JPS58156027A - Preparation of carbon fiber - Google Patents

Preparation of carbon fiber

Info

Publication number
JPS58156027A
JPS58156027A JP4004082A JP4004082A JPS58156027A JP S58156027 A JPS58156027 A JP S58156027A JP 4004082 A JP4004082 A JP 4004082A JP 4004082 A JP4004082 A JP 4004082A JP S58156027 A JPS58156027 A JP S58156027A
Authority
JP
Japan
Prior art keywords
solvent
insoluble
pitch
aromatic
quinoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4004082A
Other languages
Japanese (ja)
Other versions
JPH0229765B2 (en
Inventor
Minoru Tateno
舘野 稔
Masayoshi Kaji
鍛治 正義
Wataru Utaka
右高 亘
Hisayuki Nagino
薙野 久幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nittetsu Chemical Industrial Co Ltd
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Chemical Industrial Co Ltd, Nippon Steel Chemical Co Ltd filed Critical Nittetsu Chemical Industrial Co Ltd
Priority to JP4004082A priority Critical patent/JPS58156027A/en
Publication of JPS58156027A publication Critical patent/JPS58156027A/en
Publication of JPH0229765B2 publication Critical patent/JPH0229765B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain sufficiently uniform carbon fibers having improved crystallinity and high strength, by heat-treating an aromatic composition with a solvent, heat-treating components insoluble in the solvent, melt spinning the heat-treated components, making the resultant fibers infusible, and calcining the resultant infusibilized fibers. CONSTITUTION:An aromatic composition, e.g. coal tar (pitch), is treated with an aromatic solvent, preferably benzene, and an aliphatic solvent, e.g. hexane, and components insoluble in the solvents are heat-treated, molten at 250-400 deg.C temperature range and extruded through a nozzle into fibers, which are then made infusible, carbonized at 1,000-1,500 deg.C temperature range in an inert gas phase, and if necessary graphitized at 2,000 deg.C or above to give the aimed carbon fibers.

Description

【発明の詳細な説明】 本発明は石炭系原料からの炭素繊維の製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing carbon fiber from coal-based raw materials.

四に詳しくは石炭系原料であるコールタール及び/又は
コールタールピッチを溶媒処理することにより、炭素繊
維として有用なる留分を回収し、すぐれた炭素涜維を製
造する方法に関する。
In particular, the present invention relates to a method for producing excellent carbon fibers by treating coal tar and/or coal tar pitch, which are coal-based raw materials, with a solvent to recover a fraction useful as carbon fibers.

近年炭素繊維は、金属あるいはプラスチックとの複合材
料としてその性能を高く評価されているが、より低コス
トであることが要求されている。
In recent years, carbon fiber has been highly evaluated for its performance as a composite material with metal or plastic, but there is a demand for lower cost.

そのため最近では、安価な原料であるピッチを用いたピ
ッチ系の置載炭素繊維について、原料調製方法あるいは
樺維製造方法の面から盛んに研究が3− 行われでいる。
Therefore, recently, research has been actively conducted on pitch-based carbon fibers using pitch, which is an inexpensive raw material, from the viewpoint of raw material preparation methods and birch fiber manufacturing methods.

ピッチ系品級炭素繊維、すなわちピッチ系の筒弾性率高
強度炭素繊維は、ピッチの熱処理過程で生成する液晶状
態の易黒鉛化性炭素結晶であるメゾフェーズ(偏光顕微
鏡下で光学異方性領域としあ確認される。)を繊維軸に
平行に配向させた状態に製造するか、この場合、生成す
るメゾフェーズの均質性及び熱可塑性が重要である。
Pitch-based grade carbon fiber, that is, pitch-based high-strength cylindrical elastic modulus carbon fiber, is a mesophase (optically anisotropic region) which is a liquid crystalline graphitizable carbon crystal produced during the heat treatment process of pitch. In this case, the homogeneity and thermoplasticity of the mesophase produced are important.

しかしながら通常のピッチ類は、低分子から高分子丑で
かなり幅の広い分子量分布を有しており。
However, ordinary pitches have a fairly wide molecular weight distribution ranging from low molecular weight to high molecular weight.

一般に一定の大きさにまで熱重縮合の進んだ分子から順
次メゾフェーズの形成に加わるので、当該ピッチ内にお
いてメゾフェーズの発達に時間差を生じると同時に、該
炭素繊維原料として光分に結晶化させ心のに長い時間を
要する。したがって。
In general, molecules that have undergone thermal polycondensation to a certain size participate in the formation of mesophase sequentially, so there is a time difference in the development of mesophase within the pitch, and at the same time, the carbon fiber raw material is crystallized by light. It takes a long time in the mind. therefore.

当該原料のピッチ所定量がメゾフェーズに転化するまで
の間に、初期に生成したメゾフェーズが過剰な熱処理を
受ける結果、当該メゾフェーズは液晶状態を通り越しで
熱riJ塑性に劣る炭素結晶へと変化してし1つ。この
ような炭素結晶の存在はピ4− ツチ全1木の均一な熱ol塑件を低下させるのみでなく
、紡糸成形の際に、糸切れあるいは節の原因となるので
か1しくない。
Until a predetermined amount of pitch of the raw material is converted into mesophase, the initially generated mesophase undergoes excessive heat treatment, and as a result, the mesophase passes through the liquid crystal state and changes to carbon crystals with poor thermoplasticity. One thing. The presence of such carbon crystals not only deteriorates the uniform thermal plasticity of the entire Pi4-Tsuchi tree, but also causes yarn breakage or knots during spinning and forming.

ところで、炭素繊維に紡糸するだめのピッチが均質でか
つ商い熱可塑性を示めすためには、当該ピッチ中の易黒
鉛化成分の成長度合か均一で、しかもピッチ相と同根1
屍に旨い熱可塑性を有していなくてはならない。ピッチ
中の易黒鉛化成分であるメゾフェーズの成長度合がより
均質であるためにはメゾフェーズ形成に加わる分子のサ
イズか揃っている。すなわち芳香族組成物である原料ピ
ッチの分子量分布の[1]か狭いことが要求される。又
当Akメゾフェーズ言有ピッチか高い熱可塑性を示めす
ためには、より低温、短時間の熱処理により、所定量の
メゾフェーズ蛍均質に生成せしめることか重要であるが
、そのためにば、メゾフェーズを形成さぜる前の芳香族
組成物であるノ星科ヒツチの)rz均分子t=出来るた
け高くしておき、生成するメゾフェーズ全含有するピッ
チが、過剰な熱処理ケ受けないようにする必要がある。
By the way, in order for the pitch to be spun into carbon fiber to be homogeneous and exhibit thermoplastic properties, the growth rate of the graphitizable component in the pitch must be uniform, and the pitch must have the same root as the pitch phase.
It must have a good thermoplasticity to the corpse. In order for the degree of growth of mesophase, which is an easily graphitizable component in pitch, to be more uniform, the sizes of the molecules that participate in mesophase formation are uniform. That is, it is required that the molecular weight distribution of the raw material pitch, which is an aromatic composition, be [1] or narrower. In addition, in order to exhibit high thermoplasticity of this Ak mesophase pitch, it is important to homogeneously generate a predetermined amount of mesophase fluorescence by heat treatment at a lower temperature and for a shorter time. The aromatic composition of the aromatic composition before phase formation, RZ homogeneous molecular t of the star family hit, is set as high as possible so that the pitch containing all of the mesophase to be generated is not subjected to excessive heat treatment. There is a need to.

5一 本発明者等は一芳香族組ノ或物である原料ピッチを25
0℃ないし500“Cの温度範囲の熱処理の前に、芳香
族系溶媒と脂肪族系溶媒の混合溶媒による有機溶媒処理
(本出願人による特開昭53−66901に記載の処理
)を施すことによりその際に析出するピッチゾーン又は
クリスタルゾーンでの不溶性相が比較的揃った分子量を
有することに看目し、本発明を完成させたものである。
51 The inventors have determined that the raw material pitch, which is a monoaromatic group, is 25
Before the heat treatment in the temperature range of 0°C to 500"C, organic solvent treatment with a mixed solvent of an aromatic solvent and an aliphatic solvent (treatment described in JP-A-53-66901 by the present applicant) is performed. The present invention was completed based on the fact that the insoluble phase in the pitch zone or crystal zone that is precipitated at that time has a relatively uniform molecular weight.

これにより、より結晶性にすぐれ、充分に均質で1〜か
も高い熱可塑性を有するピッチを製造することが出来る
This makes it possible to produce pitch that has better crystallinity, is sufficiently homogeneous, and has thermoplasticity as high as 1 or more.

又用迩に応じてピッチ中のメゾフェーズを粒径の大きな
ものから小さなものまで自由に整粒することが出来る。
In addition, the mesophase in the pitch can be freely sized from large to small particle size depending on the purpose.

この様にして得たピッチを用いて、炭素繊維に紡糸し、
不融化処理後、焼成して得た炭素繊維はすぐれた注能盆
有しているのである。
Using the pitch obtained in this way, it is spun into carbon fiber,
The carbon fiber obtained by firing after infusibility treatment has an excellent pouring pot.

すなわち本発明は 」 芳香族組成物を溶媒処理し、該溶媒に不溶なJ戎分
葡加熱処理した候、浴融紡糸し、不感化し。
That is, the present invention is based on the following: ``An aromatic composition is treated with a solvent, heat-treated to make it insoluble in the solvent, and then subjected to bath-melt spinning to desensitize it.

6一 更に焼成すること盆特徴とする炭素繊維の製造法2 溶
媒か脂肪族系溶媒及び芳香族系溶媒であることを特徴と
する特許請求の範囲第1項記載の炭素繊維の製造法 3 溶媒に不溶な成分がキノリンに不溶の物質が0.1
重量%以上の芳香族系組成物に対して、芳香族系溶媒と
脂肪族系溶媒とを混合し、析出するピッチゾーンの不溶
性相を回収するか、又はキノリンに不溶の物質を01重
量%以上含む芳香族系組成物に対して芳香族系溶媒と脂
肪族系溶媒とを混合して、析出するピッチゾーンの不溶
性相を回収し、これに含有するキノリンに不溶の物質を
除去した不溶性相物質収するか、或はキノリンに不溶の
物質を0.1重量%以上含む芳香族組成物からキノリン
に不溶な物質を除去してから芳香族系溶媒と脂肪族系溶
媒と葡混合し、析出するピッチゾーンの不溶性相を回収
し、次いで該回収物音常圧又は減圧下で蒸留して、低那
点留分を除去したピッチを加熱処理することを特徴とす
る請求範囲第1項記載の炭素繊維の製造法 7− 4 溶媒に不溶な成分がキノリンに不溶の物質が01重
量%以下の芳香族糸組成物に対して、芳香族系溶媒と脂
肪族系溶媒とを混合し、析出するクリスタルゾーンの不
溶性相を回収するか、又はキノリンに不溶の物質を0.
1@量係以上含む芳香族系組成物に対して芳香族系溶媒
と脂肪族系溶媒とを混合して.析出するクリスタルゾー
ンの不溶性相物質収し、これに含有するキノリンに不溶
の物質を除去した不溶性相を回収するか、或はキノリン
に不溶の物質を0.1重量%以上含む芳香族組成物から
キノリンに不溶な物質を除去してから芳香族系溶媒と脂
肪族系溶媒とを混合し、析出するクリスタルゾーンの不
溶性相を回収し、次いで該回収物を常圧又は彪圧下で蒸
留して、低沸点留分全除去したピッチを加熱処理するこ
と勿特徴とする特許請求の範囲第1項記載の炭素繊維の
製造法。
6. Method 2 for producing carbon fiber characterized by further firing. Method 3 for producing carbon fiber according to claim 1, characterized in that the solvent is an aliphatic solvent and an aromatic solvent. The component insoluble in quinoline is 0.1
For more than 0.1% by weight of an aromatic composition, mix an aromatic solvent and an aliphatic solvent and collect the precipitated insoluble phase in the pitch zone, or add 0.1% by weight or more of a substance insoluble in quinoline. An insoluble phase material obtained by mixing an aromatic solvent and an aliphatic solvent with an aromatic composition containing the aromatic composition, collecting the precipitated insoluble phase in the pitch zone, and removing the substances insoluble in the quinoline contained therein. Alternatively, substances insoluble in quinoline are removed from an aromatic composition containing 0.1% by weight or more of substances insoluble in quinoline, and then an aromatic solvent and an aliphatic solvent are mixed and precipitated. The carbon fiber according to claim 1, characterized in that the insoluble phase in the pitch zone is recovered, and then the recovered material is distilled under normal pressure or reduced pressure to remove the low point fraction, and then the pitch is heat-treated. Manufacturing method 7-4 A crystal zone in which an aromatic solvent and an aliphatic solvent are mixed for an aromatic thread composition in which the solvent-insoluble component contains 01% by weight or less of a quinoline-insoluble substance, and the crystal zone is precipitated. The insoluble phase of 0.0% is recovered, or the material insoluble in quinoline is added to 0.0% of the insoluble phase.
Mixing an aromatic solvent and an aliphatic solvent to an aromatic composition containing 1@quantity or more. Collect the insoluble phase material of the precipitated crystal zone and remove the quinoline-insoluble substances contained therein to recover the insoluble phase, or from an aromatic composition containing 0.1% by weight or more of quinoline-insoluble substances. After removing substances insoluble in quinoline, mixing an aromatic solvent and an aliphatic solvent, recovering the insoluble phase of the precipitated crystal zone, and then distilling the recovered material under normal pressure or Biao pressure, 2. The method for producing carbon fibers according to claim 1, further comprising heat-treating the pitch from which all low-boiling fractions have been removed.

である。It is.

ここで言うキノリンに不溶の物質とは、原料である芳香
族性組成物中に含有されている固体倣粒子で主トシてコ
ークス、カーボンブラック等からな8− るもので、一般に難黒鉛化性で1仄QIと言われている
ものである。
The substances insoluble in quinoline referred to here are solid mimic particles contained in the aromatic composition that is the raw material, mainly consisting of coke, carbon black, etc., and are generally non-graphitizable. This is said to be 100% QI.

この様な1仄QIが原料中に存在すると、2次的に発生
する易黒鉛化性成分であるメゾフェーズの生長が阻害さ
れる。本発明においては、その様な1仄QIの含有量が
0.1重量%以下であれば、メゾフェーズの生長をさほ
ど1泊客しないが、0.1重量%以上の1次qI1含有
する原料を使用する場合には該メゾフェーズの生長が阻
害されるので該QIを除去しておく必要がある。しかも
、該1次QIの如く難黒鉛化性成分が存在すると炭素繊
維とした時にその物性は著しく低下する。
If such a QI of 1 is present in the raw material, the growth of mesophase, which is a secondarily generated graphitizable component, is inhibited. In the present invention, if the content of such 1st QI is 0.1% by weight or less, the growth of mesophase will not be so great. When using QI, the growth of the mesophase is inhibited, so it is necessary to remove the QI. Furthermore, the presence of non-graphitizable components such as the primary QI significantly deteriorates the physical properties of carbon fibers when made into carbon fibers.

本発明の炭素繊維の製造法は、芳香族系組成物としての
原料ピッチt、あらかじめ芳香族溶媒と脂肪族溶媒全混
合し,そ孔により析出する不溶性相を利用する。この様
な本発明の処理を行なうことにより巾の狭い分子量分布
で且つ旨い平均分子量を有するピッチが得られる。これ
はゲル浸透クロマトグラフィーを用いて簡単に確認する
ことが出来る。
The method for producing carbon fibers of the present invention utilizes the raw material pitch t as an aromatic composition, an aromatic solvent and an aliphatic solvent completely mixed in advance, and an insoluble phase precipitated through the pores. By carrying out the treatment of the present invention, pitch having a narrow molecular weight distribution and a good average molecular weight can be obtained. This can be easily confirmed using gel permeation chromatography.

9一 ここでこの不溶性相の析出状態の概念を説明する。水出
勤人による特開昭53−56901号を参照してもらえ
ばよいが、ここに要部を説明する。
9-Here, the concept of the precipitation state of this insoluble phase will be explained. You may refer to Japanese Patent Application Laid-Open No. 53-56901 by Mizushunin, but the main parts will be explained here.

本発明者等は、従来より知られているピッチ類の溶剤分
析を詳細に検討している間に、以下に述べる重大な事実
を発見した。すなわち、例えばコールタールのような芳
香族系組成物を溶剤分析するに当り,その組成物と芳香
族系溶媒に対して貧溶媒である脂肪族系溶媒を、その組
成物に加温状態で芳香族系溶媒と同時に混合し、次いで
放冷捷たは冷却することにより不溶性相物質が生成する
The present inventors discovered the following important fact while conducting a detailed study on the conventionally known solvent analysis of pitches. That is, when performing solvent analysis on an aromatic composition such as coal tar, an aliphatic solvent, which is a poor solvent for the composition and the aromatic solvent, is added to the composition under heating. An insoluble phase material is produced by simultaneous mixing with a family solvent and then cooling or cooling.

ただし、この時の各溶媒の組合せと芳香族糸組成物との
構成比率は適当に選択しなけれはならない。
However, at this time, the composition ratio of each solvent combination and the aromatic thread composition must be appropriately selected.

芳香族系組成物に対する溶媒の混合による不溶性相の析
出状態の理解のために、組成図を用いて説明する。以下
、本文中の配力は,その時点での第1図中の組成点に対
応する。
In order to understand the state of precipitation of an insoluble phase due to mixing of a solvent with an aromatic composition, explanation will be made using a composition diagram. Below, the distributions in the text correspond to the composition points in Figure 1 at that time.

芳香族系組成物と芳香族′#jn.を,その溶媒の沸点
以下の温度に加熱しながら混合し,放冷壕たは耐層1す
る(A点)。この混合物は、通常常温では10− 液状である。これに脂肪族系溶媒を徐々に添加して行く
と、B点で板状結晶様の不溶性相の析出が始まる。さら
に脂肪族系溶媒を加え続けると、C点では析出した不溶
性相は粘着性音帯び始め、D点では黒色ピッチ状物質が
容器の1氏部に沈着するようになる。D点以後は、脂肪
族系溶媒金加え続けても、不溶性相の状態は変化しない
。D点の組成物に、芳香族系溶媒を混合加熱し、放冷昔
たは冷却すると、E点で再び粘着性のある板状結晶様の
不溶性相が析出し、さらに芳香族系溶媒を加えると、粘
着性のない板状結晶様の不溶性相となる(F点)。次い
で加える溶媒を、脂肪族系に戻すと、0点に至り不溶性
相は粒状に変わり始め、H点以後では全て粒状になる。
Aromatic composition and aromatic '#jn. are mixed while being heated to a temperature below the boiling point of the solvent, and formed into a cooling trench or layer 1 (point A). This mixture is usually in a 10-liquid state at room temperature. When an aliphatic solvent is gradually added to this, a plate-like insoluble phase begins to precipitate at point B. As the aliphatic solvent is further added, at point C the precipitated insoluble phase begins to take on a sticky tone, and at point D a black pitch-like substance begins to deposit in one part of the container. After point D, the state of the insoluble phase does not change even if the aliphatic solvent gold is continued to be added. When an aromatic solvent is mixed and heated to the composition at point D and left to cool or cooled, a sticky plate-like insoluble phase precipitates again at point E, and then an aromatic solvent is added. This results in a non-sticky, plate-like insoluble phase (point F). When the solvent to be added is then returned to the aliphatic system, the insoluble phase reaches the 0 point and begins to become granular, and after the H point, everything becomes granular.

このような溶媒の混合による不溶性相の析出状態の変化
において、A点からB点までの領域は、場合によっては
油状のものが沈降するので、オイリゾーンと称する。B
点からC点塘での領域では板状結晶様の析出物となるの
で、クリスタルゾーンと称し、■)点の存在する領域で
は黒色ピッチ状物質が現わノ1−るので、ピッチゾーン
と称する。前述の説明通り、E点からF点を経て0点に
至る間は、再びクリスタルゾーンであるが、H点の存在
する領域での不溶性相はスラリ状を呈するので、スラリ
ゾーンと称する。
In such a change in the precipitation state of the insoluble phase due to mixing of solvents, the region from point A to point B is called an oily zone because oily substances may precipitate depending on the case. B
In the region from point C to point C, a plate-like crystal-like precipitate appears, so it is called the crystal zone.■) In the region where the point exists, a black pitch-like substance appears, so it is called the pitch zone. . As explained above, the period from point E to point F and then to point 0 is again a crystal zone, but since the insoluble phase in the region where point H exists takes on a slurry state, it is called a slurry zone.

本発明で使用するピッチゾーン又Vまクリスタルゾーン
での析出物である不溶性相は黒色ピッチ状又は結晶状を
呈し、容器底部に沈澱し1通常芳香族組成物の軟化点(
R&B法)以上の軟化点を示すが、不溶性相の分離その
ものは極めて容易である。これは脂肪族系溶媒の添加に
よる効果である。
The insoluble phase, which is a precipitate in the pitch zone or crystal zone used in the present invention, has a black pitch or crystal shape, and is precipitated at the bottom of the container.
Although the softening point is higher than that of R&B method, separation of the insoluble phase itself is extremely easy. This is the effect of adding an aliphatic solvent.

これらの各領域の範囲は使用する溶媒の組合せによって
も変わる。その例を第1表例11例2に示す。第2表に
例埜するような相互に完全には溶解せず成る割合の組成
でeよ一一万の成分が析出するような溶媒の組合せにお
いては、芳香族系組成物と芳香族系溶媒全混合し1次い
で脂肪族系電媒r混合する際、その第〃0につれて同様
に不溶性相を析出させることも出来る。
The range of each of these regions also varies depending on the combination of solvents used. An example thereof is shown in Table 1, Example 11, Example 2. In combinations of solvents such as those shown in Table 2, in which 110,000 components are precipitated at compositions that do not completely dissolve each other, the aromatic composition and the aromatic solvent When the mixture is completely mixed and then the aliphatic electric medium is mixed, an insoluble phase can be similarly precipitated toward the 0th stage.

第1表 溶媒の組合せと比率の違いと不溶性相の析出状
態の変化の例 (例1 )               単位 車m
%=13− 14− 第2表 相互完全には溶解し ない溶媒組合せの例 このような溶媒処理によって、本発明において使用する
不溶性相は極めて容易に回収される。
Table 1 Examples of changes in the precipitation state of the insoluble phase due to differences in solvent combinations and ratios (Example 1) Unit Car m
%=13-14- Table 2 Examples of solvent combinations that do not completely dissolve each other By such solvent treatment, the insoluble phase used in the present invention can be recovered very easily.

次に不発明について詳述する。Next, non-invention will be explained in detail.

芳否欣系組成物としては、コールタール及び丑たはコー
ルタールピッチを出発原料とし、それに芳香族系溶媒と
脂肋頒系溶媒と倉、富圧下當温から250’Cで混合す
ると、前述の組成図のビツナゾーン又はクリスタルゾー
ンにおいて、不溶性相か生ずる。本発明においてはこの
不溶性物質を使用するが、キノリンネ溶分である物質を
0.1重量係以上含む原料からの不溶性相を使用する場
合は。
The aromatic composition can be prepared by using coal tar and coal tar pitch as a starting material, and mixing it with an aromatic solvent and a fatty acid solvent at a temperature ranging from 250°C under full pressure to the above-mentioned composition. In the vituna zone or crystal zone of the composition diagram, an insoluble phase occurs. In the present invention, this insoluble substance is used, but when an insoluble phase from a raw material containing 0.1 weight percent or more of a substance which is a quinoline soluble substance is used.

j1過又は遠心分離等の手段で、該原料又は溶媒処理に
よシピツチゾーン又はクリスタルゾーンで析出した不溶
性相中に含捷れるキノリンに不溶の物質を除去する。
Substances insoluble in quinoline contained in the raw material or in the insoluble phase precipitated in the sipitz zone or crystal zone by solvent treatment are removed by means such as filtration or centrifugation.

本発明に使用するコールタールとは、石炭の高温乾留時
に生成するもので、又コールタールピッチとは、これを
蒸留し軽質油分を留去したものである。本発明に使用す
る芳香族系溶媒は、伺ら限定されるものではなく、ベン
セン・トルエン・キノリン・ナフタレン・アントラセン
・フェナントレンあるいはそれらの混合物等、構成成分
が芳香族炭化水素であれはよいか1通常コールタール蒸
留で得られるクレオソート油、アントラセン油或はディ
レ=−トコ−カー副生前など比較的重質油が好ましい。
Coal tar used in the present invention is produced during high-temperature carbonization of coal, and coal tar pitch is obtained by distilling this to remove light oil components. The aromatic solvent used in the present invention is not limited to any particular one, and may be any aromatic hydrocarbon as a constituent, such as benzene, toluene, quinoline, naphthalene, anthracene, phenanthrene, or a mixture thereof. Relatively heavy oils such as creosote oil, anthracene oil, or pre-by-product oil obtained by coal tar distillation are generally preferred.

一方、脂肪族系温媒においても、n−ヘキサノ・ナフサ
・灯軽油・燃料重油等、構成成分が脂肪族炭化水素であ
れは何ら限定さ7′することはない。分離帯域における
不溶性相の回収には、静置分離・液体サイクロン・Δ3
−過・遠心分離等あるいはそれらの組合せ方式が採用出
来る。
On the other hand, the aliphatic heating medium is not limited in any way as long as its constituent components are aliphatic hydrocarbons such as n-hexano, naphtha, kerosene, fuel oil, etc. To recover the insoluble phase in the separation zone, static separation, hydrocyclone, Δ3
- Methods such as filtration, centrifugation, etc. or a combination thereof can be adopted.

本発明で使用する不溶性相は、溶媒処理する前の原料に
くらべてそれ自体高い平均分子量と比較的ノヤ−ブな分
子量分布′f:! 、1.ている。更にそれ等の特性を
高めるために本発明では常圧或は減圧蒸留操作をノ1(
宜調整して、要求される用途に応じて、より高い平均分
子量とシャープな分子量分布を持つようにする。
The insoluble phase used in the present invention has a higher average molecular weight and a relatively rough molecular weight distribution 'f:! compared to the raw material before solvent treatment. , 1. ing. In order to further enhance these properties, the present invention employs atmospheric or reduced pressure distillation operations.
It can be adjusted as needed to have a higher average molecular weight and sharper molecular weight distribution depending on the required application.

この様にして調整された不溶性相は250 ’Cから5
00°C好捷しくは300℃〜450℃の温度範囲で熱
処理するが、前述の如く分子量が揃っているために該加
熱により比較的短時間で均質なメゾフェーズか形成され
る。加熱温度か500℃以上であると、結晶化の進行程
fkコントロールするには、結晶化への速度か早すきる
ので、めまり適当であるとは言えない。250℃以下の
加熱温度でも良いか、易黒鉛化性成分であるメンフェー
ス゛を形成させるには時間かかかり過ざる。該温度17
− で加熱する時間は本発明により製造するピッチが。
The insoluble phase prepared in this way is
The heat treatment is preferably carried out at a temperature in the range of 300 to 450 degrees Celsius, but since the molecular weights are uniform as described above, a homogeneous mesophase is formed in a relatively short period of time by this heating. If the heating temperature is 500° C. or higher, the rate of crystallization will be too fast to control the progress of crystallization fk, so it cannot be said that the degree of convergence is appropriate. A heating temperature of 250° C. or lower may be sufficient, but it takes too much time to form a membrane which is an easily graphitizable component. The temperature 17
- The pitch produced according to the invention is heated at

流動試験器での測定で200℃〜400℃の温度でも流
動性を示めすまでの時間とする。加熱時間は、加熱温度
にもよるか10分〜5時間程度である。
This is the time taken to show fluidity even at a temperature of 200°C to 400°C as measured using a fluidity tester. The heating time is about 10 minutes to 5 hours depending on the heating temperature.

メゾフェーズの粒径の大小を調整するには2加熱源度と
時間を制御する。例えは約250℃〜380℃という低
温度で長時間の処理を行えば、小径メゾフェースが多剤
に生成する。父、処理温度を高くすれは、メゾフェース
の生成が早くなり、大径メゾフェースとなる。いづれの
場合も蒸留して事前に浴剤処理した原料ピッチを一縮し
ておけは、該加熱時間を短縮することが出来る。
To adjust the particle size of the mesophase, two heating source degrees and time are controlled. For example, if the treatment is carried out at a low temperature of about 250° C. to 380° C. for a long time, a large number of small diameter mesophases will be produced. In fact, the higher the processing temperature, the faster the mesofaces are formed, resulting in larger diameter mesofaces. In either case, the heating time can be shortened by condensing the raw pitch that has been distilled and treated with a bath agent in advance.

この様にして製造したピッチケ偏光顕微鏡で観察すれは
均一に整粒された光学異方性を有するメゾフェースケ含
廟していることかわかる。この様に加熱温度及び加熱時
間を調整することによりメゾフェースの粒径及び熱可塑
性を合用途に尾、して自由にコントロールすることか出
来る。
It can be seen that the particles observed with the Pitchke polarizing microscope produced in this manner contain mesophase particles having uniformly sized optical anisotropy. By adjusting the heating temperature and heating time in this manner, the particle size and thermoplasticity of the mesophase can be freely controlled to suit the purpose.

本発明で使用する炭系繊維用のピッチとしてQゴ、 1
8− あ′−!、V)メゾフェーズ′か巨大でない方か好まし
い。
Qgo, 1 as a pitch for carbon fiber used in the present invention
8- A'-! , V) Mesophase' or non-giant is preferred.

本発明で使用jるピッチ11」のメゾフェース′″は、
偏光顕微鏡の200倍の倍率でメゾフェーズが確認出来
ないか−又は初めてメゾフェーズの存在か確認出来る程
度のピッチを使用するのが好捷しい。
The mesoface of pitch 11 used in the present invention is:
It is preferable to use a pitch such that no mesophase can be confirmed at 200 times magnification using a polarizing microscope, or the presence of a mesophase can be confirmed for the first time.

すなわち、ピッチ中に存在するメゾフェーズ′の径が紡
糸稜、維の径より大きくなると、該繊維の紡糸中に該部
分で節或はボイドとなり連続紡糸か行なえず、しかも焼
成、して炭素繊維としても引張り強度か弱くなり、炭素
繊維本来の性能が発揮し得ないためである。
In other words, if the diameter of the mesophase present in the pitch is larger than the diameter of the spinning ridge or fiber, knots or voids will form in that part during spinning of the fiber, making it impossible to perform continuous spinning. However, the tensile strength of the carbon fiber becomes weaker, and the original performance of carbon fiber cannot be exhibited.

本発明の方法で製造したピッチ2z5o〜400℃の温
度範囲で溶融し、ノズルより押出し、紡糸する。その俊
通常の如く200〜300℃で、該紡糸した櫃維金不融
化し、次いで不粘性気相中で1000〜1500℃で炭
化し、必要に応じて更に2000℃以上で黒鉛化して炭
素繊維を製造する。
The pitch produced by the method of the present invention is melted in a temperature range of 2z5o to 400°C, extruded through a nozzle, and spun. As usual, the spun fibers are made infusible at 200 to 300°C, then carbonized at 1000 to 1500°C in an inviscid gas phase, and if necessary, further graphitized at 2000°C or higher to form carbon fibers. Manufacture.

本発明により製造した炭素繊維は、炭化及び黒鉛化工程
における温度を適宜選択することにより。
The carbon fiber produced according to the present invention can be produced by appropriately selecting the temperature in the carbonization and graphitization steps.

汎用型、或は高品質炭素繊維を製造することが出来る。It is possible to produce general-purpose or high-quality carbon fiber.

本発明の炭素繊維の製造法は炭素繊維用の原料調整に特
徴を有するものでj東料を温媒処理し、その分子月分布
を出来るたけ揃えることにより、該原料の均質化を削る
ものであり、それにより製造した炭素繊維は高強度でし
かも、均實な品質のものが製造出来るものである。
The method for producing carbon fibers of the present invention is characterized by the preparation of raw materials for carbon fibers, and the homogenization of the raw materials is reduced by treating the material with a hot medium and making its molecular distribution as uniform as possible. The carbon fiber produced using this method has high strength and uniform quality.

次に本発明を実施例をもって説明する。Next, the present invention will be explained using examples.

実施例コ 操作1 軟化点25℃、キノリンに不溶の物質を2.1
重量%〒含むコールタール軟ピツチ1都に芳香族系軽油
(JI’S  K −2254による初留点191℃、
軟点328℃)を175部加え、120℃で14過を行
ない966重量%回収率でj:I液を得た。
Example operation 1 A substance insoluble in quinoline with a softening point of 25°C was added to 2.1
Aromatic light oil (initial boiling point 191°C according to JI'S K-2254,
175 parts of the solution (soft point: 328°C) were added, and 14 filtration was performed at 120°C to obtain a j:I solution with a recovery rate of 966% by weight.

操作2 このt44部部に対して工業用ガソリン(JI
S  K−2201)を1/2部加え、70℃で加熱混
合し、ピッチゾーンで沈降するピッチ状の不溶性相を回
収し、減圧蒸留して、軟化点90′C、キノリンに不溶
の物質0.03%のピッチを得た。
Step 2 Apply industrial gasoline (JI) to this t44 part.
Add 1/2 part of S K-2201), heat mix at 70°C, collect the pitch-like insoluble phase that settles in the pitch zone, and distill under reduced pressure to obtain a mixture with a softening point of 90'C and 0 substances insoluble in quinoline. A pitch of .03% was obtained.

操作3 このピッチ全窒素雰囲気で大気圧下。Operation 3: This pitch is under atmospheric pressure in a total nitrogen atmosphere.

380℃で8時間加熱処理を行なったところ、キノリン
ネ溶分45%のピッチが得うれ+ 500倍の偏光顕微
鏡で観察したところ直径約5〜10μの光学異方性球体
が視野全面に見られた。この時のピッチの軟化点は23
0“Cであった。又操作lで得られたf1液を減圧蒸留
して92℃の軟化点全有するピンチと操作2で得られた
軟化点90℃のピッチをキノリンを移動相とするゲル浸
透クロマトグラフィー盆用いて、溶出パターンの比較全
行ったところ、操作lから得ら7′したピッチより操作
2より得られたピッチの方が大ぎな分子の比率が高く、
分子型分布も狭く、全体として高い平均分子量音響して
いた。
When heat-treated at 380℃ for 8 hours, a pitch with a quinolinated content of 45% was obtained.+ When observed under a polarizing microscope with a magnification of 500 times, optically anisotropic spheres with a diameter of about 5 to 10μ were seen over the entire field of view. . The softening point of the pitch at this time is 23
The f1 liquid obtained in Step 1 was distilled under reduced pressure to form a gel using quinoline as a mobile phase using pinch having a softening point of 92°C and pitch having a softening point of 90°C obtained in Step 2. When the elution patterns were compared using a permeation chromatography tray, the pitch obtained from Step 2 had a higher proportion of large molecules than the pitch obtained from Step 1.
The molecular type distribution was also narrow, and the average molecular weight was high overall.

操作4 操作2(二より得られたピッチケ330℃で浴
融紡糸したところ1時間にわたって連21− 続紡糸が可能であった。この繊維を210℃で不融化処
理した後、1500℃で炭化処理して炭素繊維を製造し
た。この炭素繊維は平均繊維径15μであり、引張強度
210 Kg/、、j、弾性率15 t、/mAであっ
た。
Operation 4 When the Pitchke obtained from Operation 2 (2) was bath-melt spun at 330°C, continuous spinning was possible for 1 hour. After the fiber was infusible at 210°C, it was carbonized at 1500°C. This carbon fiber had an average fiber diameter of 15μ, a tensile strength of 210 Kg/, j, and an elastic modulus of 15 t,/mA.

実施例2゜ 軟化点31℃、キノリンに不溶の物質を1.5重量%を
含むコールタール1部に、トルエン4部とn〜ヘキサン
5部を加え、75℃で混合放置した。
Example 2 To 1 part of coal tar containing 1.5% by weight of a substance insoluble in quinoline and having a softening point of 31°C, 4 parts of toluene and 5 parts of n-hexane were added and allowed to mix at 75°C.

クリスタルゾーンで析出した不溶性相は黒色ピッチ板状
結晶状を呈し、容器底部に沈降した、この不溶性相を回
収し、該不溶性相に対して1部のキノリン葡加えて加圧
1過を行ない、得られたp液を減圧蒸留して、軟化点8
8℃のキノリンに不溶の物質が0.02%のピッチを回
収した。このピッチを窒素雰囲気、5龍即の減圧下35
0℃で40分間加熱処理を行なったところキノリンネ浴
分3重量係のピッチが得られた。このピッチの軟化点は
220℃であった。このピッチを流動試験機により30
0〜350℃の温度範囲で測定したところ極めて均22
− −な流動を示めした。又このピッチを200倍偏光顕微
鏡で観察したところ視野の全面にわたって直径約〕−μ
以下の光学異方性球体の生成が見られた。
The insoluble phase precipitated in the crystal zone had a black pitch plate-like crystal shape, and settled at the bottom of the container. This insoluble phase was collected, and 1 part of quinoline was added to the insoluble phase, and the mixture was subjected to pressurization for 1 time. The obtained p liquid was distilled under reduced pressure to a softening point of 8.
Pitch containing 0.02% of material insoluble in quinoline at 8°C was recovered. This pitch was placed in a nitrogen atmosphere, under a reduced pressure of 35
When heat-treated at 0° C. for 40 minutes, a pitch weighing 3 parts by weight of the quinoline bath was obtained. The softening point of this pitch was 220°C. This pitch was determined by a flow tester to 30
When measured in the temperature range of 0 to 350℃, it was extremely uniform.
- It showed a certain flow. Also, when this pitch was observed with a 200x polarizing microscope, it was found that the diameter was approximately 〕-μ over the entire field of view.
The following optically anisotropic spheres were observed to be produced.

該ピッチを溶融紡糸し、不融化処理、及び炭化工程を経
た後2800℃で黒鉛化処理して得た炭素繊維の引張り
強度は260 Ky/mA−弾性率20t/mAであっ
た。
The pitch was melt-spun, subjected to an infusibility treatment, a carbonization step, and then graphitized at 2800° C. The tensile strength of the carbon fiber obtained was 260 Ky/mA and an elastic modulus of 20 t/mA.

実施例3 軟化点23°C、トルエン不溶分79%、キノリンに不
溶の物質22%のコールタール軟ピツチ1部に、芳香族
系軽油(J i S  K 2254による初留点19
1 ℃、軟点328℃)1/6部ケア0℃で混合攪拌し
放冷後、工業用ガソリン4号(JIS K 220] 
)を]722部え混合した。析出した不溶性相盆回収し
、濾過して、キノリンに不溶の物質0.0.5%のピッ
チを得た。
Example 3 Aromatic light oil (initial boiling point 19 according to JIS K 2254) was added to one part of coal tar soft pitch having a softening point of 23°C, 79% of toluene insoluble matter, and 22% of quinoline insoluble substances.
1°C, soft point 328°C) 1/6 part care Mixed and stirred at 0°C and left to cool, industrial gasoline No. 4 (JIS K 220)
722 parts of ) were mixed. The precipitated insoluble phase basin was collected and filtered to obtain pitch containing 0.0.5% of quinoline-insoluble material.

このピッチを減圧蒸留により軟化魚釣220 ’Cとし
、これ全窒素雰囲気3 n+1+ E fjの減圧下で
390 ’Cl2O分間の加熱処理ケ行なった。得られ
たピッチを200倍の偏光顕微鏡下で観察したところ、
メゾフェーズはほとんど観察されなかった。このピッチ
の軟化点は210“Cであった。
This pitch was softened to 220'C by distillation under reduced pressure, and then heat-treated for 390'Cl2O minutes under a reduced pressure of 3n+1+E fj in a total nitrogen atmosphere. When the obtained pitch was observed under a polarizing microscope with a magnification of 200 times,
Almost no mesophase was observed. The softening point of this pitch was 210"C.

該ピッチを実施例2と同じ工程で製造1〜だ炭素繊維の
引張り強度は、230 Kg/mA 、弾性率17 t
/aaであった。
The pitch was manufactured in the same process as in Example 2. The tensile strength of the carbon fiber was 230 Kg/mA, and the elastic modulus was 17 t.
/aa.

実施例4 実施例2で得られた軟化点88℃のキノリンに不溶の物
質が0.02重量係のピッチを窒素雰囲気。
Example 4 The pitch having a softening point of 88°C obtained in Example 2 and containing 0.02% by weight of a substance insoluble in quinoline was placed in a nitrogen atmosphere.

大気圧下400℃で2時間加熱処理した。このピッチ(
5200倍の偏光顕微鏡で観察したところ1〜5μの粒
径を有する光学異方性球体が全視野の5%を示めでいた
。又このピッチのキノリンネ溶分を測定したところ、]
8車量%であった。該ピッチ全実流例2と同じ工程で製
造した炭素繊維の引張り強i1”f: 200 Kg/
mA、弾性率は17 t/rnAであった。
Heat treatment was performed at 400° C. for 2 hours under atmospheric pressure. This pitch (
When observed using a polarizing microscope with a magnification of 5,200 times, optically anisotropic spheres having a particle size of 1 to 5 μm were found to occupy 5% of the entire field of view. Also, when we measured the quinoline solubility of this pitch, we found that]
It was 8% of the vehicle volume. Tensile strength i1”f of carbon fiber manufactured in the same process as the pitch full flow example 2: 200 Kg/
mA, and the elastic modulus was 17 t/rnA.

比較例1 キノリンに不溶の物1j(1,Owt%、軟化点40゛
Cのコールタール軟ピツチr溶媒処理することなく、室
索雰囲気、大気圧下4.10“Cで5時間加熱処理した
ところ、メゾフェーズは小さく、この時のキノリンネ溶
分は30 wt%であった。
Comparative Example 1 Substance insoluble in quinoline 1j (1, Owt%, coal tar soft pitch with a softening point of 40°C) was heat-treated at 4.10°C under atmospheric pressure in a room atmosphere for 5 hours without solvent treatment. However, the mesophase was small, and the quinoline solubility at this time was 30 wt%.

このピッチを通常の如く紡糸したところ、糸切れを生じ
連続紡糸が出来なかった。51紡糸炭素緘維を実施例1
と同様な工程で炭素繊維を製造したところ、その引張り
強度は、僅か60す/−であった。
When this pitch was spun as usual, yarn breakage occurred and continuous spinning was not possible. 51 spun carbon fiber Example 1
When carbon fiber was manufactured using a process similar to that described above, its tensile strength was only 60 S/-.

比較例2 実施例1で使用したコールタール軟ピツチを用いて、キ
ノリンに不溶の物質を濾過で除去した後、溶媒処理せず
に、窒素雰囲気で3朋)(7の減圧下380℃で30時
間熱処理を行なったところ、軟化点250℃のピッチか
得られた。このピッチを200ft!iの偏光顕微鏡で
観察したところ約1〜200μのメゾフェーズが存在し
ていた。キノリンネ溶分は30 wt%であった。この
ピッチは、比軟例コ−と同じく紡糸性が悪かった。
Comparative Example 2 Using the coal tar soft pitch used in Example 1, substances insoluble in quinoline were removed by filtration, and then the mixture was heated at 380° C. under reduced pressure for 30 days in a nitrogen atmosphere without solvent treatment. After heat treatment for several hours, a pitch with a softening point of 250°C was obtained. When this pitch was observed with a polarizing microscope at 200 ft!i, a mesophase of about 1 to 200 μ was present. The quinolinated content was 30 wt. %.This pitch had poor spinnability as well as soft-coated yarn.

以上の如く本発明は原料を脂肪族系溶媒及び芳香族系溶
媒により処理することにより結晶性にす25− ぐれ、均質でしかも高い熱可塑性を有するピッチを製造
することが出来る。このピッチを用いて、炭素繊維を製
造すると、紡糸性が良く、炭素繊維としてもすぐれた性
能を有していた。
As described above, in the present invention, by treating raw materials with an aliphatic solvent and an aromatic solvent, it is possible to produce a pitch having excellent crystallinity, homogeneity, and high thermoplasticity. When carbon fibers were produced using this pitch, they had good spinnability and had excellent performance as carbon fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、芳香族系組成物に対する溶媒の混合比率と不
溶性相の析出状態を示す。 26−
FIG. 1 shows the mixing ratio of the solvent to the aromatic composition and the state of precipitation of the insoluble phase. 26-

Claims (1)

【特許請求の範囲】 ] 芳香族組成物を溶媒処理し、該溶媒に不溶な成分を
加熱処理した後、溶融紡糸し不融化し、更に焼成するこ
とを特徴とする炭素繊維の製造法 2 溶媒が脂肪族系溶媒及び芳香族系溶媒であることケ
特徴とする特許請求の範囲第1項記載の炭素繊維の製造
法 3 溶媒に不溶な成分がキノリンに不溶の物質か0.1
重量%以下の芳香族系組成物に対して、芳香族系溶媒と
脂肪族系溶媒とを混合し、析出するピッチゾーンの不溶
性相盆同収するか、又はキノリンに不溶の物質を0.1
重重%以上含む芳香族系組成物に対して芳香族系溶媒と
脂、□ 肪族系溶媒とケ混合して、析出するピッチゾーンの不溶
性相を回収し、これに含有するキー     ノリンに
不溶の物質を除去した不溶性相7回1− 収するか、或はキノリンに不溶の物質を0.1重重%以
上含む芳香族組成物からキノリンに不溶な物質を除去し
てから芳香族系溶媒と脂肪族系溶媒とを混合し、析出す
るピッチゾーンの不溶性相を回収し1次いで該同収物を
常圧又は減圧下で蒸留して、低沸点留分を除去したピッ
チを加熱処理することを特徴とする特許請求の範囲第1
項記載の炭素繊維の製造法 4 溶媒に不溶な成分がキノリンに不溶の物質が0.1
重量%以下の芳香族系組成物に対して、芳香族系溶媒と
脂肪族系溶媒とを混合し、析出するクリスタルゾーンの
不溶性相を回収するか、又はキノリンに不溶の物質を0
.1重量%以上含む芳香族系組成物に対して芳香族系溶
媒と脂肪族系溶媒とを混合して、析出するクリスタルゾ
ーンの不溶性相を回収し、こルに含有するキノリンに不
溶の物質全除去した不溶性相を回収するか、或はキノリ
ンに不溶の物質を0.1重量%以上含む芳香族組成物か
2− らキノリンに不溶な物Jk除去してから芳香族系溶媒と
脂肪族系溶媒とを混合し、析出するクリスタルゾーンの
不溶性相を回収し1次いで該回収物を常圧又は減圧下で
蒸留して、低沸点留分を除去したピッチを加熱処理する
ことケ%、徴とする特許請求の範囲第1項記載の炭素繊
維の製造法。
[Claims]] Carbon fiber manufacturing method 2, characterized in that an aromatic composition is treated with a solvent, components insoluble in the solvent are heat-treated, and then melt-spun to make it infusible and further fired.Solvent is an aliphatic solvent and an aromatic solvent. 3. A method for producing carbon fiber according to claim 1, wherein the component insoluble in the solvent is a substance insoluble in quinoline or 0.1
For an aromatic composition of less than 0.1% by weight, an aromatic solvent and an aliphatic solvent are mixed and the insoluble phase in the precipitated pitch zone is collected, or 0.1% of the insoluble substance is added to the quinoline.
The aromatic solvent and fat, □ aliphatic solvent are mixed with the aromatic composition containing more than % by weight, and the insoluble phase of the precipitated pitch zone is collected, and the insoluble phase in the keynoline contained in this is collected. The insoluble phase from which substances have been removed 7 times 1- Or, the substances insoluble in quinoline are removed from the aromatic composition containing 0.1% by weight or more of substances insoluble in quinoline, and then the aromatic solvent and fat are removed. The pitch is mixed with a group-based solvent, the insoluble phase of the precipitated pitch zone is collected, and then the same is distilled under normal pressure or reduced pressure to remove the low-boiling fraction, and the pitch is then heat-treated. Claim 1:
Method for producing carbon fibers described in Section 4 The component insoluble in the solvent is the substance insoluble in quinoline is 0.1
For an aromatic composition of less than % by weight, an aromatic solvent and an aliphatic solvent are mixed and the insoluble phase of the precipitated crystal zone is collected, or the substance insoluble in quinoline is removed.
.. An aromatic solvent and an aliphatic solvent are mixed with an aromatic composition containing 1% by weight or more, the insoluble phase of the precipitated crystal zone is collected, and all the substances insoluble in quinoline contained in the mixture are collected. Collect the removed insoluble phase, or remove the quinoline-insoluble substances from the aromatic composition containing 0.1% by weight or more of substances insoluble in quinoline, and then combine the aromatic solvent and the aliphatic solvent. The pitch is mixed with a solvent, the insoluble phase of the precipitated crystal zone is collected, and then the collected product is distilled under normal pressure or reduced pressure, and the pitch from which the low-boiling fraction has been removed is heat-treated. A method for producing carbon fiber according to claim 1.
JP4004082A 1982-03-13 1982-03-13 Preparation of carbon fiber Granted JPS58156027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4004082A JPS58156027A (en) 1982-03-13 1982-03-13 Preparation of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4004082A JPS58156027A (en) 1982-03-13 1982-03-13 Preparation of carbon fiber

Publications (2)

Publication Number Publication Date
JPS58156027A true JPS58156027A (en) 1983-09-16
JPH0229765B2 JPH0229765B2 (en) 1990-07-02

Family

ID=12569793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4004082A Granted JPS58156027A (en) 1982-03-13 1982-03-13 Preparation of carbon fiber

Country Status (1)

Country Link
JP (1) JPS58156027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108725A (en) * 1984-10-30 1986-05-27 Teijin Ltd Production of pitch carbon yarn having novel structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160427A (en) * 1977-07-08 1979-12-19 Exxon Research Engineering Co Production of optically anisotropic* deformable pitch* optical anisotropic pitch* and pitch fiber
JPS5558287A (en) * 1978-05-05 1980-04-30 Exxon Research Engineering Co Improvement in forming neomesophase
JPS55157652A (en) * 1980-02-29 1980-12-08 Pioneer Electronic Corp Molding composition
JPS5747384A (en) * 1980-09-03 1982-03-18 Nippon Steel Chem Co Ltd Preparation of pitch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160427A (en) * 1977-07-08 1979-12-19 Exxon Research Engineering Co Production of optically anisotropic* deformable pitch* optical anisotropic pitch* and pitch fiber
JPS5558287A (en) * 1978-05-05 1980-04-30 Exxon Research Engineering Co Improvement in forming neomesophase
JPS55157652A (en) * 1980-02-29 1980-12-08 Pioneer Electronic Corp Molding composition
JPS5747384A (en) * 1980-09-03 1982-03-18 Nippon Steel Chem Co Ltd Preparation of pitch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108725A (en) * 1984-10-30 1986-05-27 Teijin Ltd Production of pitch carbon yarn having novel structure
JPH0380888B2 (en) * 1984-10-30 1991-12-26 Teijin Ltd

Also Published As

Publication number Publication date
JPH0229765B2 (en) 1990-07-02

Similar Documents

Publication Publication Date Title
US4601813A (en) Process for producing optically anisotropic carbonaceous pitch
JPH0133568B2 (en)
JPS59216921A (en) Manufacture of carbon fiber
JPS6030365B2 (en) Method for producing high strength, high modulus carbon fiber
JPH0791372B2 (en) Method for manufacturing raw material pitch for carbon material
US4655902A (en) Optically anisotropic carbonaceous pitch
JPS60168787A (en) Production of pitch
JPS58156027A (en) Preparation of carbon fiber
JPH0432118B2 (en)
JPH0532494B2 (en)
JPH0455237B2 (en)
JPS59164386A (en) Preparation of precursor pitch for carbon fiber
JP2533487B2 (en) Carbon fiber manufacturing method
JPS6059950B2 (en) How to make pitutchi
JPS6183319A (en) Carbon fiber and its production
JPS6160785A (en) Production of precursor pitch for carbon fiber
JPH0116877B2 (en)
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JPH0633528B2 (en) Carbon fiber and manufacturing method thereof
JPS61190587A (en) Production of precursor pitch for carbon fiber
JPH058755B2 (en)
JPS6240445B2 (en)
JP3018660B2 (en) Spinning pitch for carbon fiber and method for producing the same
JPS6183318A (en) Production of carbon fiber
JPH03227396A (en) Production of optically anisotropic pitch