機の回転部に油膜形成した潤滑用油
の劣化を引き起こす原因となる。このように油
が劣化すると、摺動部の円滑な作動を阻害して
磨耗を進行させ、圧縮機自体が焼き付いてロツ
ク状態となつたり、モータの焼損を招くことに
なる。
In this state, the motor protector, which is an overload protection device for the compressor, is activated and stops supplying electricity to the compressor. However, when the compressor stops, the refrigerant pressure in the refrigeration circuit gradually decreases, and the temperature of the compressor body also gradually decreases due to natural heat radiation. As a result, the motor protector automatically returns to resume energization of the compressor, thereby restarting overload operation of the compressor.
The motor protector then re-energizes and the compressor stops, repeating the cycle. In other words, when the fan is locked, the compressor will repeat the overload operation and stop unless the user notices the inability to make ice and turns off the power. This not only results in wasted power consumption, but also causes deterioration of the lubricating oil that forms an oil film on the rotating parts of the compressor. If the oil deteriorates in this way, it will impede the smooth operation of the sliding parts and cause further wear, which may cause the compressor itself to seize and become locked, or cause burnout of the motor.

そこで、フアンロツクによる圧縮機の焼損を
防止するため従来は、冷凍系の高圧側に圧力ス
イツチを配設し、高圧冷媒の圧力が所定値以上
に上昇すると、該圧力スイツチがこれに応動し
て圧縮機への通電を遮断するようにしている。
しかし、この圧力スイツチは、前述したモータ
プロテクタの作動前に作動するようになつてお
り(圧縮機に加わる過負荷の程度は、該スイツ
チを設けてない場合に較べて軽減される)、当
該圧力スイツチの作動値は、常態では作動しな
い高い圧力に応動するよう設定されているの
で、通常の運転状態に較べて、フアンロツク時
に圧縮機が過負荷運転になることには変わりが
ない。
Therefore, in order to prevent burnout of the compressor due to fan lock, conventionally a pressure switch was installed on the high pressure side of the refrigeration system, and when the pressure of the high pressure refrigerant rose above a predetermined value, the pressure switch responded to The power to the machine is cut off.
However, this pressure switch is designed to operate before the aforementioned motor protector operates (the degree of overload applied to the compressor is reduced compared to when the switch is not provided), and the pressure Since the operating value of the switch is set to respond to a high pressure that does not operate under normal conditions, the compressor will still operate under overload when the fan is locked compared to normal operating conditions.

更に、フアンロツク状態時に圧力スイツチが
作動して圧縮機が停止した場合、冷媒圧力は自
然放熱による冷却作用により低下するが、これ
が所定下限設定値まで低下すると、圧力スイツ
チの内部接点がオン作動し、圧縮機への通電が
再開されて圧縮機の過負荷運転が再開される。
つまり、圧力スイツチを設けても、圧縮機の過
負荷の程度が前述の場合より軽減されるだけ
で、圧縮機の過負荷運転と停止とが繰り返され
ることに変わりはなく、問題の基本的な解決に
はならない。
Furthermore, when the pressure switch operates and the compressor stops during the fan lock state, the refrigerant pressure decreases due to the cooling effect due to natural heat radiation, but when this decreases to a predetermined lower limit setting, the internal contact of the pressure switch turns on, Power to the compressor is restarted and overload operation of the compressor is restarted.
In other words, even if a pressure switch is installed, the degree of overload on the compressor will only be reduced compared to the case described above, but the compressor will continue to repeatedly operate and stop overloaded, which is the basic problem. It's not a solution.

そこで、ロツク機構を持つた圧力スイツチを
使用し、該圧力スイツチが一度作動すると、そ
の状態を保持させて、圧縮機の過負荷運転と停
止との繰り返しを防止し、復帰は手動操作によ
り行なうように構成した自動製氷機が知られて
いるが、かかる自動製氷機は高価な圧力スイツ
チを使用しているためコスト高となる欠点があ
る。従つて一般的には、フアンロツクに起因し
て凝縮温度が異常高温となるのを温度検知装置
で検知し、これにより警報装置を作動させて使
用者に異常を知らせる方法を採用している。し
かしこれとても、使用者が不在の場合には、前
述したモータプロテクタや圧力スイツチの作用
によつて、圧縮機の過負荷運転と停止とが反復
されるのを回避することはできない。
Therefore, a pressure switch with a locking mechanism is used, and once the pressure switch is activated, it is maintained in that state to prevent the compressor from repeating overload operation and stop, and the reset is performed manually. An automatic ice maker configured as shown in FIG. Therefore, in general, a method is adopted in which a temperature detection device detects when the condensing temperature becomes abnormally high due to fan lock, and an alarm device is activated thereby to notify the user of the abnormality. However, if the user is not present, it is impossible to avoid repeated overload operation and stoppage of the compressor due to the action of the motor protector and pressure switch described above.

前述した如き圧縮機の過負荷運転と停止の繰
り返しは、フアンロツクを生じた場合ばかりで
はなく、空冷式凝縮器にあつては、その熱交換
部が油、ホコリ、ゴミ等で層状に汚れたり、紙
クズ等で塞がれたときに、放熱が妨げられて生
ずる。また水冷式凝縮器の場合は、給水圧が低
下したり断水したときに生ずる。
Repeated overload operation and stop of the compressor as described above not only causes fan lock, but also causes the heat exchange section of an air-cooled condenser to become dirty in layers with oil, dust, dirt, etc. This occurs when waste paper etc. block the space, preventing heat radiation. In the case of water-cooled condensers, this occurs when the water supply pressure decreases or there is a water outage.

また3相用圧縮機の場合は、何等かの原因で
欠相を生じて欠相運転となると、内部モータの
過熱によりモータプロテクタが作動してオン−
オフを繰り返し、前述と同様に、消費電力の浪
費や圧縮機の焼損を引き起こすことになる。
In addition, in the case of a three-phase compressor, if a phase loss occurs for some reason and results in phase loss operation, the motor protector is activated due to overheating of the internal motor, causing the motor to turn on.
It will turn off repeatedly, causing wasted power consumption and burnout of the compressor, as described above.

冷凍係の圧縮機が故障すると製氷不能になる
が、製氷水供給係のポンプモータや凝縮器冷却
用フアンモータ等の駆動部品はその運転を続行
するため、製氷不能にも拘わらず、電力や製氷
水の浪費が生じてしまう。
If the compressor in the refrigeration section breaks down, it will be impossible to make ice, but the driving parts such as the ice-making water supply section's pump motor and condenser cooling fan motor will continue to operate, so even though ice making is not possible, there will be no electricity or ice making. Water will be wasted.

自動製氷機の故障は、前述した如き圧縮機の
故障ばかりではなく、他の部分での故障もあ
り、それに対する保護装置も設ける必要があ
る。しかし従来は、この種の保護装置を設けて
いないため、以下のような問題を生じている。
Failures in automatic ice making machines occur not only in the compressor as described above, but also in other parts, and it is necessary to provide protection against such failures. However, in the past, this type of protection device was not provided, resulting in the following problems.

冷凍系の除氷用バイパス回路の開閉を行なう
電磁弁が故障し閉弁できなくなると、高温冷媒
が蒸発器に直接流入し、製氷部での製氷が不可
能になる。この場合、保護装置が無いとポンプ
モータ等の他の装置が運転を続行するために、
電力および製氷水の浪費を生ずる。
If the solenoid valve that opens and closes the deicing bypass circuit in the refrigeration system fails and cannot be closed, high-temperature refrigerant will flow directly into the evaporator, making it impossible to make ice in the ice making section. In this case, if there is no protection device, other devices such as the pump motor will continue to operate.
This results in wasted electricity and ice making water.

冷凍系の管路における接続部等の気密不良に
より冷媒ガスが洩れると、冷凍能力が低下して
製氷不能となる。しかるに圧縮機は、冷凍系に
流入する空気の圧縮を行なうことになり、当該
圧縮機に流入する低温の冷媒ガスによる冷却が
絶たれるため、圧縮機のモータコイルが過熱
し、遂には冷凍機油の劣化や摺動部の磨耗その
他モータコイルの焼損が短時間に発生する。こ
の場合は圧力上昇がないので、高圧側に配設し
た圧力スイツチによつては保護できず、また、
冷媒がないので凝縮温度も上昇せず警報装置が
作動しない欠点があつた。
If refrigerant gas leaks due to poor airtightness at connections in the pipes of the refrigeration system, the refrigeration capacity decreases and ice making becomes impossible. However, the compressor compresses the air that flows into the refrigeration system, and as the cooling by the low-temperature refrigerant gas that flows into the compressor is cut off, the compressor motor coil overheats, and eventually the refrigeration oil evaporates. Deterioration, wear of the sliding parts, and burnout of the motor coil will occur in a short period of time. In this case, there is no pressure rise, so it cannot be protected by a pressure switch installed on the high pressure side, and
Since there was no refrigerant, the condensation temperature did not rise and the alarm system did not work.

製氷水供給系の外部給水系に連設される給水
弁が故障し、洩水若しくは閉弁不能になると、
外部給水系からの給水が続行されるので、製氷
水の温度を下げることができず製氷不能とな
る。この場合も、従来は保護装置がないために
製氷機はその運転を続行し、電力等を浪費して
いる。
If the water supply valve connected to the external water supply system of the ice making water supply system malfunctions and leaks water or becomes unable to close,
Since water continues to be supplied from the external water supply system, the temperature of the ice-making water cannot be lowered, making it impossible to make ice. In this case as well, since there is no conventional protection device, the ice maker continues to operate, wasting electricity and the like.

冷凍系の水分によりキヤピラリーチユーブに
氷結が生じ、キヤピラリーチユーブが閉塞され
る「水分詰り」が発生すると、蒸発器に冷媒が
供給されないために製氷不能となる。この場合
も従来は、保護装置がないので電力等を浪費す
ることになる。
When the capillary reach tube becomes frozen due to moisture in the refrigeration system, and the capillary reach tube becomes blocked (moisture clogging), ice making becomes impossible because refrigerant is not supplied to the evaporator. In this case as well, conventionally, there is no protection device, so power and the like are wasted.

上述したように、諸種の故障により電力や製氷
水の浪費を生じるが、これらの浪費を防止するた
め、個々の故障に対応する保護装置や検知装置を
個別に設けると、製氷機全体のコストが嵩んでし
まうという問題がある。
As mentioned above, various types of failures cause wastage of electricity and ice-making water, but in order to prevent these wastes, installing individual protection devices and detection devices that respond to individual failures will reduce the cost of the entire ice-making machine. There is a problem with it being bulky.

考案の目的 本考案は、前述した従来の自動製氷機が内在し
ている各問題点に鑑み、これらを好適に解決する
べく提案されたものであつて、圧縮機の焼損防止
と、消費電力の浪費防止と、節水とを図ることが
でき、且つ安価な保護装置を備える自動製氷機を
提供することにある。
Purpose of the invention The present invention was proposed in view of the problems inherent in the conventional automatic ice maker mentioned above, and was proposed to appropriately solve these problems. To provide an automatic ice making machine capable of preventing waste and saving water, and equipped with an inexpensive protection device.

問題点を解決するための手段 前述の問題点を克服し所期の目的を達成するた
め、本考案は、冷凍系に接続する蒸発器を配設し
た製氷部と、該製氷部に製氷水を供給する製氷水
供給系と、前記製氷部に生成された氷を離脱させ
る装置と、前記製氷水供給系における製氷水貯留
部の水位を検知する水位検知装置とを備える自動
製氷機において、製氷開始後の所定時間内に前記
製氷水貯留部内の水位が所定水位以下に低下しな
い場合に、その製氷動作を停止させる保護装置を
設けたことを特徴とする。
Means for Solving the Problems In order to overcome the above-mentioned problems and achieve the intended purpose, the present invention provides an ice-making section equipped with an evaporator connected to the refrigeration system, and an ice-making water supply to the ice-making section. In an automatic ice making machine comprising an ice making water supply system, a device for removing ice generated in the ice making section, and a water level detection device for detecting the water level of the ice making water storage section in the ice making water supply system, starting ice making. The present invention is characterized in that a protection device is provided that stops the ice-making operation if the water level in the ice-making water storage section does not fall below a predetermined water level within a later predetermined period of time.

作 用 フアンロツクやその他の故障が生じると製氷不
能となる。従つて、製氷不能を検知することで何
らかの障害が発生したことを知ることができる。
本考案では、製氷開始後の所定時間内に前記製氷
水貯留部内の水位が所定水位以下に低下しないこ
とを検知したとき製氷不能になつていると判断
し、保護装置が製氷動作を停止させる。
Operation If the fan locks or other malfunction occurs, it will be impossible to make ice. Therefore, by detecting the inability to make ice, it is possible to know that some kind of failure has occurred.
In the present invention, when it is detected that the water level in the ice making water storage section does not fall below a predetermined water level within a predetermined time after the start of ice making, it is determined that ice making is impossible, and the protection device stops the ice making operation.

実施例 次に、本考案に係る自動製氷機につき、好適な
実施例を挙げて、添付図面を参照しながら以下説
明する。
Embodiments Next, the automatic ice making machine according to the present invention will be described below with reference to preferred embodiments and the accompanying drawings.

第1図は、本考案が好適に実施される自動製氷
機の一例を示す。この自動製氷機は、下向きに開
口する多数の製氷小室2を画成した製氷室1を備
え、この製氷室1の外側上面には冷凍系に接続す
る蒸発器3が配設されている。また製氷室1の下
方には、水皿4が傾動自在に配設されて、常には
製氷小室2を下方から水平に閉成している。この
水皿4は、その一端部において図示しない枢軸に
枢支され、除氷運転時には、アクチユエータによ
り強制的に傾動されて、製氷小室2を開放するよ
うになつている。水皿4の下面には、製氷水を各
製氷小室2に供給するための分配管6が配設さ
れ、更に水皿4の下方には製氷水タンク(製氷水
貯留部)5が設けられている。このタンク5に
は、一回の製氷サイクルに必要な所要量の製氷水
が、外部水道系10から給水弁WVを介して供給
される。
FIG. 1 shows an example of an automatic ice maker in which the present invention is suitably implemented. This automatic ice-making machine includes an ice-making chamber 1 defining a large number of ice-making compartments 2 that open downward, and an evaporator 3 connected to a refrigeration system is disposed on the outer upper surface of the ice-making chamber 1. Further, a water tray 4 is tiltably disposed below the ice-making chamber 1, and normally closes the ice-making chamber 2 horizontally from below. The water tray 4 is pivotally supported at one end by a shaft (not shown), and is forcibly tilted by an actuator to open the ice making chamber 2 during deicing operation. A distribution pipe 6 for supplying ice-making water to each ice-making compartment 2 is provided on the lower surface of the water tray 4, and an ice-making water tank (ice-making water storage section) 5 is further provided below the water tray 4. There is. A required amount of ice-making water necessary for one ice-making cycle is supplied to this tank 5 from an external water supply system 10 via a water supply valve WV.

製氷水タンク5内の水は、底部より送水パイプ
11およびポンプPMを介して分配管6に送ら
れ、水皿4に各製氷小室2と対応的に穿設した多
数の噴水孔7から、各製氷小室2内へ噴射され
る。この製氷水の一部は、各製氷小室2の内壁面
に氷結し、氷結するに至らなかつた水は、水皿4
に前記噴水孔7と隣接して穿設した排水孔9を介
して、製氷水タンク5へ還流される。この構成に
係る製氷水供給系8に製氷水を循環させることに
より、製氷室1内に漸次氷を層状に成長させる。
The water in the ice-making water tank 5 is sent from the bottom to the distribution pipe 6 via the water supply pipe 11 and the pump PM, and from the numerous fountain holes 7 formed in the water tray 4 corresponding to each of the ice-making compartments 2. It is injected into the ice making compartment 2. A part of this ice-making water freezes on the inner wall surface of each ice-making compartment 2, and the water that has not yet frozen is left in the water tray 4.
The ice water is then returned to the ice-making water tank 5 through a drainage hole 9 formed adjacent to the fountain hole 7. By circulating ice-making water through the ice-making water supply system 8 having this configuration, ice is gradually grown in layers within the ice-making chamber 1.

製氷室1の外側面には、例えばサーモスタツト
やサーミスタ等の感温素子からなる温度検知装置
Th2が密着配設されている。この温度検知装置
Th2は製氷室1の温度を検知するものであつて、
製氷小室2内に氷が充分に成長して製氷室1の温
度が低下すると、温度検知装置Th2が作動して製
氷運転を終了させ、除氷運転に移行させるように
なつている。
On the outer surface of the ice-making compartment 1, there is a temperature detection device consisting of a temperature sensing element such as a thermostat or a thermistor.
Th 2 is closely placed. This temperature sensing device
Th 2 is for detecting the temperature of the ice making compartment 1,
When ice has grown sufficiently in the ice-making compartment 2 and the temperature of the ice-making compartment 1 has decreased, the temperature detection device Th2 is activated to end the ice-making operation and shift to the de-icing operation.

第1図に示す自動製氷機は、除氷運転に移行す
ると、ポンプPMを停止させて製氷水の供給を停
止し、図示しないアクチユエータの作用下に水皿
4および製氷水タンク5を一定角度まで傾動さ
せ、製氷水供給系8内の製氷残水を全て排出す
る。また弁体の切換えを行なつて、冷凍系に接続
する蒸発器3にホツトガスを供給して製氷室1を
加温し、製氷小室2中の氷を自重で落下させ、貯
氷庫13内へ案内放出する。
When the automatic ice maker shown in FIG. 1 shifts to deicing operation, it stops the pump PM to stop the supply of ice making water, and moves the water tray 4 and ice making water tank 5 to a certain angle under the action of an actuator (not shown). It is tilted to drain all the ice-making water remaining in the ice-making water supply system 8. Also, by switching the valve body, hot gas is supplied to the evaporator 3 connected to the refrigeration system to warm the ice making compartment 1, causing the ice in the ice making compartment 2 to fall under its own weight and guided into the ice storage 13. discharge.

貯氷庫13内への氷の落下完了は、製氷室1の
側面に密着配置した、例えばサーモスタツトやサ
ーミスタ等からなる温度検知装置Th3が、製氷室
1の温度上昇を検知することにより検出する。氷
の落下完了検知後に、前記アクチユエータを逆転
させ、水皿4および製氷水タンク5を元の水平位
置に復帰させて製氷小室2を下方から閉成し、外
部水道系10から給水弁WVを介して製氷用水を
製氷水タンク5に供給する。またポンプPMによ
り製氷水を製氷室1に供給して、再び製氷を開始
する。
Completion of the ice falling into the ice storage 13 is detected by a temperature detection device Th3 , which is arranged closely on the side of the ice making chamber 1 and is made up of, for example, a thermostat or a thermistor, by detecting a temperature rise in the ice making chamber 1. . After the completion of ice falling is detected, the actuator is reversed, the water tray 4 and the ice-making water tank 5 are returned to their original horizontal positions, the ice-making chamber 2 is closed from below, and water is supplied from the external water system 10 via the water supply valve WV. ice-making water is supplied to the ice-making water tank 5. Also, ice-making water is supplied to the ice-making chamber 1 by the pump PM, and ice-making is started again.

なお本実施例では、水位検知装置Fswが製氷水
タンク5内に配置され、製氷水タンク5内に貯留
される製氷水の水位をこの水位検知装置Fswで検
知するようになつている。この水位検知装置Fsw
は、製氷水タンク5内の製氷開始時の水位L1と、
製氷完了時の水位L2との間の任意の水位、本実
施例では略中間の水位L0を異常検出水位として
設定してあり、タンク5内の水位がL0以下のと
き自己の開閉スイツチを開放し、L0を超えると
き閉成するように構成されている。
In this embodiment, the water level detection device Fsw is arranged in the ice making water tank 5, and the water level of the ice making water stored in the ice making water tank 5 is detected by this water level detection device Fsw. This water level detection device Fsw
is the water level L1 in the ice making water tank 5 at the start of ice making,
An arbitrary water level between the water level L 2 at the time ice making is completed, in this example, the approximately intermediate water level L 0 is set as the abnormality detection water level, and when the water level in the tank 5 is below L 0 , the self-opening/closing switch is activated. is configured to open and close when L exceeds 0 .

なお、第1図における符号Th1は、貯氷庫13
内に配置された貯氷検知スイツチを示し、貯氷庫
13内の氷がなくなると、該スイツチTh1が閉成
して製氷動作を開始させ、貯氷庫13内に氷が所
定量貯留されると開放して製氷機を停止させるも
のである。
In addition, the code Th 1 in FIG. 1 indicates the ice storage 13.
When there is no more ice in the ice storage 13, the switch Th1 closes and starts the ice making operation, and when a predetermined amount of ice is stored in the ice storage 13, it opens. This will stop the ice maker.

第2図は、冷凍装置の概略構成を示すものであ
る。圧縮機20で圧縮された冷媒ガスは、凝縮器
21で凝縮されて液化し、ドライヤ22で脱湿さ
れた後、キヤピラリーチユーブ23で減圧され、
前記製氷室1の外側上面に配設した蒸発器3で蒸
発し、各製氷小室2内に噴水供給される製氷水と
熱交換することによつて、各製氷小室2内での氷
結を行なわせる。蒸発器3で蒸発気化した冷媒と
蒸発しきれなかつた液冷媒とが、気液混相状態で
アキユムレータ24に流入し、ここで気相冷媒と
液相冷媒とが分離され、気相冷媒は吸入管25を
経て圧縮機20に帰還し、液相冷媒はアキユムレ
ータ24内に貯留される。なお、第2図中の符号
FMは、凝縮器21用のフアンモータを示してい
る。
FIG. 2 shows a schematic configuration of the refrigeration system. The refrigerant gas compressed by the compressor 20 is condensed and liquefied by the condenser 21, dehumidified by the dryer 22, and then decompressed by the capillary reach tube 23.
Freezing is performed in each ice making compartment 2 by evaporating in the evaporator 3 disposed on the outer upper surface of the ice making compartment 1 and exchanging heat with ice making water supplied from a fountain into each ice making compartment 2. . The refrigerant that has evaporated and vaporized in the evaporator 3 and the liquid refrigerant that has not been completely evaporated flow into the accumulator 24 in a gas-liquid mixed phase state, where the gas-phase refrigerant and liquid-phase refrigerant are separated, and the gas-phase refrigerant is passed through the suction pipe. The liquid refrigerant is returned to the compressor 20 via the refrigerant 25 and stored in the accumulator 24. In addition, the symbols in Figure 2
FM indicates a fan motor for the condenser 21.

更に、圧縮機20の吐出側から分岐したホツト
ガス管26は、ホツトガス弁HVを経て蒸発器3
の入口側に連通され、除氷時に圧縮機20から吐
出された高温冷媒は、前記ホツトガス管26から
ホツトガス弁HVを経て蒸発器3に流入し、製氷
室1を暖めて各製氷小室2に生成された氷塊の周
面を加熱し、各氷塊を自重により落下させる。蒸
発器3から流出した高温冷媒は、アキユムレータ
24に流入し、アキユムレータ24内に滞留して
いる液相冷媒を加熱して蒸発させ、気相冷媒とし
て吸入管25から圧縮機20に帰還させる。
Further, a hot gas pipe 26 branched from the discharge side of the compressor 20 is connected to the evaporator 3 via a hot gas valve HV.
The high-temperature refrigerant discharged from the compressor 20 during deicing flows into the evaporator 3 from the hot gas pipe 26 through the hot gas valve HV, warms the ice making chamber 1, and generates ice in each ice making compartment 2. The surrounding surface of each block of ice is heated, and each block of ice is allowed to fall under its own weight. The high-temperature refrigerant flowing out of the evaporator 3 flows into the accumulator 24, heats and evaporates the liquid phase refrigerant staying in the accumulator 24, and returns it to the compressor 20 from the suction pipe 25 as a gas phase refrigerant.

第3図は、本実施例に係る自動製氷機の電気制
御回路の一例を示すものであつて、この図におい
て、電源供給ラインAと接続点Dとの間にはヒユ
ーズFが設けられ、接続点Dと電源供給ラインB
との間には、後述するタイマ装置Tの開閉接点
T1、水位検知装置Fsw、リレーX、復帰用押し
ボタンPBが直列に接続され、水位検知装置Fsw
とリレーXとの接続点は、リレーXの常開接点
X1を介して接続点Dに接続されている。水位検
知装置Fswは、前述したように製氷水の水位が所
定水位L0以下のとき接点を開放し、所定水位L0
を超えるときは、接点を閉成するように動作す
る。本実施例では、タイマ装置T、水位検知装置
Fsw、リレーXによつて保護装置が構成されてい
る。
FIG. 3 shows an example of the electric control circuit of the automatic ice maker according to this embodiment. In this figure, a fuse F is provided between the power supply line A and the connection point D, and the connection Point D and power supply line B
Between the opening and closing contacts of the timer device T, which will be described later,
T 1 , water level detection device Fsw, relay X, and return push button PB are connected in series, and water level detection device Fsw
The connection point between and relay X is the normally open contact of relay
It is connected to connection point D via X1 . As mentioned above, the water level detection device Fsw opens the contact when the water level of the ice-making water is below the predetermined water level L 0 .
When the value exceeds the limit, the contact is closed. In this embodiment, a timer device T, a water level detection device
FSW and relay X constitute a protection device.

接続点Dと接続点Hとの間はリレーXの常閉接
点X2と貯氷検知スイツチTh1が直列接続され、接
続点Hと電源供給ラインBの間に圧縮機CMが接
続されている。前述した製氷室1の除氷操作に際
して水皿4を傾動させる切換スイツチS1の可動接
点aは、接続点Hに接続され、切換スイツチS1
固定接点bは、温度検知装置Th2の可動接点eに
接続されている。温度検知装置Th2の固定接点f
と電源供給ラインBとの間には、凝縮器21の冷
却用フアンモータFMと、製氷水循環用ポンプモ
ータPMと、前記タイマ装置Tとが並列接続され
ている。このタイマ装置Tは、フアンモータFM
とポンプモータPMとの運転開始(製氷動作開
始)から設定時間経過後に、前記接点T1を所定
時間T0だけ閉成するものである。
Between the connection point D and the connection point H, the normally closed contact X2 of the relay X and the ice accumulation detection switch Th1 are connected in series, and the compressor CM is connected between the connection point H and the power supply line B. The movable contact a of the changeover switch S1 that tilts the water tray 4 during the deicing operation of the ice making compartment 1 described above is connected to the connection point H, and the fixed contact b of the changeover switch S1 is connected to the movable contact of the temperature detection device Th2 . It is connected to contact e. Fixed contact f of temperature detection device Th 2
A cooling fan motor FM for the condenser 21, a pump motor PM for ice-making water circulation, and the timer device T are connected in parallel between and the power supply line B. This timer device T is for fan motor FM
After a predetermined time has elapsed since the start of operation of the pump motor PM and the pump motor PM (start of ice making operation), the contact T1 is closed for a predetermined time T0 .

温度検知装置Th2の固定接点gは、水皿4等を
傾動・復帰させるアクチユエータモータAMに対
する傾動方向駆動用電源端子mに接続され、アク
チユエータモータAMの他方の電源端子kは、電
源供給ラインBに接続されている。切換スイツチ
S1の固定接点cと、アクチユエータモータAMの
復帰方向駆動用電源端子nとは、温度検知装置
Th3を介して接続され、該固定接点cと電源供給
ラインBとの間には、ホツトガス弁HVと給水弁
WVとが並列接続されている。
The fixed contact g of the temperature detection device Th2 is connected to the power terminal m for driving the actuator motor AM in the tilting direction for tilting and returning the water tray 4, etc., and the other power terminal k of the actuator motor AM is Connected to power supply line B. changeover switch
The fixed contact c of S1 and the power supply terminal n for driving the actuator motor AM in the return direction are connected to a temperature detection device.
A hot gas valve HV and a water supply valve are connected between the fixed contact c and the power supply line B.
WV is connected in parallel.

次に、前述した構成に係る自動製氷機の動作に
ついて、第4図に示すタイミングチヤートを参照
しながら説明する。先ず、自動製氷機に電源(電
源スイツチは図示せず)を投入する。このとき貯
氷庫には氷はないので、温度検知装置Th1は閉成
されている。切換スイツチS1の可動接点aは固定
接点bに接続されており、製氷室1の温度は室温
程度であるため、温度検知装置Th2の可動接点e
は固定接点fに接続されている。従つて、電源投
入と同時に、圧縮機(CM)20とフアンモータ
FMと、ポンプモータPMと、タイマ装置Tとに
通電が開始され、製氷運転に入る。これにより、
第1図と第2図とに関して説明した冷媒の循環と
製氷水の循環とが起こり、製氷水温度と製氷室1
の温度とは徐々に低下する。製氷動作が正常の場
合は、製氷開始から所要時間経過後に、製氷水温
度は0℃となる。これにより製氷小室2内には氷
が徐々に成長し、その氷の成長に伴つてタンク5
内の製氷水の水位は、L1からL0を通りL2に徐々
に低下する。
Next, the operation of the automatic ice maker having the above-mentioned configuration will be explained with reference to the timing chart shown in FIG. First, the automatic ice maker is powered on (the power switch is not shown). At this time, there is no ice in the ice storage, so the temperature detection device Th 1 is closed. The movable contact a of the changeover switch S1 is connected to the fixed contact b, and since the temperature of the ice making chamber 1 is about room temperature, the movable contact e of the temperature detection device Th2 is connected to the fixed contact b.
is connected to the fixed contact f. Therefore, at the same time as the power is turned on, the compressor (CM) 20 and fan motor
Power is started to be applied to the FM, pump motor PM, and timer device T, and ice-making operation begins. This results in
The circulation of the refrigerant and the circulation of the ice-making water explained in connection with FIG. 1 and FIG.
The temperature will gradually decrease. When the ice-making operation is normal, the ice-making water temperature becomes 0° C. after the required time has elapsed from the start of ice-making. As a result, ice gradually grows in the ice making chamber 2, and as the ice grows, the tank 5
The water level of the ice-making water inside gradually decreases from L 1 through L 0 to L 2 .

製氷開始から時間計測を行なつているタイマ装
置Tが、その設定時間(この設定時間は、異常設
定水位L0との関係で決められ、製氷動作が正常
なときに、製氷開始から製氷水のタンク5内の水
位がL0となる時間より長くなるように、機種の
性能、容量などを考慮して経験的に決定される)
をタイムアツプすると、当該タイマ装置Tは、接
点T1を所定時間T0だけ閉成し、その後は該接点
T1を開放する。しかしこのときは、タンク5内
の水位がL0以下のため水位検知装置Fswが開放さ
れているので、接点T1の閉成によつてリレーX
に通電されることはなく、その常閉接点X2は閉
成されたままである。
The timer device T that measures time from the start of ice making is set for a set time (this set time is determined in relation to the abnormal setting water level L0 , and when the ice making operation is normal, the ice making water starts from the start of ice making). (Determined empirically, taking into consideration the performance and capacity of the model, so that the time is longer than the time when the water level in tank 5 reaches L 0. )
, the timer device T closes the contact T1 for a predetermined time T0 , and then closes the contact T1.
Open T 1 . However, at this time, since the water level in the tank 5 is below L0 , the water level detection device Fsw is open, so relay X is activated by closing contact T1.
is not energized and its normally closed contact X 2 remains closed.

製氷が完了した場合、これを検知した温度検知
装置Th2がその可動接点eを固定接点gに接続換
えすると、フアンモータFM、ポンプモータPM、
タイマ装置Tへの通電が停止されて、アクチユエ
ータモータAMに通電がなされ、除氷運転に入
る。このアクチユエータモータAMの回転によ
り、水皿4および製氷水タンク5が傾動し切る
と、切換スイツチS1の可動接点aが固定接点cへ
の接続換えされる。このとき、温度検知装置Th3
は開放状態となつている。この切換スイツチS1
接続換えにより給水弁WVが開弁して、温度の高
い新たな製氷水が外部水道系からタンク5に供給
され、またホツトガス弁HVの開弁により蒸発器
3が暖められて除氷が促進される。前述したよう
に、製氷小室2内の氷が自重により落下し、更に
温度が上昇して除氷完了を温度検知装置Th3が検
知すると、温度検知装置Th3は閉成する。なお、
このとき水位検知装置Fswは、製氷水水位がL0
下であるので開放状態になつており、温度検知装
置Th2の可動接点eは固定接点fに接続換えされ
ている。温度検知装置Th3の閉成によりアクチユ
エータモータAMに通電されると、該モータAM
は逆回転して水皿4等を水平状態に復帰させ、該
復帰動作終了により切換スイツチS1の可動接点a
は、固定接点bに接続換えされる。これにより、
再び製氷運転に入り、前述した動作を繰り返す。
When ice making is completed, the temperature detection device Th 2 detects this and connects its movable contact e to the fixed contact g, and the fan motor FM, pump motor PM,
The timer device T is de-energized, the actuator motor AM is energized, and de-icing operation begins. When the water tray 4 and the ice-making water tank 5 are fully tilted by the rotation of the actuator motor AM, the movable contact a of the changeover switch S1 is reconnected to the fixed contact c. At this time, the temperature sensing device Th 3
is in an open state. By changing the connection of the changeover switch S1 , the water supply valve WV is opened, and new high-temperature ice-making water is supplied from the external water supply system to the tank 5, and the evaporator 3 is warmed by opening the hot gas valve HV. de-icing is facilitated. As described above, when the ice in the ice making chamber 2 falls due to its own weight and the temperature further rises and the temperature detection device Th 3 detects that deicing is complete, the temperature detection device Th 3 closes. In addition,
At this time, the water level detection device Fsw is in an open state because the ice making water level is below L 0 , and the movable contact e of the temperature detection device Th 2 is reconnected to the fixed contact f. When the actuator motor AM is energized by closing the temperature sensing device Th 3 , the motor AM
rotates in the opposite direction to return the water tray 4, etc. to the horizontal state, and upon completion of the return operation, the movable contact a of the changeover switch S1
is reconnected to fixed contact b. This results in
Start ice making operation again and repeat the above operation.

仮に、ここで前述したフアンロツクや凝縮器の
目詰まり等による凝縮能力の低下、水冷凝縮器で
の給水圧の低下や断水、3相圧縮機での欠相運
転、冷媒ガスの洩れ、圧縮機の故障、ホツトガス
弁の閉成不良、冷凍系の水分詰まり等の何れかが
発生したとすると、冷凍能力が極端に低下し、製
氷運転において製氷室1の温度は低下しなくな
る。従つて、製氷水の水位も低下しなくなり、製
氷運転が開始されても、製氷水の水位は異常設定
水位L0以下にはならず、水位検知装置Fswは閉成
状態を保つことになる。そして、前記タイマ装置
Tが設定時間をタイムアツプして、その接点T1
を閉成した瞬間に、電源供給ラインA→ヒユーズ
→接続点D→接点T1→水位検知装置Fsw→リレ
ーX→復帰用押しボタンPB→電源供給ラインB
に至る回路が閉成され、電流がリレーXを流れ
る。これにより、リレーXの常開接点X1が閉成
されると共に、常閉接点X2が開放される。この
常開接点X1の閉成により、リレーXは自己保持
され、常閉接点X2の開放により圧縮機CM、フア
ンモータFM、ポンプモータPMへの通電が遮断
される。従つて、本実施例に係る自動製氷機で
は、従来技術の問題点であつた圧縮機の過負荷運
転−停止の繰り返しがなく、圧縮機の故障を回避
でき、消費電力の浪費防止や節水を有効に図るこ
とができる。なお、第3図に破線で示したよう
に、リレーXと並列に警報ランプLを接続してお
くと、ユーザーにフアンロツクや目詰まり等のト
ラブルが発生したことを視覚により知らせること
ができる。また、これと並列的にブザーの如き警
音手段を設け、前記警報ランプLと同時に動作さ
せて、ユーザーに聴覚でもトラブルを覚知させる
ようにしてもよい。
If there is a decrease in condensing capacity due to fan lock or clogging of the condenser as mentioned above, a decrease in water supply pressure or water outage in the water-cooled condenser, open-phase operation in the three-phase compressor, leakage of refrigerant gas, or failure of the compressor, If any one of the following occurs: a failure, a hot gas valve closing failure, water clogging in the refrigeration system, etc., the refrigeration capacity will be extremely reduced, and the temperature of the ice-making chamber 1 will not decrease during ice-making operation. Therefore, the water level of the ice-making water will not drop, and even if the ice-making operation is started, the water level of the ice-making water will not fall below the abnormal setting water level L0 , and the water level detection device Fsw will remain in the closed state. Then, the timer device T times out the set time and the contact T1
At the moment of closing, power supply line A → fuse → connection point D → contact T 1 → water level detector FSW → relay X → return push button PB → power supply line B
The circuit leading to is closed and current flows through relay X. As a result, the normally open contact X 1 of the relay X is closed, and the normally closed contact X 2 is opened. By closing the normally open contact X1 , the relay X is self-held, and by opening the normally closed contact X2 , the power to the compressor CM, fan motor FM, and pump motor PM is cut off. Therefore, in the automatic ice maker according to this embodiment, there is no need for repeated overload operation and stop of the compressor, which was a problem in the conventional technology, and it is possible to avoid compressor failure, prevent wasted power consumption, and save water. This can be done effectively. If a warning lamp L is connected in parallel with the relay X as shown by the broken line in FIG. 3, the user can be visually notified of the occurrence of a problem such as fan lock or clogging. Further, an alarm means such as a buzzer may be provided in parallel with this, and may be operated simultaneously with the alarm lamp L, so that the user is audibly alerted to the trouble.

フアンロツクや凝縮器の目詰まり等のトラブル
を直した後に、再び製氷動作を行なわせる場合
は、復帰用押しボタンPBを押して、その接点を
開放することでリレーXの自己保持を解除し、あ
るいは電源を遮断することでリレーXの自己保持
を解除する。
If you want to start ice making again after fixing problems such as fan lock or condenser clogging, press return pushbutton PB and release its contacts to release the self-holding of relay The self-holding of relay X is released by cutting it off.

以上、本考案の好適な実施例に係る自動製氷機
につき説明したが、本考案は、実施例の製氷方式
に限定されるものではなく、オープンセル方式、
プレート方式、流下形、貯水形等の何れの製氷方
式を採用した製氷機にも適用できる。また、製氷
完了の検知手段として、温度検知式(温度検知装
置Th2)を例に挙げて説明したが、その他にタイ
マ式、水位検知式、圧力検知式、氷厚検知式、温
度+タイマ式、水位+タイマ式等の何れの方式を
採用した製氷機にも本考案を適用できる。
Although the automatic ice making machine according to the preferred embodiment of the present invention has been described above, the present invention is not limited to the ice making method of the embodiment, and is not limited to the ice making method of the embodiment.
It can be applied to ice making machines that employ any type of ice making method, such as a plate type, flowing type, or water storage type. In addition, as a means of detecting the completion of ice making, the temperature detection type (temperature detection device Th 2 ) was used as an example, but there are also timer type, water level detection type, pressure detection type, ice thickness detection type, and temperature + timer type. The present invention can be applied to any type of ice making machine, such as the water level + timer type, etc.

更に、前述した実施例では、保護装置の構成部
品としてリレーXを採用したが、本考案はこれに
限定されるものではなく、電子部品を各検知手段
やタイマと組合わせることによつて、製氷開始後
の所定時間内に製氷水水位が所定水位以下に低下
しない場合は、その製氷動作を停止させる保護装
置を構成することも可能である。
Furthermore, in the above-mentioned embodiment, the relay It is also possible to configure a protection device that stops the ice-making operation if the ice-making water level does not fall below a predetermined water level within a predetermined time after the start.

考案の効果 以上説明したように、本考案に係る自動製氷機
によれば、製氷開始後の所定時間内に製氷水貯留
部内の水位が所定水位以下に低下しないときは、
異常を判断して製氷動作を停止させる保護装置を
設けたので、フアンロツクや凝縮器の目詰まり等
による凝縮能力の低下、水冷凝縮器での給水圧の
低下や断水、3相圧縮機での欠相運転、冷媒ガス
の洩れ、圧縮機の故障、ホツトガス弁の閉弁不
良、冷凍系の水分詰まり等の異常が生じた場合で
も、製氷機が確実に停止する。従つて、消費電力
の浪費防止や節水を図り得ると共に、圧縮機の致
命的故障を未然に回避できる。また、各々の異常
状態に対応するための専用の保護装置を夫々設け
る必要がないので、安価に製造できると共に、メ
ンテナンスも容易となる効果がある。
Effects of the invention As explained above, according to the automatic ice maker according to the invention, if the water level in the ice making water reservoir does not fall below the predetermined water level within a predetermined time after the start of ice making,
We have installed a protection device that detects abnormalities and stops the ice-making operation, which prevents a decrease in condensing capacity due to fan lock or condenser clogging, a drop in water supply pressure or water outage in the water-cooled condenser, and a shortage in the three-phase compressor. The ice maker will reliably stop even if an abnormality occurs such as phase operation, refrigerant gas leak, compressor failure, hot gas valve closing failure, or moisture clogging in the refrigeration system. Therefore, it is possible to prevent wasted power consumption, save water, and avoid fatal failure of the compressor. Furthermore, since there is no need to provide dedicated protection devices for each abnormal state, manufacturing is possible at low cost, and maintenance is also facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案に係る自動製氷機の好適な実施例
を示すものであつて、第1図は実施例に係る自動
製氷機の製氷部および製氷水タンク部分の概略構
成図、第2図は実施例に係る自動製氷機の冷凍系
統図、第3図は実施例に係る自動製氷機の電気制
御回路図、第4図は実施例に係る自動製氷機の動
作を説明するタイミングチヤートである。 1……製氷室、2……製氷小室、3……蒸発
器、4……水皿、5……製氷水タンク、20……
圧縮機(CM)、21……凝縮器、23……キヤ
ピラリーチユーブ、24……アキユムレータ、2
6……ホツトガス管、Th1,Th2,Th3……温度
検知装置、X……リレー、X1……リレーXの常
開接点、X2……リレーXの常閉接点、T……タ
イマ装置、T1……タイマ装置の開閉接点、FM…
…フアンモータ、PM……ポンプモータ、WV…
…給水弁、HV……ホツトガス弁、Fsw……水位
検知装置。
The drawings show a preferred embodiment of the automatic ice maker according to the present invention, in which FIG. 1 is a schematic diagram of the ice making section and ice making water tank portion of the automatic ice maker according to the embodiment, and FIG. 2 is a diagram illustrating the implementation. FIG. 3 is a refrigeration system diagram of the automatic ice maker according to the example, FIG. 3 is an electric control circuit diagram of the automatic ice maker according to the example, and FIG. 4 is a timing chart explaining the operation of the automatic ice maker according to the example. 1...Ice making compartment, 2...Ice making compartment, 3...Evaporator, 4...Water tray, 5...Ice making water tank, 20...
Compressor (CM), 21... Condenser, 23... Capillary reach tube, 24... Accumulator, 2
6... Hot gas pipe, Th 1 , Th 2 , Th 3 ... Temperature detection device, X... Relay, X 1 ... Normally open contact of relay X, X 2 ... Normally closed contact of relay X, T... Timer device, T 1 ... Opening/closing contact of timer device, FM...
...Fan motor, PM...Pump motor, WV...
...Water supply valve, HV...Hot gas valve, FSW...Water level detection device.

Claims (1)

【実用新案登録請求の範囲】 〔1〕 冷凍系に接続する蒸発器を配設した製氷
部と、該製氷部に製氷水を供給する製氷水供給
系と、前記製氷部に生成された氷を離脱させる
装置と、前記製氷水供給系における製氷水貯留
部の水位を検知する水位検知装置とを備える自
動製氷機において、 製氷開始後の所定時間内に前記製氷水貯留部
内の水位が所定水位以下に低下しない場合に、
その製氷動作を停止させる保護装置を設けた ことを特徴とする自動製氷機。 〔2〕 前記保護装置は、製氷動作を停止させて
いる保護動作中に作動する警報手段を備えてい
ることを特徴とする実用新案登録請求の範囲第
1項記載の自動製氷機。 〔3〕 前記保護装置は、製氷動作を停止させて
いる保護動作を手動で解除可能な手段を備えて
いることを特徴とする実用新案登録請求の範囲
第1項記載の自動製氷機。
[Scope of Claim for Utility Model Registration] [1] An ice making section that is connected to a refrigeration system and is provided with an evaporator, an ice making water supply system that supplies ice making water to the ice making section, and an ice making section that supplies ice produced in the ice making section. In an automatic ice maker equipped with a detachment device and a water level detection device that detects a water level in an ice making water storage section in the ice making water supply system, the water level in the ice making water storage section falls below a predetermined water level within a predetermined time after the start of ice making. If it does not decrease to
An automatic ice-making machine characterized by being equipped with a protection device that stops the ice-making operation. [2] The automatic ice making machine according to claim 1, wherein the protection device includes an alarm means that is activated during a protection operation that stops the ice making operation. [3] The automatic ice-making machine according to claim 1, wherein the protection device includes a means for manually releasing the protection operation that stops the ice-making operation.
JP15565087U 1987-10-12 1987-10-12 Expired JPH0452621Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15565087U JPH0452621Y2 (en) 1987-10-12 1987-10-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15565087U JPH0452621Y2 (en) 1987-10-12 1987-10-12

Publications (2)

Publication Number Publication Date
JPH0160162U JPH0160162U (en) 1989-04-17
JPH0452621Y2 true JPH0452621Y2 (en) 1992-12-10

Family

ID=31433466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15565087U Expired JPH0452621Y2 (en) 1987-10-12 1987-10-12

Country Status (1)

Country Link
JP (1) JPH0452621Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5294781B2 (en) * 2008-10-01 2013-09-18 ホシザキ電機株式会社 Abnormality detection method of automatic ice machine

Also Published As

Publication number Publication date
JPH0160162U (en) 1989-04-17

Similar Documents

Publication Publication Date Title
US5027610A (en) Automatic ice making machine
US5035118A (en) Automatic ice making machine
US5025637A (en) Automatic ice making machine
JPH0638292Y2 (en) Automatic ice machine
JPH0452621Y2 (en)
JPH0452622Y2 (en)
JPH0451330Y2 (en)
JP2007033010A (en) Control method of automatic ice making machine
JPH0638299Y2 (en) Automatic ice machine
JP3573911B2 (en) Ice machine control device
JPH0537174Y2 (en)
JP3301810B2 (en) Ice machine
JP2004278991A (en) Ice making machine
JP3875159B2 (en) How to operate an automatic ice machine
JPH07122536B2 (en) Operation control device for ice maker
JPS62153675A (en) Isothermic high-humidity refrigerating apparatus
JPH0120620Y2 (en)
JP2941112B2 (en) Auger ice machine
JPH0735450A (en) Ice-making machine
JP3710916B2 (en) Ice machine
JPH0218464Y2 (en)
JP2002156145A (en) Operation method for ice heat storage unit
JPH0332716B2 (en)
JP2858914B2 (en) Refrigerator control device
JPH11304317A (en) Operation method of automatically ice making machine