JPS58156216A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPS58156216A
JPS58156216A JP3923982A JP3923982A JPS58156216A JP S58156216 A JPS58156216 A JP S58156216A JP 3923982 A JP3923982 A JP 3923982A JP 3923982 A JP3923982 A JP 3923982A JP S58156216 A JPS58156216 A JP S58156216A
Authority
JP
Japan
Prior art keywords
aluminum nitride
surface acoustic
acoustic wave
nitride film
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3923982A
Other languages
Japanese (ja)
Other versions
JPH0247888B2 (en
Inventor
Nobuo Mikoshiba
御子柴 宣夫
Kazuo Tsubouchi
和夫 坪内
Kazuyoshi Sukai
須貝 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3923982A priority Critical patent/JPH0247888B2/en
Priority to GB08306526A priority patent/GB2120037B/en
Priority to DE3308365A priority patent/DE3308365A1/en
Priority to DE3348369A priority patent/DE3348369C2/en
Priority to US06/473,410 priority patent/US4511816A/en
Priority to DE3348366A priority patent/DE3348366C2/en
Priority to FR8303952A priority patent/FR2523382B1/en
Priority to NL8300879A priority patent/NL8300879A/en
Publication of JPS58156216A publication Critical patent/JPS58156216A/en
Priority to GB08624226A priority patent/GB2181918B/en
Priority to GB08624225A priority patent/GB2181917B/en
Publication of JPH0247888B2 publication Critical patent/JPH0247888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate

Abstract

PURPOSE:To obtain a surface acoustic wave element with which the production of a comb-shaped electrode, etc. is facilitated with small delay time of a surface acoustic wave, by using an elastic matter structure in which an aluminum nitride film having orientation of a piezoelectric axis is formed on an elastic substrate made mainly of a silicon single crystal. CONSTITUTION:A silicon single crystal substrate 1 having positive delay time temperature coefficient to a surfaceacoustic wave is cut at a surface equivalent to a crystalline face (111), (110) or (001). An aluminum nitride film 2 is formed on the substrate 1 so that the piezoelectric axis of the film 2 is set vertical or horizontal to the substrate 1. Then a surface acoustic wave generating electrode 3 and a surface acoustic wave detecting electrode 4 are formed with comb- shaped electrodes on the surface of the film 2. Thus the surface acoustic wave is transmitted in the direction vertical or horizontal to the piezoelectric axis of the film 2.

Description

【発明の詳細な説明】 本発明は、臀性的に優れた新しい構造の弾性表面波素子
に閤する4#)である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a surface acoustic wave device (4#) which is applied to a surface acoustic wave device having a new structure with excellent buttock properties.

弾性表@@ (5urface Acoustic V
alve )を利用することにより各種の電気的信号を
扱うための弾性am液素子を構成する構造(基41[)
としては従来、 L 圧電体基板のみの構造(圧電体単結晶基板、圧電セ
ラミックス基板等)、 L 非圧電体基板上に圧電層を形成した構造、1 半導
体基板上に圧電層を形成した構造、等が知られている。
Elastic table @@ (5surface Acoustic V
A structure (base 41[) that constitutes an elastic am liquid element for handling various electrical signals by utilizing
Conventionally, L is a structure with only a piezoelectric substrate (piezoelectric single crystal substrate, piezoelectric ceramic substrate, etc.), L is a structure with a piezoelectric layer formed on a non-piezoelectric substrate, 1 is a structure with a piezoelectric layer formed on a semiconductor substrate, etc. are known.

ところで上述のλの多層構造としては、現在のところサ
ファイア基板上もしくはガラス基板上にスパッタリング
法等により酸化亜鉛膜(ZnO)を形成した構造が知ら
れているが、このZnO膜は以下のような欠点が存在す
るため間層がある。
By the way, as the above-mentioned multilayer structure of λ, a structure in which a zinc oxide film (ZnO) is formed on a sapphire substrate or a glass substrate by sputtering method etc. is currently known, but this ZnO film has the following structure. There are gaps because there are defects.

1、良質な膜が形成しにくいため圧電性等の点で十分再
現性のあるものか得られない。
1. Because it is difficult to form a high-quality film, it is difficult to obtain a film with sufficient reproducibility in terms of piezoelectricity, etc.

λ 高周波領域において弾性表面波の伝播損失が多い。λ There is a lot of surface acoustic wave propagation loss in the high frequency region.

3、弾性表面波伝播特性の分散が大きい。3. Dispersion of surface acoustic wave propagation characteristics is large.

46  弾性表面波の運気時間iの温度変化率(1/τ
)・(aτ/#T)の制御が困難である。(T:周囲温
度) 本発明はこれらの問題点に対熱してなされたものであり
、弾性表面波に対する運気時間温度係数が正である弾性
体基板上に窒化アルにラム属を形成した弾性体構造(基
41[)を用いることを根本的特徴とするもので、41
にシリコン単結晶基板を用いた弾性表II#L素子を提
供することを目的とするものである。゛以下I1mを参
照して本発明実JII#lを1Ill鳴する。
46 Temperature change rate (1/τ
)・(aτ/#T) is difficult to control. (T: Ambient Temperature) The present invention has been made to address these problems, and is an elastic body in which aluminum is formed on aluminum nitride on an elastic substrate that has a positive air-time temperature coefficient for surface acoustic waves. The fundamental feature is the use of the structure (41[), and 41
The object of the present invention is to provide an elastic Table II#L element using a silicon single crystal substrate.゛Hereinafter, refer to I1m and sound the present invention JII#l.

纂1図は本発明実施例による弾性波表面素子を示す断I
1wJで、1はシリコン単結晶基板で(III)結晶向
、(11G)結晶面あるいは(001)結晶面と等価な
画でカットされたものから成り、2はこのシリコン単結
晶基4[1上に形成された窒化アルミニウム膜でその圧
電軸(C軸もしくは(oool)軸)は上記シリコン単
結晶基板IK垂直もしくは平行になるように形成される
。3,4は上記窒化アルミニウム112!I−に形成さ
れたくし型状から成る弾性表向線発生用電極および検量
用電極で、Hは窒化アル1ニクム展2の膜厚である。
Figure 1 is a section I showing an acoustic wave surface element according to an embodiment of the present invention.
In 1 wJ, 1 consists of a silicon single crystal substrate cut in the (III) crystal direction and with an image equivalent to the (11G) crystal plane or the (001) crystal plane, and 2 consists of this silicon single crystal substrate 4[1] The aluminum nitride film is formed such that its piezoelectric axis (C axis or (oool) axis) is perpendicular or parallel to the silicon single crystal substrate IK. 3 and 4 are the above aluminum nitride 112! The elastic surface line generating electrode and the calibration electrode are formed in a comb-shape I-, and H is the thickness of the aluminum nitride film.

以上の構造の弾性表面波素子に対して、窒化アルミニウ
ム膜2の圧電軸(C軸もしくは(0001)軸)方向と
垂直な方向に弾性表[Ialを伝播させた時、纂5図四
に示すような弾性表面波の速度分歓譬性が得られた。1
jll!1において横軸は窒化アルミニウム膜2の膜厚
Hの規格化された厚さを2πH/λ(ここでλは弾性表
面波の波長)で示し、縦軸は弾性表面波の位相速度Vp
を示すものである。同図において婁はシリコン単結晶基
[1の(111)面上で(112)軸方向と等価な方向
に弾性表面波を伝播させた時、bはシリコン単結晶基#
i1の(110)Ni上で(001)軸方向と等価な方
向に弾性表面波を伝播させた時、Cはシリコン単結晶基
板1の(100)面上で(031)軸方向と等価な方向
に弾性表面、波を伝播させた時の各特性を示している。
For the surface acoustic wave device having the above structure, when the elastic table [Ial is propagated in a direction perpendicular to the piezoelectric axis (C axis or (0001) axis) direction of the aluminum nitride film 2, the result is as shown in Figure 4. The velocity error of surface acoustic waves was obtained as follows. 1
jll! 1, the horizontal axis shows the standardized thickness H of the aluminum nitride film 2 in 2πH/λ (here, λ is the wavelength of the surface acoustic wave), and the vertical axis shows the phase velocity Vp of the surface acoustic wave.
This shows that. In the same figure, when a surface acoustic wave is propagated on the (111) plane of a silicon single crystal group [1 in a direction equivalent to the (112) axis direction, b is a silicon single crystal group #1.
When a surface acoustic wave is propagated on the (110) Ni of i1 in a direction equivalent to the (001) axis direction, C is a direction equivalent to the (031) axis direction on the (100) plane of the silicon single crystal substrate 1. This shows the characteristics of an elastic surface when waves are propagated.

fj1図から明らかなように位相速度■pの分散は少な
く、しかも非常に大きな値の位相速度■pが得られる。
As is clear from the fj1 diagram, the dispersion of the phase velocity ■p is small, and a very large value of the phase velocity ■p can be obtained.

またlI6図^はそれKよって得られた電気機械結合係
数の特性曲線を示すもので、横軸は2Iル′λで示し、
縦軸は電気機械結合係数にの二乗Kを百分率で示すもの
である。fjlgecおいて素子Aが謳1図の構造に対
応した特性を示しており、通常弾性I!!面波な発生お
よび検出させるに充分なKが得られ圧電性に優れている
ことを示している。
In addition, Figure lI6 shows the characteristic curve of the electromechanical coupling coefficient obtained from it, and the horizontal axis is denoted by 2I'λ,
The vertical axis indicates the square K of the electromechanical coupling coefficient as a percentage. In fjlgec, element A exhibits characteristics corresponding to the structure shown in Figure 1, and normally has elasticity I! ! This shows that sufficient K is obtained to generate and detect plane waves, and that the piezoelectricity is excellent.

さらに第7all(6)乃至鋤はそれによって得られた
弾性表面波に対する遅延時閲温度係i11(TCD)の
特性曲線を示すもので、横軸は2πH/λで示し、縦軸
は弾性表m#lの運気時間τの温度変化率(’/r)・
(aτ/aT)をpyn/C単位で示すものである。同
111において^はシリコン単結晶基板1の(111)
−上で(112)軸方向と等価な方向に弾性表面波を伝
播させた時、以下同様に@は、(110)il上で(0
01)軸方向と等価な方向に伝播させた時、(qは(0
01’) II上で(10G)軸方向と等価な方向に伝
播させた時、僕は(001)面上で(110)軸方向と
等価な方向に伝播させた時の各特性を示している。ここ
でシリコン単結晶基板1は正の遅延時間温度係数を有し
ているの(対し、窒化アルミニウム膜2は逆(負の遅延
時間温度係数を有しているために、各々の総合特性は両
者が補償し合った値となり、窒化アルミニウム膜2の膜
厚Hの変化に応じて変ってくる。膜厚Hを適当に選ぶこ
とKより遅延時間の温度変化率を零に近ずけることかで
きる。
Furthermore, the 7th all (6) to plow show the characteristic curve of the delayed temperature coefficient i11 (TCD) for surface acoustic waves obtained thereby, the horizontal axis is 2πH/λ, and the vertical axis is the elasticity coefficient m Temperature change rate of luck time τ of #l ('/r)・
(aτ/aT) is expressed in pyn/C units. In the same 111, ^ is (111) of silicon single crystal substrate 1
- When a surface acoustic wave is propagated in a direction equivalent to the (112) axis direction above, @ is (0
01) When propagating in a direction equivalent to the axial direction, (q is (0
01') When propagating in a direction equivalent to the (10G) axis on II, I show the characteristics when propagating in a direction equivalent to the (110) axis on a (001) plane. . Here, the silicon single crystal substrate 1 has a positive temperature coefficient of delay time (on the other hand, the aluminum nitride film 2 has the opposite (negative temperature coefficient of delay time), so the overall characteristics of each are different from those of both. is a value that compensates for each other, and changes according to changes in the film thickness H of the aluminum nitride film 2. By selecting the film thickness H appropriately, the temperature change rate during the delay time can be made closer to zero than K. .

次K111図の構造の弾性表面波素子に対して、窒化ア
ルミニウム@2の圧電軸(C軸もしくは(0001)軸
)方向と水平な方向に弾性表面波を伝播させた時は、第
59閲に示すような弾性表面波の速度分散特性が得られ
た。
Next, when a surface acoustic wave is propagated in a direction parallel to the piezoelectric axis (C axis or (0001) axis) of aluminum nitride@2 in a surface acoustic wave element having the structure shown in Fig. K111, in the 59th review, The velocity dispersion characteristics of surface acoustic waves as shown were obtained.

同図においてdはシリコン単結晶基板1の(001)面
上で(lOO)軸方向と等価な方向に弾性表面波を伝播
させた9時、同様Keは(110)面上で(001)軸
方向と等価な方向に伝播させた時の各特性を示している
。同図から明らかなように位相速度vpの分散は少なく
、しかも非常に大きな値の位相速度が得られる。
In the figure, d is 9 o'clock when the surface acoustic wave is propagated on the (001) plane of the silicon single crystal substrate 1 in a direction equivalent to the (lOO) axis direction, and similarly Ke is on the (110) plane with the (001) axis. It shows each characteristic when propagated in a direction equivalent to the direction of the wave. As is clear from the figure, the dispersion of the phase velocity vp is small, and a phase velocity of a very large value can be obtained.

また第6図(Q、ηは、その時得られた電気機械結合係
数の特性曲線を示すもので、素子Aが第1図の構造に対
応した特性で、第6図0は、シリコン単結晶基板1の(
110)面上で(001)軸方向と等価な方向に弾性表
面波を伝播させた時、同様に第6Ii2(INは(00
1)面上で(10G)軸方向と等価な方向に伝播させた
時の各特性を示している。
In addition, Fig. 6 (Q, η shows the characteristic curves of the electromechanical coupling coefficients obtained at that time. Element A has characteristics corresponding to the structure shown in Fig. 1, and Fig. 6 0 shows the characteristic curves of the electromechanical coupling coefficient obtained at that time. 1 (
Similarly, when a surface acoustic wave is propagated in a direction equivalent to the (001) axis direction on the (001) plane, the 6th Ii2 (IN is (00
1) It shows each characteristic when propagating on a plane in a direction equivalent to the (10G) axial direction.

同図から明らかなように、通常弾性表面波を発生   
 ゛および検出させるに充分なに2が得られ圧電性に優
れていることを示している。
As is clear from the figure, surface acoustic waves are normally generated.
2 was obtained sufficiently for detection, indicating excellent piezoelectricity.

さらに第7図(至)、(P5はその時得られた弾性表面
波に対する遅延時間温度係数(TCD)の特性曲線を示
すもので、閲はシリコン単結晶基板1の(001)II
上で(1oe)軸方向と等価な方向に弾性表面波を伝播
させた時、同様K(ト)は(110)面上で(001)
軸方向と等価な方向に伝播させた時の各特性を示してい
る。第7図(5)乃至(ト)から明らかなように、゛窒
化アルミニウム膜2の膜厚Hを0、2 < 2πH/λ
〈3.0の範囲に選ぶことにより遅延時間の温度変化率
を零に近ずけることができる。
Furthermore, in FIG. 7 (to), (P5 shows the characteristic curve of the temperature coefficient of delay time (TCD) for the surface acoustic wave obtained at that time, and the (001) II
Similarly, when a surface acoustic wave is propagated in a direction equivalent to the (1oe) axis direction, K (g) is (001) on the (110) plane.
Each characteristic when propagated in a direction equivalent to the axial direction is shown. As is clear from FIGS. 7(5) to (g), the film thickness H of the aluminum nitride film 2 is 0, 2 < 2πH/λ
By selecting a value in the range of <3.0, the rate of temperature change during the delay time can be brought close to zero.

*zWJ乃至第4図は本発明の他の実施例を示す断面図
で、第2図はシリコン単結晶基板1の表面sK弾性表I
11発生用電極3および検出用亀4i14を形成した後
、これらを覆うように窒化アルミニウム膜2を形成した
構造を示すものである。また第3図はシリコン単結晶基
板lの表面部に部分的に第2電極として一対のしやへい
電極7を形成した後、これらを季うよ5に窒化アルミニ
ウム膜2を形成しこの表面に第1@極として弾性表面波
発生弔電&3:tdよび検出用電極4を形成した構造な
示すものである。
*ZWJ to FIG. 4 are cross-sectional views showing other embodiments of the present invention, and FIG. 2 is a surface sK elasticity table I of the silicon single crystal substrate 1.
11 shows a structure in which an aluminum nitride film 2 is formed to cover the electrodes 3 and 4i14 for detection after forming them. FIG. 3 shows that after a pair of thin electrodes 7 are partially formed as second electrodes on the surface of a silicon single crystal substrate 1, an aluminum nitride film 2 is formed on these surfaces. This shows a structure in which a surface acoustic wave generating electrode &3:td and a detection electrode 4 are formed as the first @ pole.

さらに第4図はシリコン単結晶基板1の表―蕩に*1電
極として弾性表mIIL発生用電4ii3および検出用
IE極4を形成した後、これらを覆うよ5に窒化アルミ
ニウム換2を形成しこの表面ニ部分的に第2電極として
一対のしやへい電極7を形成した構造を示すものである
Further, FIG. 4 shows that after forming an elastic surface electrode 4ii3 for mIIL generation and an IE electrode 4 for detection as electrodes on the surface of the silicon single crystal substrate 1, an aluminum nitride layer 2 is formed on the surface 5 to cover them. This figure shows a structure in which a pair of thin electrodes 7 are partially formed as second electrodes on this surface.

以上の各構造の弾性表面波素子に対して、窒化アルミニ
ウム膜2の圧電軸方向と垂直な方向に弾性表面波を伝播
させた時、纂all因、(ロ)に示すようなに%性が得
られた。
When a surface acoustic wave is propagated in a direction perpendicular to the piezoelectric axis direction of the aluminum nitride film 2 for the surface acoustic wave element having each of the above structures, the % characteristics as shown in (b) are obtained. Obtained.

同図において素子Bは第2図の構造に対応した特性を、
素子Cは第3図の構造虻対応した特性を、素子りは第一
4図の構造に対応した各特性を示しており、通電弾性表
面波を発生および検出させる(充分なKが得られ圧電性
に優れていることを示している。
In the figure, element B has characteristics corresponding to the structure in Figure 2.
Element C has characteristics corresponding to the structure shown in Fig. 3, and element C has characteristics corresponding to the structure shown in Fig. 14. It shows that you are sexually superior.

同様(第211乃至第4811の各構造の弾性表面波素
子に対して、窒化アルミニウム膜2の圧電軸方向と水平
な方向に弾性表面波な伝播させた時、纂6図(q、a#
c示すよ5なに4I性が得られた。
Similarly, when a surface acoustic wave is propagated in a direction parallel to the piezoelectric axis direction of the aluminum nitride film 2 for the surface acoustic wave elements having the structures No. 211 to No. 4811, Fig. 6 (q, a#
As shown in c, 4I properties were obtained.

岡WJにおいて1lL6tlJIQはシリコン単結晶基
板1の(13G)面上で(001)軸方向と等価な方向
に弾性表面液を伝播させた時、同様に第6図0は(00
1)−上で(100)軸方向と等価な方向(伝播させた
啼の各特性を示しており、通常弾性表面波を発生および
検出させるに充分なに2が得られ圧電性に優れているこ
とを示している。
In Oka WJ, 1lL6tlJIQ is the (00
1) - Direction equivalent to the (100) axial direction above (shows each characteristic of the propagated sound, and 2 is usually sufficient to generate and detect surface acoustic waves, and has excellent piezoelectricity) It is shown that.

纂6図(4)乃′211鋤から明らかなように規格化膜
厚2πH/λを0.2〜6.0の範囲に遺ぶことKより
、実用上充分な値のに値を得ることができ圧電性に優れ
ていることを示している。
As is clear from Figure 6 (4) No'211, it is possible to obtain a practically sufficient value from K by keeping the normalized film thickness 2πH/λ in the range of 0.2 to 6.0. This shows that it has excellent piezoelectricity.

各実施例で用いられた窒化アルミニウム膜はバンドギャ
ップが約6.2eVと大きく、また比抵抗1・ か1O1eas以上のものか容易に得られるので良好な
絶縁性を示す。この窒化アルミニウム膜はJINm晶で
あることが望ましいが、周知のMO−CVD技術を用い
ることにより単結晶“エピタキシャル族を容易(形成す
ることができる。
The aluminum nitride film used in each example has a large band gap of approximately 6.2 eV, and exhibits good insulating properties because it can easily be obtained with a specific resistance of 1.0 or 1 O1eas or more. Although this aluminum nitride film is preferably JINm crystal, it can be easily formed into a single-crystal "epitaxial layer" by using the well-known MO-CVD technique.

また従来においてのスパッタリング法尋による酸化亜鉛
膜に比べ窒化アルミニウム膜は再現性に優れ、膜質が均
一なものが得られるので特に高層波における伝搬損失を
小さく抑えることができる。
Furthermore, compared to the conventional zinc oxide film formed by sputtering, the aluminum nitride film has superior reproducibility and can provide a uniform film quality, making it possible to suppress propagation loss particularly in high-rise waves.

%に上記窒化ア化ミニウム膜は弾性表面波に対する遅延
時間温度係数が負である性質を有しているので、シリコ
ン単結晶基板のようにそれと逆に遅延時間温度係数が正
である性質を有している基板上(形成すれば遅延時間温
度係数は相互に補償されるために、温度変化に対して安
定な特性を得ることができる。%に温度変化【対する素
子の安定性は共振器、発振器等の狭帯域信号処理素子に
おいて最も重要な性能であるが、上記各実施例構造によ
れば温度変化に対して安定な動作を行なわせること・が
できる、しか44周波化、低損失化も併せて計ることが
できる。
Since the aluminum nitride film mentioned above has a negative temperature coefficient of delay time for surface acoustic waves, it has a property that the temperature coefficient of delay time is positive, like a silicon single crystal substrate. (If formed on a substrate with a resonator, the delay time temperature coefficients will be mutually compensated, and stable characteristics against temperature changes can be obtained. This is the most important performance in narrowband signal processing elements such as oscillators, and the structures of each of the above embodiments allow for stable operation against temperature changes, as well as 44-frequency and low-loss performance. They can be measured together.

上記窒化アルミニウム膜を形成すべき基板としてはシリ
コン単結晶に限らず、遅延時間温度係数が負である材料
であれば任意のものを選択することができる。例えばシ
リコン単結晶上に二酸化シリコン膜等のシリコン表面保
■展を形成したiIi仮を用いることができる。
The substrate on which the aluminum nitride film is formed is not limited to silicon single crystal, but any material having a negative temperature coefficient of delay time can be selected. For example, it is possible to use an IIIi temporary film in which a silicon surface barrier such as a silicon dioxide film is formed on a silicon single crystal.

以上述べて明らかなよう#IC本発明によれば、弾性表
wi波(対する遅延時間温度係数が正であるシリコン基
板上に窒化アルミニウム膜を形成するようKした弾性体
構造を用いるものであるから、特性的に優れた弾性表面
波素子を得ることができる。
As is clear from the above description, according to the #IC invention, an elastic body structure is used in which an aluminum nitride film is formed on a silicon substrate with a positive delay time temperature coefficient for elastic surface wi waves. , a surface acoustic wave device with excellent characteristics can be obtained.

以上説明した本実Wi4によれば次のような効果が得ら
れる。
According to the Honjitsu Wi4 described above, the following effects can be obtained.

1、弾性表面波速度が大きいため高周波での波長が大き
くなるので、くし型状電極環の製造が容易になる。
1. Since the surface acoustic wave velocity is high, the wavelength at high frequency becomes large, making it easy to manufacture a comb-shaped electrode ring.

2 膜厚変動(よる周波数変動率が小さいため設計した
動作Ji1波数に合わせた素子の製造が容易となるので
、歩留り向上によるコストダウンを計ることができる。
2. Since the rate of frequency variation due to film thickness variation is small, it becomes easy to manufacture elements that match the designed operating Ji1 wave number, and thus it is possible to reduce costs by improving yield.

3、弾性表面波素子の遅延時間を零に近ずけることがで
きる。
3. The delay time of the surface acoustic wave element can be brought close to zero.

4、絶縁性に富んだ窒化アルミニウム膜を容易に得るこ
とができ、またMO−CVD技術によりその単結晶エピ
タキシャル膜の形成も容易となる。
4. An aluminum nitride film with high insulating properties can be easily obtained, and its single crystal epitaxial film can be easily formed using MO-CVD technology.

なお本文実施例中で示した基板およびt板上虻形成され
た窒化アルミニウム膜の結晶面および弾性表面波を励振
(伝播)させる結晶方向は、実施例以外に適当な選択を
行なっても同様な効果を得ることが可能である。
Note that the crystal plane of the aluminum nitride film formed on the substrate and T-plate shown in the examples of the main text and the crystal direction for exciting (propagating) surface acoustic waves may be the same even if appropriate selections are made other than in the examples. It is possible to obtain the effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至@4図はいずれも本発明実施例を示す断面図
、第5図(At、(ハ)、第6図囚〜山および第75囚
〜(ト)はいずれも本発明(より得られた結果を示す特
性図である。 1・・・シリコン単結晶、2・・・窒化アルミニウム膜
、3・・・弾性表面波発生用電極、4・・・弾性表面波
検出用電極、7・・・しやへい電極。 特許出願人 御子柴 宣 夫 坪  内  和  夫 代理人 弁珈士  永 1)武三部 第7図(A) 第7図(引 第7図(C) 第7図(0) 第7図(E) 第7図(F) 手続補正前(方式・自発) 昭和57年4月9日 特許庁長官  、hEB  春 樹  殿 ・、刀3、
 補正をする者 4、代理人〒105
Figures 1 to 4 are all cross-sectional views showing embodiments of the present invention, and Figures 5 (At, (c), Figures 6 and 75, It is a characteristic diagram showing the obtained results. 1... Silicon single crystal, 2... Aluminum nitride film, 3... Electrode for surface acoustic wave generation, 4... Electrode for surface acoustic wave detection, 7 ...Shiyahei electrode. Patent applicant: Nobu Mikoshiba, Kazuo Uchi, agent: Eiji Benkashi 1) Takesanbe Figure 7 (A) Figure 7 (Reference Figure 7 (C) Figure 7 ( 0) Figure 7 (E) Figure 7 (F) Before procedural amendment (method/spontaneous) April 9, 1980 Commissioner of the Patent Office, hEB Haruki Tono, Katana 3,
Person making amendment 4, agent 〒105

Claims (1)

【特許請求の範囲】 L 弾性表−IILに対する遅延時間温度係数が正であ
るシリコン単結晶を主たる構成要素とする弾夕   電
輪が配向した窒化アルミニウム膜と、これら所性体基板
と、この弾性体基板上に形成されかつ圧定位置KJit
成された11極とを含むことを特徴とする弾性表面波素
子。 λ 上記弾性体基板がシリコン単結晶から成ることを特
徴とする特許−求の範囲111項記載の弾性wrist
素子。 λ上記シリコン単結晶が(111)結晶函と等aな―か
ら成り、窒化アルミニウム属の圧電軸が上記シリコン単
結晶に垂直あるいは水平になるようKflk成され、上
記窒化アルミニウム膜の圧電軸方向と垂直あるいは水平
な方向に弾性表面波を伝播させることを特徴とする特許
請求の範囲第2項記1の弾性表IiI波素子。 4、上記窒化アルミニウム膜の膜厚Hが0.2〈21H
/λ〈z5(ただし、λは弾性!!内面波波長を示す)
の範囲(、属することを特徴とする特許請求の範1!1
113項記載の弾性lIr7IA波素子。 5、 上記シリコン単結晶が(11G)結晶画と等価な
面から成り、窒化アルミニウム膜の圧電軸が上記シリコ
ン単結晶に垂直あるいは水平になるようにy#成され、
上記窒化アルミニウム膜の圧電軸方向と垂直あるいは水
平な方向に弾性表1riIjllを伝播させることを特
徴とする特許請求の範l!第2]J記載の弾性表面波素
子。 6、上記窒化アルミニウム膜の膜厚Hが1〈2πH/λ
く3の範@に属することを特徴とする特許請求の範I!
第5項記載の弾性表面波素子。 7、 上記シリコン単結晶が(001)結晶−と等価な
−から成り、窒化アルミニウム膜の圧電軸が上記シリコ
ン単結晶虻垂直あるいは水平になるように形成され、上
記窒化アルミニウム属の圧電軸方向と垂直あるいは水平
な方向に弾性表m波を伝播させることを特徴とする特許
−求のl1illJl/12項記載の弾性表面波素子。 & 上記窒化アル1=ウム膜の膜厚Hが1〈2πH/λ
”〈2の範−に属することを特徴とする特許請求の範■
慕7項記載の弾性表面波素子。 9、上記窒化アル建二りム膜が単結晶エピタキシャル属
から成ることを特徴とする特許請求の範11111項乃
至ms項のいずれかに記載の弾性表面波素子。
[Claims] L Elasticity Table - An aluminum nitride film mainly composed of a silicon single crystal with a positive delay time temperature coefficient for IIL; KJit is formed on the body substrate and presses at the position KJit.
1. A surface acoustic wave element comprising 11 poles. λ The elastic wrist according to claim 111 of the patent, characterized in that the elastic substrate is made of silicon single crystal.
element. λ The silicon single crystal is made of a (111) crystal box, and the piezoelectric axis of aluminum nitride is perpendicular or horizontal to the silicon single crystal, and the piezoelectric axis direction of the aluminum nitride film is parallel to the piezoelectric axis of the aluminum nitride film. 2. The elastic table III wave element according to claim 2, wherein the surface acoustic wave is propagated in a vertical or horizontal direction. 4. The thickness H of the aluminum nitride film is 0.2〈21H
/λ〈z5 (However, λ is elastic!! Indicates the internal wave wavelength)
Claim 1!1 characterized in that it belongs to the scope of
The elastic lIr7IA wave device according to item 113. 5. The silicon single crystal consists of a plane equivalent to a (11G) crystal picture, and the piezoelectric axis of the aluminum nitride film is formed perpendicularly or horizontally to the silicon single crystal,
Claim 1 characterized in that the elasticity table 1riIjll is propagated in a direction perpendicular or horizontal to the piezoelectric axis direction of the aluminum nitride film! 2] The surface acoustic wave device according to J. 6. The thickness H of the aluminum nitride film is 1<2πH/λ
Claim I characterized by belonging to category 3 @!
The surface acoustic wave device according to item 5. 7. The silicon single crystal is made of a (001) crystal equivalent to a (001) crystal, and the piezoelectric axis of the aluminum nitride film is perpendicular or horizontal to the silicon single crystal, and the piezoelectric axis direction of the aluminum nitride is parallel to the piezoelectric axis of the aluminum nitride film. A surface acoustic wave device according to Patent No. 11/12, characterized in that it propagates surface acoustic m-waves in the vertical or horizontal direction. & The film thickness H of the above aluminum nitride film is 1<2πH/λ
``Claims characterized by belonging to category 2■
7. The surface acoustic wave device according to item 7. 9. The surface acoustic wave device according to any one of claims 11111 to ms, wherein the aluminum nitride film is made of a single crystal epitaxial material.
JP3923982A 1982-03-11 1982-03-11 DANSEIHYOMENHASOSHI Expired - Lifetime JPH0247888B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP3923982A JPH0247888B2 (en) 1982-03-11 1982-03-11 DANSEIHYOMENHASOSHI
DE3348366A DE3348366C2 (en) 1982-03-11 1983-03-09 Acoustic surface wave generator
DE3308365A DE3308365A1 (en) 1982-03-11 1983-03-09 ACOUSTIC SURFACE SHAFT DEVICE
DE3348369A DE3348369C2 (en) 1982-03-11 1983-03-09 Device forming surface acoustic waves
US06/473,410 US4511816A (en) 1982-03-11 1983-03-09 Surface acoustic wave device using an elastic substrate and an aluminum nitride piezoelectric film
GB08306526A GB2120037B (en) 1982-03-11 1983-03-09 Surface acoustic wave device
FR8303952A FR2523382B1 (en) 1982-03-11 1983-03-10 SURFACE ACOUSTIC WAVE DEVICE
NL8300879A NL8300879A (en) 1982-03-11 1983-03-10 ACOUSTIC SURFACE WAVE DEVICE.
GB08624226A GB2181918B (en) 1982-03-11 1986-10-09 Surface acoustic wave device
GB08624225A GB2181917B (en) 1982-03-11 1986-10-09 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3923982A JPH0247888B2 (en) 1982-03-11 1982-03-11 DANSEIHYOMENHASOSHI

Publications (2)

Publication Number Publication Date
JPS58156216A true JPS58156216A (en) 1983-09-17
JPH0247888B2 JPH0247888B2 (en) 1990-10-23

Family

ID=12547575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3923982A Expired - Lifetime JPH0247888B2 (en) 1982-03-11 1982-03-11 DANSEIHYOMENHASOSHI

Country Status (1)

Country Link
JP (1) JPH0247888B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231911A (en) * 1983-06-14 1984-12-26 Clarion Co Ltd Surface acoustic wave element
WO1989008949A1 (en) * 1988-03-17 1989-09-21 Fujitsu Limited Surface acoustic wave device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231911A (en) * 1983-06-14 1984-12-26 Clarion Co Ltd Surface acoustic wave element
JPH0336326B2 (en) * 1983-06-14 1991-05-31 Clarion Co Ltd
WO1989008949A1 (en) * 1988-03-17 1989-09-21 Fujitsu Limited Surface acoustic wave device

Also Published As

Publication number Publication date
JPH0247888B2 (en) 1990-10-23

Similar Documents

Publication Publication Date Title
US4516049A (en) Multi-layer acoustic surface wave device having minimal delay time temperature coefficient
US10270420B2 (en) Surface elastic wave device comprising a single-crystal piezoelectric film and a crystalline substrate with low visoelastic coefficients
CN102577120B (en) Surface acoustic wave device
US4037176A (en) Multi-layered substrate for a surface-acoustic-wave device
JPS58137317A (en) Thin-film piezoelectric compound oscillator
WO2004038914A1 (en) Piezoelectric vibrator, filter using same, and method for adjusting piezoelectric vibrator
Assila et al. High-frequency resonator using A 1 Lamb wave mode in LiTaO 3 plate
JPS5861686A (en) Surface elastic wave element
CN102057570B (en) HBAR resonator stable at high temperatures
US20150303895A1 (en) Transducer with bulk waves surface-guided by synchronous excitation structures
JP2020014088A (en) Acoustic wave resonator, filter, and multiplexer
US4482833A (en) Method for obtaining oriented gold and piezoelectric films
Tomar et al. Temperature stability of ZnO thin film SAW device on fused quartz
JPH11274883A (en) Piezoelectric compound substrate and surface acoustic wave element
Buchanan Handbook of piezoelectric crystals for radio equipment designers
JPS6341449B2 (en)
JP2002076824A (en) Piezoelectric thin film resonator, filter and electronic device
JPS58156216A (en) Surface acoustic wave element
Tanaka et al. IDT-based acoustic wave devices using ultrathin lithium niobate and lithium tantalate
JPH0213853B2 (en)
JP2000165188A (en) Piezoelectric resonator
JP3493315B2 (en) Piezoelectric resonator
US6246149B1 (en) Surface acoustic wave device
JPH01103310A (en) Surface acoustic wave element
JPS58156215A (en) Surface acoustic wave element