JPS58156854A - Detector for acoustic signal due to cracking - Google Patents

Detector for acoustic signal due to cracking

Info

Publication number
JPS58156854A
JPS58156854A JP4137482A JP4137482A JPS58156854A JP S58156854 A JPS58156854 A JP S58156854A JP 4137482 A JP4137482 A JP 4137482A JP 4137482 A JP4137482 A JP 4137482A JP S58156854 A JPS58156854 A JP S58156854A
Authority
JP
Japan
Prior art keywords
output
period
acoustic signal
crack
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4137482A
Other languages
Japanese (ja)
Other versions
JPH0113534B2 (en
Inventor
Kazutoshi Takahashi
和利 高橋
Shoichi Kikuchi
菊池 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4137482A priority Critical patent/JPS58156854A/en
Publication of JPS58156854A publication Critical patent/JPS58156854A/en
Publication of JPH0113534B2 publication Critical patent/JPH0113534B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect an acoustic signal due to cracking generated from an object to be detected discriminately from noise easily and accurately by measuring the two of the rise period, holding period and fall time of the isolated wave where the electrically converted signal of said acoustic signal presents. CONSTITUTION:A sensor 21 is held in contact with an object to be examined, not shown in the figure, and the acoustic signal due to cracking generated from said object is converted to an electric signal which is drawn out. When the isolated wave which presents in this electrically converted signal is on the rise (rise period), that is, when the leading edge of the isolated wave is under inputting, the current output of a peak holding circuit 31 is larger than the output of the peak holding circuit 31 of one clock before, and the output of a comparator 32 goes to a high level. However, if the isolated wave is on the fall (fall period), the output of the circuit 31 of one clock before attains the value larger than the current output and the output of a comparator 33 goes to a high level. In the period except either of these two periods, the outputs of the comparators 32, 33 are the low level. The acoustic signal due to cracking is detected discriminately from noise by measuring these periods.

Description

【発明の詳細な説明】 この発明は被検知物に亀裂が発生し、あるいは被検知物
に存在している亀裂が伝播することによって生じる亀裂
音愉を検出する亀裂音響検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crack acoustic detection device that detects crack sounds generated when a crack occurs in an object to be detected or when a crack existing in the object propagates.

亀裂音響信号を検出、解析することによって被検知物に
亀裂が発生し、あるいはそれまで存在していた亀裂の伝
播状態を知ることができすこぶる便利である。しかし亀
裂音書イぎ号の検出は、そのセンサの設定場所によって
は各種の雑音が、亀裂音41号の孤立波と共に混入し亀
裂音響信号の孤立波を正確に検出することが困難となる
By detecting and analyzing the crack acoustic signal, it is extremely convenient to know when a crack has occurred in the object to be detected, or how the crack has propagated until then. However, in detecting the crack sound signal No. 41, various noises may be mixed in with the solitary wave of crack sound No. 41 depending on the setting location of the sensor, making it difficult to accurately detect the solitary wave of the crack sound signal.

すなわち亀裂音響信号は、第1図Aの波形11として示
すように減衰孤立波であり、これに対して雑音を除去す
るには、一般に成るしきい値よシも大きな部分を、つま
り雑音レベルよシも大きい部分を取出すことが行われて
いる。しかし例えば第1図Aに示すように電気的パルス
雑音12が混入するとして前記しきい値を越えてしまい
、しきい値のみによって雑音を除去することはできない
In other words, the crack acoustic signal is an attenuated solitary wave, as shown as waveform 11 in Figure 1A, and in order to remove noise, a portion larger than the general threshold value, that is, the noise level, must be removed. It is also practiced to take out large parts. However, as shown in FIG. 1A, for example, if electrical pulse noise 12 is mixed in, the threshold value will be exceeded, and the noise cannot be removed by the threshold value alone.

又、例えば被検知物体が圧力容器のような場合において
はその外表面がさびてそのさびが剥離するために第1図
Aに番号13として示すようにパルス状の音響雑音が発
生し、これも前記しきい値を越えるため、この雑音13
と亀裂音響信号11とを区別することができなくなる。
For example, when the object to be detected is a pressure vessel, its outer surface becomes rusty and the rust peels off, producing a pulsed acoustic noise as shown at number 13 in Figure 1A. This noise 13 exceeds the threshold value.
It becomes impossible to distinguish between the crack acoustic signal 11 and the crack acoustic signal 11.

したがって、従来においてこのようなパルス状の雑音と
亀裂音響信号とを区別するため亀裂音響信号の孤立波の
幅を測定し、これが所定値以上、つまbt気的パルス1
2やさびの剥離時に発生するパルス状音曽雑音13の幅
板上の場合に亀裂音響信号として検出することが提案さ
れている。しかし、音響雑音には各種のものがあり、例
えば容器に供給される流体に固形物が混入し、その固形
物が容器に衝突することによって発生する雑音は第1図
Bに示すように、その持続時間幅が長い。
Therefore, conventionally, in order to distinguish between such pulse-like noise and the crack acoustic signal, the width of the solitary wave of the crack acoustic signal is measured, and if the width exceeds a predetermined value, that is, the bt gas pulse 1
It has been proposed to detect pulsed sonic noise 13 generated when peeling of rust or rust on a width plate as a crack acoustic signal. However, there are various types of acoustic noise. For example, the noise generated when solid matter is mixed into the fluid supplied to a container and the solid matter collides with the container is as shown in Figure 1B. Long duration range.

また容器に連結されているパイプをベルトで保持してい
る場合にベルトとパイプとが膨張、収縮などによってこ
すれて発生する雑音も第1図Cに示すように持続時間が
長いものであり、これら雑音と亀裂音響信号との孤立波
11とを区別することはできなかった。
In addition, when a pipe connected to a container is held by a belt, the noise generated when the belt and pipe rub against each other due to expansion, contraction, etc. also lasts for a long time, as shown in Figure 1C. It was not possible to distinguish between the solitary wave 11 and the crack acoustic signal.

雑音と亀裂音響信号とを区別するためにその検知した亀
裂音響信号の電気的変換出力の波形を磁気記録し、これ
を再生してその波形を静止画像として観察し、亀裂音響
信号か雑音かの区別をすることも考えられる。しかし例
えば10分間に数100個程鹿の孤立波11が発生する
ことがあり、とのような場合についてその個々の孤立波
11が正しい亀裂音響信号であるか雑音であるかをいち
いちこのような波形観察により区別することは非常に長
い時間がかかり実際的でない。
In order to distinguish between noise and crack acoustic signals, we magnetically record the waveform of the electrically converted output of the detected crack acoustic signal, reproduce it and observe the waveform as a still image, and determine whether it is a crack acoustic signal or noise. It is also possible to make a distinction. However, for example, in a case where several hundred deer solitary waves 11 are generated in 10 minutes, it is necessary to check whether each solitary wave 11 is a correct crack acoustic signal or noise. Distinguishing by observing waveforms takes a very long time and is not practical.

この発明の目的は亀裂音響信号を簡単にかつ正確に雑音
を区別して検出することができる亀裂晋q1信号検出装
置を提供するととKある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a crack Jinq1 signal detection device that can easily and accurately detect a crack acoustic signal by distinguishing it from noise.

この発明によれば被検知物体から発生している亀裂音響
信号の′…、気変換信号に存在している各孤立波の上昇
時間、保持時間、下降時間を少なくとも2つについて測
定し、又、その孤立波形の最大振幅値を測定するように
する。このようにすることによってその孤立波形の上昇
時間、保持時間、下降時間がそれぞれ所定の範囲、つま
シ亀裂音響信号の減衰孤立波の一般的なそれらの値の範
囲内にあるか否かを調べてこれを亀裂音響信号か雑音か
を区別し、又亀裂音響信号の場合はそのエネルギーの大
きさを知るためそのピーク値を検出すも例えば絹2図に
示すようにセンサ21が被検知物体(図示せず)に対接
されてその被検知物体から発生する亀裂音響信号は電気
信号に変換して取如出される。センサ21は例えばPZ
Tのような圧電素子によ多構成される。このセンサ21
の電気変換出力は増幅器22で増幅され、その出力は所
要の周波数帯域成分のみが波炉器23で取出され、更に
必簀に応じて増幅器24で増幅される。
According to the present invention, at least two of the rise time, retention time, and fall time of each solitary wave present in the crack acoustic signal generated from the detected object are measured, and The maximum amplitude value of the isolated waveform is measured. By doing this, it is determined whether the rise time, retention time, and fall time of the solitary waveform are within the predetermined ranges, which are the typical values of the attenuated solitary wave of the crack acoustic signal. For example, as shown in Figure 2, the sensor 21 detects the detected object ( A crack acoustic signal generated from the detected object (not shown) is converted into an electrical signal and taken out. The sensor 21 is, for example, a PZ
It is composed of a piezoelectric element such as T. This sensor 21
The electrical conversion output is amplified by an amplifier 22, and only the required frequency band components of the output are extracted by a wave oven 23, and further amplified by an amplifier 24 as required.

この増幅器24の出力は包絡線検波器25で検波され、
その包絡線検波出力は比較器26において基準値、つま
り一定のしきい値と比較され、しきい値以上の部分で比
較器26より出力が発生するようにされる。この比較器
26の出力はゲート回路27にゲート信号として与えら
れ、ゲート回路27には端子28よりクロックが与えら
れている。
The output of this amplifier 24 is detected by an envelope detector 25,
The envelope detection output is compared with a reference value, that is, a certain threshold value, in a comparator 26, and an output is generated from the comparator 26 in a portion exceeding the threshold value. The output of this comparator 26 is given as a gate signal to a gate circuit 27, and a clock is given to the gate circuit 27 from a terminal 28.

増幅器24の出力は全波整流回路29にも供給され、そ
の全波整流回路29の出力はピーク保持回路31に供給
される。ピーク保持回路31にはゲート回路27を通過
したクロックが与えられており、このクロックごとにそ
の保持出力はリセット嘔れる。ピーク保持回路31の出
力は比較器32の非反転入力側と、比較器330反転入
力側と、さらにバッファ回路34とに与えられる。バッ
ファEl;!l路34の出力は遅延回路35を通じて比
較器32の反転入力側と、比較器33の非反転入力側と
に供給される。遅延回路35の遅地時間は、例えば端子
28のクロック周期と#ヨソ一致しており、したがって
比較器32.33においては、1クロツク前のピーク保
持回路31の出力と、現在のピーク保持(ロ)路31の
出力とが比較される。
The output of the amplifier 24 is also supplied to a full-wave rectifier circuit 29, and the output of the full-wave rectifier circuit 29 is supplied to a peak holding circuit 31. The peak holding circuit 31 is supplied with a clock that has passed through the gate circuit 27, and its holding output is reset every time this clock passes. The output of the peak holding circuit 31 is applied to the non-inverting input side of the comparator 32, the inverting input side of the comparator 330, and further to the buffer circuit 34. Buffer El;! The output of the l path 34 is supplied through a delay circuit 35 to an inverting input of a comparator 32 and a non-inverting input of a comparator 33. The delay time of the delay circuit 35, for example, coincides with the clock cycle of the terminal 28, and therefore, in the comparators 32 and 33, the output of the peak holding circuit 31 one clock ago and the current peak holding (low) ) is compared with the output of path 31.

このため入力されている孤立波が上昇中の時、つまり孤
立波の前縁が入力中の時は1クロツク前のピーク保持回
路31の出力よりも現在のピーク保持回路31の出力の
ほうが大きくなり、比較器32の出力は高レベルとなる
。しかしその孤立波が下降している場合にはピーク保持
回路31の現在の出力よりも1クロツク前の出力のほう
が大きな値となシ、比較器33の出力が高レベルとなる
Therefore, when the input solitary wave is rising, that is, when the leading edge of the solitary wave is being input, the current output of the peak holding circuit 31 is larger than the output of the peak holding circuit 31 one clock ago. , the output of the comparator 32 becomes high level. However, when the solitary wave is falling, the output of the peak holding circuit 31 one clock ago is larger than the current output, and the output of the comparator 33 becomes high level.

つまシ孤立波形の立ちあがり期間(上昇期間)中は比較
器32の出力は高レベルであり、孤立波の立ち下がシ期
間(下降期間)は比較器33の出力が篩レベルとなり、
これらのいずれの期間でもない場合は比較器32.33
の各出力は低レベルとなっている。
During the rising period (rising period) of the isolated waveform, the output of the comparator 32 is at a high level, and during the falling period (falling period) of the isolated wave, the output of the comparator 33 is at the sieve level.
If none of these periods, comparator 32.33
Each output is at a low level.

よって孤立波の上昇期間と下降期間との間のflばビー
ク値を保持している保持時間は比較器32.33の出力
は共に低レベルであり、これは比較器32.33の出力
をそれぞれインバータ36゜37で反転してアンド回路
38に供給することにより、保持期間はアンド回路38
の出力が昼レベルとなって検出される。
Therefore, during the holding time during which the peak value is held between the rising period and the falling period of the solitary wave, both the outputs of the comparators 32 and 33 are at a low level, which means that the outputs of the comparators 32 and 33 are By inverting it with inverters 36 and 37 and supplying it to the AND circuit 38, the holding period can be adjusted to the AND circuit 38.
The output is detected at daytime level.

比較器32、アンド回路38、比較器33の各出力はそ
れぞれゲー)41,42.43に供給される。これらゲ
ート41,42.43にはゲート回路27の出力クロッ
クが与えられている。ゲート41,42.43を通過し
たクロックはそれぞれカウンタ44,45.46により
計数される。
The outputs of the comparator 32, AND circuit 38, and comparator 33 are supplied to gates 41, 42, and 43, respectively. The output clock of the gate circuit 27 is applied to these gates 41, 42, and 43. The clocks passing through gates 41, 42, 43 are counted by counters 44, 45, 46, respectively.

又、カウンタ44.45.46の計数値はそれぞれプリ
ンタ47に記録すべき信号として与えられる。更にピー
ク保持回路31の出力FiAD変侠器48によりデジタ
ル信号に変換されてこれもプリンタ47に記録すべき信
号として入力される。
Further, the count values of the counters 44, 45, and 46 are respectively given to the printer 47 as a signal to be recorded. Further, the output of the peak holding circuit 31 is converted into a digital signal by the FiAD converter 48, and this is also input to the printer 47 as a signal to be recorded.

プリンタ47に記録指令を出すために比較器32、アン
ドlo1路38、比較器33の各出力はインバータを通
じてオア回路49に入力されており、オア回路49の出
力はプリンタ47にプリント指令として与えられ、かつ
その指令は遅延回路51で僅か遅延されたカウンタ44
,45.46にリセット信号として与えられている。
In order to issue a recording command to the printer 47, the outputs of the comparator 32, ANDLO1 path 38, and comparator 33 are input to an OR circuit 49 through an inverter, and the output of the OR circuit 49 is given to the printer 47 as a print command. , and the command is sent to the counter 44 which is slightly delayed by the delay circuit 51.
, 45, 46 as a reset signal.

例えば第3図Aに示すように孤立波がセンサ21より入
力すると、包結線検波回路25にょ如検波され、その検
波出力がしきい値上Esよシ絶対イ1hで大きい期間は
第3図Bに示すように比較器26の出力が高レベル罠な
ってゲート[回路27があけられる。したがってピーク
保持回路31が動作を開始し、これによシその孤立波の
立上り期間、っiり上昇期間Taは比較器32の田カが
第3図Cに示すように高レベルとなり、孤立波がはソ同
じ値を保持している保持期間Tb0間はアンドl−路3
8の出力が組3図1)に示すように筒レベルとなる。比
較器32の出力が低レベルとなった時にオア回路49よ
りプリント指令が発生してカウンタ44゜45.46の
計数の内容がプリンタ47に印字される。この場合、ケ
ート41のみが開らがれているため、カウンタ44のみ
が計数し、その計数値は上昇期間Taと対応した値とな
る。
For example, when a solitary wave is input from the sensor 21 as shown in FIG. 3A, it is detected by the envelope detection circuit 25, and the detection output is higher than the threshold value Es, and the period when it is large is 1h as shown in FIG. 3B. As shown in FIG. 2, the output of the comparator 26 becomes a high level trap and the gate [circuit 27 is opened. Therefore, the peak holding circuit 31 starts operating, and as a result, the voltage of the comparator 32 becomes high level as shown in FIG. During the holding period Tb0 in which the same value is held, the ANDL-path 3
The output of No. 8 is at the cylinder level as shown in Group 3 (Figure 1). When the output of the comparator 32 becomes low level, a print command is generated from the OR circuit 49 and the contents of the count of the counter 44.degree. 45.46 are printed on the printer 47. In this case, since only the cage 41 is opened, only the counter 44 counts, and the counted value corresponds to the rising period Ta.

同様にして保持期間Tbが終ると、その立下がりによっ
てオア回路49よりプリント指令が発生し、この場合に
おいてはカウンタ45のみが計数し、この計数値は期間
Taと対応し、これが記録される。
Similarly, when the holding period Tb ends, a print command is generated from the OR circuit 49 at the falling edge of the hold period Tb, and in this case, only the counter 45 counts, and this counted value corresponds to the period Ta and is recorded.

この保持期間Tbが終って孤立波の下降期間となると比
較器33の出力が第3図Eに示すように高レベルとなり
、ゲート43が開きカウンタ46がクロックを計数する
。この下降期間Tcが終了すると、プリント指令が発生
してこの期間に対応したカウンタ46の計数値が印字さ
れる。カウンタ44゜45.46に対するリセットは、
印字指令が発生し、カウンタの計数内容をプリンタ47
に供給し次のクロックが入力されるまでに行われる。な
お比較器26.32.33などは入力された電気信号の
レベルの変動が多いため、ヒステリシス特性を持たすこ
とが望ましい。亀裂音響毎号の周波数は250に+(z
程度であシ、周期にして約4マイクロ秒であって端子2
8に供給するクロックの周期は50ないし100マイク
ロ秒とされる。
When the holding period Tb ends and the solitary wave falls, the output of the comparator 33 becomes a high level as shown in FIG. 3E, and the gate 43 opens and the counter 46 counts the clocks. When this falling period Tc ends, a print command is issued and the count value of the counter 46 corresponding to this period is printed. Resetting the counter 44°45.46 is
A print command is generated and the count contents of the counter are sent to the printer 47.
This is done until the next clock is input. Note that the comparators 26, 32, 33, etc. are desirably provided with hysteresis characteristics because the level of the input electrical signal fluctuates frequently. The frequency of each issue of crack sound is 250+(z
The period is approximately 4 microseconds, and the terminal 2
The period of the clock supplied to 8 is 50 to 100 microseconds.

亀裂音41I@号の減衰孤立波は一般に上昇期間Taが
50〜500マイクロ秒、保持期間TbはO〜200マ
イクロ秒、下降期間Tcは500〜4000マイクロ秒
程度である。したがってプリンタ47に記録された結果
をみて、それがこれらの範囲以内にあるものを正しい亀
裂音響信号孤立波とする。
The attenuated solitary wave of crack sound 41I@ generally has a rising period Ta of 50 to 500 microseconds, a holding period Tb of 0 to 200 microseconds, and a falling period Tc of about 500 to 4000 microseconds. Therefore, by looking at the results recorded on the printer 47, those within these ranges are determined to be correct crack acoustic signal solitary waves.

一方、第1図Bに示した雑音においての立上り期間Ta
は2000マイクロ秒以上、保持期間Tbけ4マイクロ
秒以上、下降期間Tcは4000マイクロ秒以上である
。つまり上昇期間Taが亀裂音響毎号の孤立波よりもず
っと長いものであるから、これと亀裂音智(N号とは容
易に区別することができる。又下降期間も亀裂音響毎号
のそれよシも長くなっている。第1図Cに示した雑音は
上昇期間r(Naは600マイクロ秒以上、保持期間T
bはtoooマイクロ秒以上、下降期間Tcは1000
マイクロ秒以上である。したがってこの場合においては
上昇期間Taが亀裂音響毎号のそれよりも長く、特に保
持期間Tbが亀裂音響毎号と比べると格段と長いためこ
れによりこの雑音と亀裂音響信号との区別が可能となる
On the other hand, the rise period Ta in the noise shown in FIG. 1B
is 2000 microseconds or more, the holding period Tb is 4 microseconds or more, and the falling period Tc is 4000 microseconds or more. In other words, since the rising period Ta is much longer than the solitary wave of each crack sound, it can be easily distinguished from the solitary wave of crack sound (N).The falling period is also longer than that of each crack sound. The noise shown in FIG.
b is too microseconds or more, falling period Tc is 1000
More than a microsecond. Therefore, in this case, the rising period Ta is longer than that of each crack sound, and in particular, the holding period Tb is much longer than that of each crack sound, thereby making it possible to distinguish this noise from the crack sound signal.

このような上昇期間、保持期間、下降期間によって雑音
を区別することをプリンタ47による記録を見て行なう
場合のみならず、これを自動的に行なうようにすること
もできる。そのためには例えばマイクロコンピュータに
よって処理すればよい。その処理としてはオア回路49
の出力印字指令が発生すると第4図中のステップS+で
示すように割シ込みとしてマイクロコンピュータに通知
され、マイクロコンピュータはその割り込み時にカウン
タ44.45.46の対応するものの計数値をステップ
S2で読み込む。その後ステップSsにおいて比較器2
6の出力をチェックしてその時の入力信号の包絡線がし
きい値よシ上か否かを調べしきい値より上の場合はステ
ップSlに戻シ、次の割込みを待ち、しきい値よシ下の
場合りSステップS4においてそれまでに取込んだ三つ
の計数(ilと、あらかじめ設定はれている値、すなわ
ち亀裂音響1M号としての上昇期間Taの50〜500
マイクロ秒、保持期間Tb00〜200マイクロ秒、下
嗣間Tcの500〜4000マイクロ秒をそれぞれ示す
値の範囲内にあるかを比較し、ステップSL+でステッ
プS4での比軟が3つとも範囲内にある場合は亀裂音響
信号とし、1つで本年一致がでた場合は亀裂音響信号以
外の雑音と判定する。その亀裂音響信号と判定されたデ
ータについての最大振幅、第2図のADf侠器48の出
力をとシこんだ値を用いて亀裂音響信号の解析に使うこ
とができる・。
Distinguishing noise based on the rising period, holding period, and falling period is not only carried out by looking at the recording by the printer 47, but also can be done automatically. For this purpose, processing may be performed by, for example, a microcomputer. As a process, OR circuit 49
When an output print command is generated, the microcomputer is notified as an interrupt as shown in step S+ in FIG. Load. After that, in step Ss, the comparator 2
Check the output of step 6 to see if the envelope of the input signal at that time is above the threshold. If it is above the threshold, return to step Sl, wait for the next interrupt, and wait for the next interrupt. In the case of the lower case, the three counts (il) taken so far in S step S4 are different from the preset value, i.e., 50 to 500 of the rise period Ta as crack sound 1M.
Compare whether microseconds, retention period Tb00 to 200 microseconds, and Shimotsuguma Tc 500 to 4000 microseconds are within the range of values, respectively, and in step SL+, the relative softness in step S4 is all within the range. If there is one, it is considered to be a crack sound signal, and if there is a match this year, it is judged to be noise other than a crack sound signal. The maximum amplitude of the data determined to be a crack acoustic signal, a value obtained by subtracting the output of the ADf unit 48 in FIG. 2, can be used to analyze the crack acoustic signal.

上述においては、その雑音と亀裂音響信号との区別を孤
立波の上昇期間、保持期間、下降期間の3つについてそ
れぞれが所定範囲内にあるか否かによシ区別したが、そ
の2つについて例えば上昇期間と保持期間とが所定値以
内にあるか否かの判定によって区別してもよい。
In the above, the noise and the crack acoustic signal were distinguished based on whether or not each of the rising period, holding period, and falling period of the solitary wave was within a predetermined range. For example, the distinction may be made by determining whether the rising period and the holding period are within a predetermined value.

以上述べたようにこの発明によれば、亀裂音響信号を雑
音と区別して正しく検出でき、しかもその検出はプリン
タの打ち出しによっても簡単に区別することが可能とな
り、もちろんマイクロコンピュータで自動的に区別する
ようにすれば多数の亀裂音響信号の孤立波に多数の雑音
が混入していでもこれを区別し、短時間でその処理を行
なうことができ、亀裂音響16号検出によるその亀裂の
発生や亀裂の伝播状態などの解析を正しく短時間で行な
うことが可能となる。
As described above, according to the present invention, it is possible to correctly detect a crack acoustic signal by distinguishing it from noise, and it is also possible to easily distinguish the crack acoustic signal by printing it on a printer, and of course automatically distinguish it by a microcomputer. By doing this, even if a large number of noises are mixed into the solitary waves of a large number of crack acoustic signals, it can be distinguished and processed in a short time. It becomes possible to analyze the propagation state correctly and in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は亀裂音響信号及び雑音の各種波形を示す図、縞
2図はこの発明による亀裂音響信号検出装置の一例を示
すブロック図、第3図はその動作の説明に供するだめの
波形図、第4図は亀裂音響信号を自動的に区別するだめ
の処理例を示す流れ図である。 21:センサ、23:P波器、25:包絡線検波器、2
6,32,33:比較器、28:クロック端子、29:
全波贅流回路、31:ピーク保持回路、34:バッファ
回路、44 、45 。 46二カランタ、47:プリンタ、48:AD変換器。 特許出願人  旭化成工菓株式会社 代理人 草野 卑 オ 3 図 E’          。 佇 >1.  図
FIG. 1 is a diagram showing various waveforms of crack acoustic signals and noise, Stripe 2 is a block diagram showing an example of a crack acoustic signal detection device according to the present invention, and FIG. 3 is a waveform diagram for explaining its operation. FIG. 4 is a flowchart illustrating an example of a process for automatically distinguishing crack acoustic signals. 21: Sensor, 23: P wave detector, 25: Envelope detector, 2
6, 32, 33: Comparator, 28: Clock terminal, 29:
Full wave flow circuit, 31: Peak holding circuit, 34: Buffer circuit, 44, 45. 46 two digits, 47: printer, 48: AD converter. Patent applicant: Asahi Kasei Koka Co., Ltd. Agent: Hiao Kusano 3 Figure E'. Appearance>1. figure

Claims (1)

【特許請求の範囲】[Claims] (1)被検知物から発生する亀裂音響信号を変換した電
気信号中における孤立波形の上昇期間、保持期間、下降
期間のすくなくとも2つをそれぞれ測定する手段と、上
記電気信号の孤立波形の最大振幅を検出する手段とを具
備する亀裂音響信号検出装置。
(1) Means for measuring at least two of the rising period, holding period, and falling period of an isolated waveform in an electrical signal obtained by converting a crack acoustic signal generated from an object to be detected, and the maximum amplitude of the isolated waveform of the electrical signal. A crack acoustic signal detection device comprising means for detecting.
JP4137482A 1982-03-15 1982-03-15 Detector for acoustic signal due to cracking Granted JPS58156854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4137482A JPS58156854A (en) 1982-03-15 1982-03-15 Detector for acoustic signal due to cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4137482A JPS58156854A (en) 1982-03-15 1982-03-15 Detector for acoustic signal due to cracking

Publications (2)

Publication Number Publication Date
JPS58156854A true JPS58156854A (en) 1983-09-17
JPH0113534B2 JPH0113534B2 (en) 1989-03-07

Family

ID=12606638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4137482A Granted JPS58156854A (en) 1982-03-15 1982-03-15 Detector for acoustic signal due to cracking

Country Status (1)

Country Link
JP (1) JPS58156854A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271450A (en) * 1985-05-27 1986-12-01 Shimadzu Corp Ae measuring apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124480A1 (en) * 2019-12-18 2021-06-24 株式会社東芝 Structure evaluation system, structure evaluation device, and structure evaluation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100789A (en) * 1978-01-25 1979-08-08 Denriyoku Chuo Kenkyusho Processor that change acoustic emmited signal into binary signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100789A (en) * 1978-01-25 1979-08-08 Denriyoku Chuo Kenkyusho Processor that change acoustic emmited signal into binary signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271450A (en) * 1985-05-27 1986-12-01 Shimadzu Corp Ae measuring apparatus

Also Published As

Publication number Publication date
JPH0113534B2 (en) 1989-03-07

Similar Documents

Publication Publication Date Title
US4004456A (en) Method and apparatus for the real-time, non-destructive evaluation of adhesion bonds using stress-wave emission techniques
US4207771A (en) Method and apparatus for monitoring cracking using stress wave emission techniques
JPS599842B2 (en) Damage detection device for rotating bodies
US5419176A (en) Particle detection and analysis
US4651331A (en) Method of and device for acoustically counting particles
JP2709526B2 (en) Shot blast strength detection device
JPS58156854A (en) Detector for acoustic signal due to cracking
KR910005056A (en) Self-timing channel
JP2856066B2 (en) Ultrasonic detector
JPH09250971A (en) Method and device for inspecting abnormality
JPS62263462A (en) Ultrasonic measuring apparatus
JPH0658354B2 (en) Accurate-state emission signal discrimination device
JP2003329655A (en) Damage inspection device
JPS6345622A (en) Ultrasonic tablet
SU1385066A1 (en) Device for acoustoemission checking of an article
JPS61138160A (en) Ultrasonic flaw detector
JPS6118696B2 (en)
JPH0625709B2 (en) Bearing abnormality detection method
JPS6128096B2 (en)
JPS6078326A (en) Impact measuring device
JPS6021448A (en) Ultrasonic wave inspection apparatus
JP2999108B2 (en) Method and apparatus for continuous detection of waveform peak of ultrasonic flaw detection signal
JPS60135860A (en) Method for evaluating fault of ceramics product
JPH0763736A (en) Crack detecting device
SU659947A1 (en) Device for registering crack formation processes by acoustic emission technique